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1. INTRODUCTION

Let C(X) be the Banach algebra of all continuous complex‐valued functions on a com‐

pact Hausdorff space X with the uniform norm,

\displaystyle \Vert f\Vert_{X}=\sup_{x\in X}|f(x)|, f\in C(X) .

A Banach function algebra is a subalgebra B of C(X) which separates the points of X,

contains the constants and is complete under an algebra norm. If the algebra norm on B

is equivalent to the uniform norm, then the subalgebra B is called a uniform algebra.

A function algebra B on a compact Hausdorff space X is natural if every nonzero

complex homomorphism on B is an evaluation homomorphism at any point of X [7,

4.1.3]. For each x \in  X , the evaluation map $\delta$_{x} is defined by $\delta$_{x}(f) = f(x) for every

function f\in B . In the case where B is a Banach function algebra on X
,

we say that B

is natural if its maximal ideal space \mathcal{M}(B) coincides with X.

Let A and B be linear spaces of functions on sets X and Y
, respectively. Let u be a

complex‐valued function on Y
, and  $\varphi$ be a map from  Y to X . A linear operator uC_{ $\varphi$},

defined by

uC_{ $\varphi$}f=u(f\circ $\varphi$) , f\in A

is called a weighted composition operator from A to B
,

whenever u(f\mathrm{o} $\varphi$) \in B for each

f\in A . The operator uC_{ $\varphi$} can be regarded as a generalization of a multiplication operator

and a composition operator. In the case where u= 1
, the operator uC_{ $\varphi$} reduces to the
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composition operator C_{ $\varphi$} . In the case where X = Y and  $\varphi$(x) = x , it reduces to the

multiplication operator M_{\mathrm{u}}.

Using the closed graph theorem, every weighted composition operator from a Banach

function algebra to another is automatically continuous and therefore a bounded linear

operator between them.

A complex‐valued function f defined on a perfect compact plane set X is complex‐

differentiable on X if at each point z_{0}\in X the limit

f'(z_{0})=z\displaystyle \rightarrow z\lim_{z\in X^{0}}\frac{f(z)-f(z_{0})}{z-z_{0}},
exists. The n‐th complex‐derivative of f is denoted by f^{(n)}.

Suppose that D^{n}(X) is the algebra of n‐times continuously complex‐differentiable func‐

tions on a perfect compact plane set X . This algebra with the norm

\displaystyle \Vert f\Vert_{n}=\sum_{k=0}^{n}\frac{\Vert f^{(k)}\Vert_{X}}{k!} (f\in D^{n}(X)) ,

is a normed function algebra on X which is not necessarily complete, even for a fairly

nice X . For example, Bland and Feinstein in [4, Theorem 2.3] showed that if a compact,

perfect plane set X has infinitely many components then the algebra D^{n}(X) is incomplete.

By standard methods, the completeness of D^{1}(X) implies the completeness of D^{n}(X) for

each n\in \mathrm{N} . As Bland and Feinstein showed in [4, Theorem 2.5], there exists an example

of a set X which is the image of a rectifiable Jordan arc in the plane and yet D^{1}(X) is

incomplete. Therefor, the completeness of D^{1}(X) is far from being a topological property

of X . To provide a sufficient condition for the completeness of D^{1}(X) , let us recall the

definition of pointwise regularity and uniform regularity for compact plane sets.

Definition 1.1. Let X be a compact plane set with more than one point.

(i) X is called pointwise regular if for each z_{0} \in X there exists a constant c_{z_{0}} such

that, for every z\in X there exists a rectifiable path  $\gamma$ : [a, b]\rightarrow X with  $\gamma$(a)=z_{0},

 $\gamma$(b)=z and | $\gamma$|\leq c_{z_{0}}|z-z_{0}| where | $\gamma$| is the length of the path  $\gamma$.

(ii) X is called uniformly regular if there exists a constant c such that for all z, w\in X,

there exists a rectifiable path  $\gamma$ : [a, b] \rightarrow  X with  $\gamma$(a) = z,  $\gamma$(b) = w and

| $\gamma$|\leq c|z-w|.
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Clearly all pointwise and uniformly regular sets are perfect and path‐connected. We

note that every convex compact plane set is obviously uniformly regular. There are also

non‐convex uniformly regular sets, like the Swiss cheese defined in [14]. Clearly there are

pointwise regular sets which are not uniformly regular. For example, the union of two

closed discs tangent from outside is a pointwise regular set which is not uniformly regular.

It is also interesting to note that if the boundary of a compact plane set X satisfies one of

these two regularity conditions then it satisfies the same condition (of course this is not

a necessary condition), see [4, Theorem 3.5].

We now provide sufficient conditions for the completeness of D^{1}(X) . Dales and Davie

in [8, Theorem 1.6] showed that when X is a finite union of uniformly regular sets, for

each z_{0}\in X there exists a constant c_{z\mathrm{o}} such that for all f\in D^{1}(X) and each z\in X,

(1.1) |f(z)-f(z_{0})|\leq c_{z0}|z-z_{0}|(\Vert f\Vert_{X}+\Vert f'\Vert_{X}) .

Using this inequality, they obtained the following result.

Theorem 1.2. [8, Theorem 1.6] If X is a compact plane set which is a finite union of

uniformly regular sets, then D^{n}(X) is a Banach function algebra on X.

Later in [11], it was shown that the condition (1.1) is still valid when X is a finite

union of pointwise regular sets. In fact, in [11], it was shown that the condition (1.1) is a

necessary and sufficient condition for the completeness of D^{1}(X) .

Theorem 1.3. [11] Let X be a compact plane set. Then D^{1}(X) is complete if and only if

for each z_{0}\in X there exists a constant c_{z0} such that for all f\in D^{1}(X) and each z\in X,

|f(z)-f(z_{0})|\leq c_{z_{0}}|z-z_{0}|(\Vert f\Vert_{X}+\Vert f'\Vert_{X}) .

As a consequence of the above theorem, the following result was also established.

Theorem 1.4. [11] If X is a finite union of pointwise regular sets, then D^{n}(X) is a

Banach function algebra on X.

In general, it is not known whether or not the converse of this theorem holds true.

However, as it was proved in [9], there are several classes of connected, compact plane

sets X for which the completeness of D^{1}(X) is equivalent to the pointwise regularity of
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X. For example, this is true for all rectifiably connected, polynomially convex, compact

plane sets with empty interior, for all star‐shaped, compact plane sets, and for all Jordan

arcs in \mathbb{C} . Note that in Theorem 1.3, X need not be connected.

As it was shown in [8], the algebra D^{n}(X) is natural when X is uniformly regular.

However, as mentioned in [12], one can show that the algebra D^{n}(X) is natural for every

perfect compact plane set X (see also [9, Theorem 4.1]).
In this article, we discuss the boundedness and compactness of weighted composition

operators acting on algebras D^{n}(X) when perfect compact plane sets X satisfy the con‐

dition (1.1). In the case that u=1
, we give a necessary and sufficient condition for the

composition operators between two Banach algebras D^{n}(X) and D^{m}(Y) to be bounded

and compact. As a consequence, we state certain results about power compact and qua‐

sicompact composition operators on these algebras. Then using these results, by giving

examples we show that there exist quasicompact or Riesz operators on these algebras

which are not power compact.

2. BOUNDEDNESS AND COMPACTNESS OF uC_{ $\varphi$} ON D^{n}(X)

It is known that if u,  $\varphi$ \in  D^{n}(X) ,
then uC_{ $\varphi$} is a weighted composition operator

on D^{n}(X) . Conversely, if uC_{ $\varphi$} is a weighted composition operator on D^{n}(X) , then

u, u $\varphi$\in D^{n}(X) since D^{n}(X) contains the constant functions and the coordinate function

z . Although,  $\varphi$ does not necessarily belong to  D^{n}(X) as it may not be even continuous

on X . The following theorem gives a necessary and sufficient condition on u and  $\varphi$ for

 uC_{ $\varphi$} to be a weighted composition operator on D^{1}(X) .

Theorem 2.1. [2, Theorem 2.1] Let X be a perfect compact plane set. Let u be a complex‐

valued function on X , and  $\varphi$ be a self‐map of  X not necessarily continuous. Then uC_{ $\varphi$} is

a weighted composition operator on D^{1}(X) if and only if u and  u $\varphi$ belong to  D^{1}(X) .

In general, for a constant self‐map  $\varphi$ of  X , the weighted composition operator uC_{ $\varphi$} on a

normed function algebra B on X is a rank one operator, so it is compact. We now give a

sufficient condition for compactness of uC_{ $\varphi$} on D^{n}(X) for those  $\varphi$ which are not constant

self‐maps of  X.
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Theorem 2.2. [2, Theorem 2.2] Let X be a perfect compact plane set satisfying the

condition (1.1). Let u,  $\varphi$\in D^{n}(X) . If  $\varphi$(\mathrm{c}\mathrm{o}\mathrm{z}(u)) \subseteq intX, then the weighted composition

operator  uC_{ $\varphi$} is compact on D^{n}(X)_{2} where \mathrm{c}\mathrm{o}\mathrm{z}(u)=\{z\in X : u(z)\neq 0\}.

The condition  $\varphi$(\mathrm{c}\mathrm{o}\mathrm{z}(u))\subseteq intX is also necessary for compactness of weighted compo‐

sition operators  uC_{ $\varphi$} on algebras D^{n}(X) for certain compact plane sets X . This is indeed

the motivation for the following definition.

Definition 2.3. A plane set X has an internal circular tangent at  $\zeta$\in\partial X if there exists

an open disc U such that  $\zeta$\in\partial U and \overline{U}\backslash \{ $\zeta$\}\subseteq intX. A plane set  X is strongly accessible

from the interior if it has an internal circular tangent at each point of its boundary.

A compact plane set X is said to have a peak boundary with respect to a set B\subseteq C(X)
if for each  $\zeta$\in\partial X there exists a non‐constant function h\in B such that \Vert h\Vert_{X}=h( $\zeta$)=1.

The closed unit disc \overline{\mathrm{D}}=\{z\in \mathbb{C} : |z| \leq 1\} and \displaystyle \overline{ $\Delta$}(z_{0}, r)\backslash \bigcup_{k=1}^{n} $\Delta$(z_{k}, r_{k}) where closed

discs \overline{ $\Delta$}(z_{k}, r_{k}) are mutually disjoint in  $\Delta$(z_{0}, r)=\{z\in \mathbb{C} : |z-z_{0}| <r\} are examples of

plane sets which are strongly accessible from the interior. Moreover, if X is a compact

plane set such that \mathbb{C}\backslash X is strongly accessible from the interior, then X has a peak

boundary with respect to every subset of C(X) which contains the rational functions

with poles off X
,

in particular, with respect to D^{n}(X) . To see this, take  $\zeta$\in\partial X . Then

there exists a disc D=D(z_{0}, r) such that  $\zeta$\in\partial D and \overline{D}\backslash \{ $\zeta$\} \subseteq \mathbb{C}\backslash X . The function

h(z)=\displaystyle \frac{ $\zeta$-z_{0}}{z-z_{0}} satisfies the conditions in the definition of the peak boundary (see [3, 15

Theorem 2.4. [2, Theorem 2.5] Let X be a perfect compact plane set with connected

interior satisfy the condition (1.1), be strongly accessible from the intenor and have a

peak boundary with respect to D^{n}(X) . Let a complex function u and a self‐map  $\varphi$ of  X be

in D^{n}(X) . If the weighted composition operator uC_{ $\varphi$} on D^{n}(X) is compact, then either  $\varphi$

is constant or  $\varphi$(\mathrm{c}\mathrm{o}\mathrm{z}(u))\subseteq intX.

In the case where  u=1
,

the weighted composition operator uC_{ $\varphi$} reduces to the com‐

position operators C_{ $\varphi$} . The following corollary can be concluded immediately from the

above theorems for composition operators C_{ $\varphi$} on D^{n}(X) .

Corollary 2.5. [2, Corollary 2.6] Let X be a perfect compact plane set satisfying the

condition (1.1). Let a self‐map  $\varphi$ of  X be in D^{n}(X) .
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(i) If either  $\varphi$ is constant or  $\varphi$(X)\subseteq \mathrm{i}\mathrm{n}\mathrm{t}X_{f} Then C_{ $\varphi$} is compact on D^{n}(X) .

(ii) Let X be strongly accessible from the interior, have a peak boundary with respect

to D^{n}(X) and let intX be connected. If C_{ $\varphi$} is compact on D^{n}(X) , then either  $\varphi$

is constant or  $\varphi$(X)\subseteq intX.

Corollary 2.6. Let  C_{ $\varphi$} be a composition operator on D^{n}(\mathrm{D}) induced by a self‐map  $\varphi$ of

D. Then  C_{ $\varphi$} is compact if and only if either  $\varphi$ is constant or  $\varphi$(\overline{\mathrm{D}})\subseteq \mathrm{D}.

3. COMPOSITION OPERATORS BETWEEN THE ALGEBRAS D^{n}(X) AND D^{m}(Y)

In this section, we discuss the composition operators between the algebras of continu‐

ously complex differentiable functions.

Let X, Y be two perfect compact plane sets and n, m be two positive integers with

m \leq  n . Then for a map  $\varphi$ : \mathrm{Y} \rightarrow  X, C_{ $\varphi$} is a composition operator from D^{n}(X) into

D^{m}(Y) if and only if  $\varphi$ \in  D^{m}(Y) . If X satisfies the condition (1.1) and m < n , then

by using the Arzela‐Ascoli Theorem, one can show that the condition  $\varphi$ \in  D^{m}(Y) is a

sufficient condition for compactness of composition operator C_{ $\varphi$} . But in the case n=m,

by Corollary 2.5, this condition is not sufficient for compactness of C_{ $\varphi$} . Thus, we have

the following results for composition operators.

Theorem 3.1. Let X, Y be two perfect compact plane sets satisfying the condition (1.1)
and n, m be two positive integers with m<n . Then the following conditions are equivalent.

(i)  $\varphi$\in D^{m}(Y) .

(ii) C_{ $\varphi$} is a bounded operator from D^{n}(X) into D^{m}(Y) .

(iii) C_{ $\varphi$} is a compact operator from D^{n}(X) into D^{m}(Y) .

Theorem 3.2. Let X, Y be two perfect compact plane sets satisfying the condition (1.1),
n be a positive integer and the map  $\varphi$ :  Y\rightarrow X be in D^{n}(Y) .

(i) If either  $\varphi$ is constant or  $\varphi$(Y)\subseteq intX, then  C_{ $\varphi$} is a compact operatorfrom D^{n}(X)
into D^{n}(Y) .

(ii) Let X have a peak boundary with respect to D^{n}(X) and let Y be strongly accessible

from the interior. Assume that intX is connected. If C_{ $\varphi$} is a compact operator

from D^{n}(X) into D^{n}(Y) , then either  $\varphi$ is constant or  $\varphi$(Y)\subseteq intX.
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For the case  n<m ,
we need the following formula for higher derivatives of composite

functions which is known as Faà di Bruno�s formula [1, page 823].

Let f : X\rightarrow \mathbb{C} and  $\varphi$ :  Y\rightarrow X be n‐times continuously differentiable functions. Then

(f\displaystyle \circ $\varphi$)^{(n)}=\sum_{j=1}^{n}(f^{(j)}\circ $\varphi$)\cdot$\psi$_{j,n},
where

$\psi$_{j,n}=\displaystyle \sum_{a}(\frac{n.!}{a_{1}!a_{2}!\cdot\cdot a_{n}!}\prod_{\mathrm{i}=1}^{n}(\frac{$\varphi$^{(i)}}{i!})^{a_{i}}) ,

the sum \displaystyle \sum_{a} is taken over all non‐negative integers a_{1}, a_{2} ,
. . .

, a_{n} satisfying a_{1}+a_{2}+\cdots+

a_{ $\eta$} =j and a_{1}+2a_{2}+\cdots+na_{n}=n . For example, $\psi$_{1,n}=$\varphi$^{(n)} and $\psi$_{n,n}=($\varphi$')^{n}.

Theorem 3.3. Let X, Y be two perfect compact plane sets. Let n, m be two positive

integers with n<m . If  $\varphi$\in D^{m}(Y) and  $\varphi$(Y) \subseteq intX, then  C_{ $\varphi$} is a compact operator

from D^{n}(X) into D^{m}(Y) .

Pro0f. First we show that C_{ $\varphi$} is a bounded operator from D^{n}(X) into D^{m}(Y) . Let  f\in

 D^{n}(X) . Then f is analytic and so infinitely differentiable in intX. In particular, f is

m‐times continuously differentiable on the compact subset  $\varphi$(Y) \subseteq intX. Thus, using

Faà di Bruno�s formulas,  C_{ $\varphi$}(f) =f\mathrm{o} $\varphi$\in D^{m}(Y) . Hence C_{ $\varphi$} is a composition operator

from D^{n}(X) into D^{m}(Y) .

We now prove the compactness of C_{ $\varphi$} . To do this, let \{f_{k}\} be a bounded sequence

in D^{n}(X) with \Vert f_{k}\Vert_{n}= \displaystyle \sum_{r=0}^{n}\frac{\Vert f_{k}^{(r)}\Vert_{\mathrm{X}}}{r!} \leq  1 . Then \{f_{k}\} is a uniformly bounded sequence

of analytic functions in intX. Thus it is a normal family in the sense of Montel and by

using a subsequence if necessary, we may assume that there exists a function f analytic

in intX with f_{k}\rightarrow f uniformly on compact subsets of intX. Also, by [6, VII, Theorem

2.1], f_{k}^{(r)} \rightarrow f^{(r)} uniformly on compact subsets of intX for each r\geq 0 . By assumption,

 $\varphi$(Y) \subseteq intX, so one can define a function  F on Y by F(y) = f( $\varphi$(y)) . Since f is an

analytic function in intX, it is infinitely differentiable function on intX, in particular, it

is m‐times continuously differentiable on intX. Also, note that  $\varphi$\in D^{m}(Y) and therefore

F=f\mathrm{o} $\varphi$\in D^{m}(Y) . Using Faà di Bruno�s formulas, we show that C_{ $\varphi$}(f_{k})\rightarrow F in D^{m}(\mathrm{Y})
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as k\rightarrow\infty.

\displaystyle \Vert C_{ $\varphi$}(f_{k})-F\Vert_{m}=\sum_{r=0}^{m}\frac{\Vert(f_{k}\circ $\varphi$-F)^{(r)}\Vert_{Y}}{r!}=\sum_{r=0}^{m}\frac{\Vert((f_{k}-f)\circ $\varphi$)^{(r)}\Vert_{Y}}{r!}
\displaystyle \leq\Vert(f_{k}-f)\circ $\varphi$\Vert_{\mathrm{y}}+\sum_{r=1}^{m}\frac{1}{r!}\sum_{j=1}^{r}\Vert(f_{k}-f)^{(j)}0 $\varphi$\Vert_{\mathrm{y}} . \Vert$\psi$_{j,r}\Vert_{\mathrm{y}}

\displaystyle \leq\Vert f_{k}-f\Vert_{ $\varphi$(Y)}+\sum_{r=1}^{m}\frac{1}{r!}\sum_{j=1}^{r}\Vert f_{k}^{(j)}-f^{(j)}\Vert_{ $\varphi$(Y)} . \Vert$\psi$_{j,r}\Vert_{\mathrm{y}}.

Therefore, \Vert C_{ $\varphi$}(f_{k})-F\Vert_{m}\rightarrow 0 as  k\rightarrow\infty , since  $\varphi$(Y) is a compact subset of intX and

f_{k}^{(r)}\rightarrow f^{(r)} uniformly on  $\varphi$(Y) for each r\geq 0. \square 

Using the same arguments as in the proof of the above theorem we obtain the following

result.

Theorem 3.4. Let m be a positive integer and X, Y be two perfect compact plane sets.

If  $\varphi$\in D^{m}(Y) and  $\varphi$(Y)\subseteq intX, then  C_{ $\varphi$} is a compact operator from A(X) into D^{m}(Y) .

As usual, A(X) denotes the uniform algebra of all continuous functions on a compact

plane set X which are analytic on intX.

To prove the next theorem, we require the following lemma due to Julia [5, Chapter I

of Part Sìx].

Lemma 3.5. Let \overline{\mathrm{D}} be the closed unit disc in \mathbb{C} and let h be a continuously differentiable

function on \overline{\mathrm{D}} . If h( $\zeta$)=\Vert h\Vert_{\overline{\mathrm{D}}} for some  $\zeta$\in\overline{\mathrm{D}}, then either h is constant or h'( $\zeta$)\neq 0.

For convenience, for each z_{0}\in X and each function f : X\rightarrow \mathbb{C} we define

p_{z_{0}}(f):=z\displaystyle \neq zz\in X\sup_{0}\frac{|f(z)-f(z_{0})|}{|z-z_{0}|}.
Then when X satisfies the condition (1.1), for each z_{0} \in  X there exists a constant c_{z0}

such that

(3.1) p_{z0}(f)\leq c_{z0}(\Vert f\Vert_{X}+\Vert f'\Vert_{X}) (f\in D^{1}(X)) .

Theorem 3.6. Let n, m be two positive integers and X, Y be two perfect compact plane

sets satisfying the condition (1. 1) such that X has a peak boundary with respect to D^{n+1}(X)
and intX is connected. Let Y be strongly accessible from the interior. Ifn<m , then the

following conditions are equivalent.
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(i)  $\varphi$\in D^{m}(Y) and either  $\varphi$ is constant or  $\varphi$(Y)\subseteq intX.

(ii)  C_{ $\varphi$} is a bounded operator from D^{n}(X) into D^{m}(Y) .

(iii) C_{ $\varphi$} is a compact operator from D^{n}(X) into D^{m}(Y) .

Proof. (\mathrm{i})\rightarrow(\mathrm{i}\mathrm{i}\mathrm{i}) has been proved in Theorem 3.3. (\mathrm{i}\mathrm{i}\mathrm{i})\rightarrow(\mathrm{i}\mathrm{i}) is obvious.

(\mathrm{i}\mathrm{i})\rightarrow(\mathrm{i}) . We know that  $\varphi$\in D^{m}(Y) , since D^{n}(X) contains the coordinate function z.

Assume that  $\varphi$( $\zeta$) \in\partial X for spme  $\zeta$ \in  Y . Then by open mapping theorem for analytic

functions we have that  $\zeta$\in\partial Y . Since X has a peak boundary with respect to D^{n+1}(X) ,

there exists a non‐constant function h\in D^{n+1}(X) such that h( $\varphi$( $\zeta$))=\Vert h\Vert_{X}=1 . Let

f_{k}(z)=\displaystyle \frac{h^{k}.(z.)}{k(k-1)\cdot(k-n)}, (z\in X, k>n) .

Then \{f_{k}\} is a bounded sequence in D^{n}(X) and f_{k}^{(r)} \rightarrow  0 uniformly on X for each

r=0 , 1, 2, . . .

, n . Therefore \Vert f_{k}\Vert_{n}\rightarrow 0 and hence, by boundedness of C_{ $\varphi$},

\Vert f_{k}\circ $\varphi$\Vert_{m}=\Vert C_{ $\varphi$}(f_{k})\Vert_{m}\rightarrow 0 as k\rightarrow\infty.

Thus \Vert(f_{k}\circ $\varphi$)^{(r)}\Vert_{Y}\rightarrow 0 for each r=0 , 1, 2, . . .

, m and consequently, using the inequality

(3.1), p_{ $\zeta$}((f_{k}\mathrm{o} $\varphi$)^{(r)})\rightarrow 0 for each r=0 , 1, 2, . . .

, m-1 . In particular,

(3.2) p_{ $\zeta$}((f_{k}\circ $\varphi$)^{(n)})\rightarrow 0 as k\rightarrow\infty.

Also by (3.1), it follows from the uniformly convergence f_{k}^{(r)} \rightarrow  0 on X for each r =

0 , 1, 2, . . .

, n , that

(3.3) p_{ $\varphi$( $\zeta$)}(f_{k}^{(r)})\rightarrow 0 as  k\rightarrow\infty (r=0,1,2, \ldots,n-1) .

Using Faà di Bruno�s formula,

p_{ $\zeta$}((f_{k}^{(n)}\displaystyle \circ $\varphi$)($\varphi$')^{n})\leq p_{ $\zeta$}((f_{k}\circ $\varphi$)^{(n)})+\sum_{j=1}^{n-1}p_{ $\zeta$}((f_{k}^{(j)}\circ $\varphi$) . $\psi$_{j,n})
\displaystyle \leq p_{ $\zeta$}((f_{k}\circ $\varphi$)^{(n)})+\sum_{j=1}^{n-1}\Vert f_{k}^{(j)}\circ $\varphi$\Vert_{Y}p_{ $\zeta$}($\psi$_{j,n})+\sum_{j=1}^{n-1}p_{ $\zeta$}(f_{k}^{(j)}\circ $\varphi$)\Vert$\psi$_{j,n}\Vert_{Y}.
\displaystyle \leq p_{ $\zeta$}((f_{k}\circ $\varphi$)^{(n)})+\sum_{j=1}^{n-1}\Vert f_{k}^{(j)}\Vert_{X}p_{ $\zeta$}($\psi$_{j,n})+\sum_{j=1}^{n-1}p_{ $\varphi$( $\zeta$)}(f_{k}^{(j)})p_{ $\zeta$}( $\varphi$)\Vert$\psi$_{j,n}\Vert_{Y}.

This inequality, along with the limits (3.2), (3.3) and the property of \{f_{k}\} imply that

(3.4) p_{ $\zeta$}((f_{k}^{(n)}\circ $\varphi$)($\varphi$')^{n})\rightarrow 0 as k\rightarrow\infty.
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By the definition of f_{k}^{(n)},

(3.5) \displaystyle \frac{1}{k-n}p_{ $\zeta$}(((h\mathrm{o} $\varphi$)')^{n}(h\mathrm{o} $\varphi$)^{k-n})\leq p_{ $\zeta$}((f_{k}^{(n)}\mathrm{o} $\varphi$)($\varphi$')^{n})+\frac{P(k).p_{ $\zeta$}.( $\psi$)}{k(k-1)\cdot(k-n)},
where the function  $\psi$ is a combination of  $\varphi$', h and the derivatives of h

,
and P(k) is a

polynomial in terms of k with degree less than n+1 . Hence \displaystyle \frac{P(k)}{k(k-1)\cdots(k-n)}\rightarrow 0 as k\rightarrow\infty.

Using this limit together with the limit (3.4) and the inequality (3.5), we obtain

(3.6) \displaystyle \frac{1}{k-n}p_{ $\zeta$}(((h\circ $\varphi$)')^{n}\cdot(h\circ $\varphi$)^{k-n})\rightarrow 0 as k\rightarrow\infty.

On the other hand, we have

\displaystyle \sup|(h\circ $\varphi$)'(z)|^{n}\frac{|h^{k-n}( $\varphi$(z))-h^{k-n}( $\varphi$( $\zeta$))|}{(k-n)|z- $\zeta$|} z\in\overline{U}z\neq $\zeta$

\displaystyle \leq\frac{1}{k-n}\{p_{ $\zeta$}(((h\circ $\varphi$)')^{n}\cdot(h\circ $\varphi$)^{k-n})+p_{ $\zeta$}(((h\circ $\varphi$)')^{n})\Vert h\Vert_{X}^{k-n}\}.
Using (3.6) and the fact that \Vert h\Vert_{X}=1 ,

one can conclude from the above inequality that

\displaystyle \sup|(h\circ $\varphi$)'(z)|^{n}\frac{|h^{k-n}( $\varphi$(z))-h^{k-n}( $\varphi$( $\zeta$))|}{(k-n)|z- $\zeta$|}\rightarrow 0 , as k\rightarrow\infty.

 z\in\overline{U}z\neq $\zeta$
Let  $\epsilon$>0 . Then

|(h\displaystyle \circ $\varphi$)'(z)|^{n}\frac{|h^{k-n}( $\varphi$(z))-h^{k-n}( $\varphi$( $\zeta$))|}{(k-n)|z- $\zeta$|}< $\epsilon$,
for some positive integer k>n and for all z\in\overline{U} with  z\neq $\zeta$ . Taking limit as  z\rightarrow $\zeta$ ,

we get

|(h\mathrm{o} $\varphi$)'( $\zeta$)|^{n+1}\leq e , for each  $\epsilon$>0 ,
since h( $\varphi$( $\zeta$))=1 . Consequently, |(h\mathrm{o} $\varphi$)'( $\zeta$)|^{n+1}=0,

hence, (h\mathrm{o} $\varphi$)'( $\zeta$)=0 . By Julia�s Lemma 3.5,  h\mathrm{o} $\varphi$ is constant on U. Using the identity

theorem [6, IV, Theorem 3.7], the analytic function  h\mathrm{o} $\varphi$ is constant on the connected set

intX. The hypothesis,  X is strongly accessible from the interior, implies that X has dense

interior, so  h\mathrm{o} $\varphi$ is constant on  X . But h is not constant, thus  $\varphi$ must be constant. \square 

The assumption, X has a peak boundary with respect to D^{n+1}(X) ,
in Theorem 3.6 is

a mild restriction, since D^{n+1}(X) contains all rational functions with poles off X . In

particular, when X=\mathrm{Y}=\overline{\mathrm{D}} we have the following result.

Theorem 3.7. Let n, m be two positive integers with n<m,
then the following conditions

are equivalent.

(i)  $\varphi$\in D^{m}(\overline{\mathrm{D}}) and either  $\varphi$\dot{u} constant or  $\varphi$(\overline{\mathrm{D}}) \underline{\subseteq} D.

(ii) C_{ $\varphi$} is a bounded operator from D^{n}(\overline{\mathrm{D}}) into D^{m}(\overline{\mathrm{D}}) .
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(iii) C_{ $\varphi$} is a compact operator from D^{n}(\mathrm{I}\mathrm{D}) into D^{m}(\overline{\mathrm{D}}) .

In the case that the underlying set X has empty interior, the situation is different. For

example, as Kamowitz mentioned in [13], we have the following result when X is the unit

interval [0 ,
1 ] . As usual, in this case, we denote D^{n}(X) by C^{n}([0,1

Theorem 3.8. A non‐zero composition operator C_{ $\varphi$} on C^{n}([0,1]) is compact if and only

if  $\varphi$ is a constact function.

Thus every non‐zero compact endomorphism  T on C^{n}([0,1]) has the form Tf=f(z_{0})1

for some  z_{0}\in [0 ,
1].

4. QUASICOMPACT, RIESZ AND POWER COMPACT OPERATORS ON D^{n}(X)

Using the result of the previous section, we will prove some results about quasicom‐

pactness, Riesz and power compactness of C_{ $\varphi$} on D^{n}(X) . For convenience, we first recall

their definitions.

Let E be an infinite dimensional Banach space. We denote the Banach algebra of

bounded linear operators on E by \mathcal{B}(E) and the Banach algebra of compact linear oper‐

ators on E by \mathcal{K}(E) . Then \mathcal{K}(E) is a closed ideal in \mathcal{B}(E) . The operator T\in \mathcal{B}(E) is a

Fredholm operator if T has finite‐dimensional kernel and cokernel. When E is an infinite

dimensional Banach space, by Atkinson Theorem,  T\in \mathcal{B}(E) is Fredholm if and only if

T+\mathcal{K}(E) is invertible in the Calkin algebra \mathcal{B}(E)/\mathcal{K}(E) . The essential spectrum $\sigma$_{e}(T) of

an operator T\in \mathcal{B}(E) is the set of complex numbers  $\lambda$ , such that  $\lambda$ I-T is not Fredholm.

This is also equal to the spectrum of T+\mathcal{K}(E) in the Calkin algebra \mathcal{B}(E)/\mathcal{K}(E) . The

essential spectral radius r_{e}(T) of T\in \mathcal{B}(E) is the spectral radius of T+\mathcal{K}(E) in the Calkin

algebra \mathcal{B}(E)/\mathcal{K}(E) , that is

r_{e}(T)=\displaystyle \lim_{n\rightarrow\infty}\Vert T^{n}+\mathcal{K}(E)\Vert^{\frac{1}{n}}.
An operator T\in \mathcal{B}(E) is called quasicompact if r_{e}(T)<1 . This holds if and only if there

is a natural number n such that the distance from T^{m} to \mathcal{K}(E) , \Vert T^{n}+\mathcal{K}(E)\Vert is strictly

less than 1. An operator  T\in \mathcal{B}(E) is called Riesz if  $\lambda$ I-T is Fredholm for all non‐zero

complex numbers  $\lambda$ . Thus  T is Riesz if and only if r_{e}(T) = 0 . Also, an operator T is

power compact if T^{N} is compact for some positive integer N . Obviously, every power

compact operator is Riesz and hence quasicompact. The converse is not true in general.
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Feinstein and Kamowitz proved in [10, Theorem 1.2 (iii)] that if  $\varphi$ induces a qua‐

sicompact endomorphism of a unital commutative semi‐simple Banach algebra  B with

connected maximal ideal (character) space X
, then \cap$\varphi$_{n}(X) = \{x_{0}\} for some x_{0} \in  X,

where $\varphi$_{n} denotes the n‐th iterate of  $\varphi$ . By using this relation \mathrm{a}\acute{\mathrm{n}}\mathrm{d} the obtained condi‐

tion for compactness of composition operators on algebras D^{n}(X) ,
we have the following

result.

Theorem 4.1. [2, Theorem 2.7] Let X be a perfect compact plane set satisfying the

condition (1.1). Let a self‐map  $\varphi$ of  X be in D^{n}(X) .

(i) If\cap$\varphi$_{n}(X)=\{z_{0}\} for some  z_{0}\in intX, then  C_{ $\varphi$} is power compact on D^{n}(X) .

(ii) Let X be strongly accessible from the interior, have a peak boundaw with respect to

D^{n}(X) and let intX be connected. If  $\varphi$\dot{u} non‐constant and C_{ $\varphi$} is power compact

on D^{n}(X) , then\cap$\varphi$_{n}(X)=\{z_{0}\} for some  z_{0}\in intX.

Using the same argument as in the proof of [10, Lemma 2.1], one can obtain the following

Theorem.

Theorem 4.2. Let  X be a connected perfect compact plane set,  $\varphi$ be a self‐map of  X with

fixed point z_{0} . If C_{ $\varphi$} is a quasicompact composition operator on D^{n}(X) ,
then |$\varphi$'(z_{0})|<1.

It was also shown in [10, Theorem 3.2] that if T=C_{ $\varphi$} acts on C^{1}([0,1 \mathrm{s}\mathrm{n}\mathrm{d}\cap$\varphi$_{n}([0,1])=

\{x_{0}\} for some  x_{0}\in [0 ,
1 ] ,

then r_{e}(T)= |$\varphi$'(x_{0})| . By the following example we show that

this is not, in general, true for D^{1}(X) .

Example 4.3. Let  $\varphi$(z)=\displaystyle \frac{1-z}{2} for every z\in\overline{\mathrm{D}} . Note that z_{0}=\displaystyle \frac{1}{3} is the fixed point of  $\varphi$

in \mathrm{D} and |$\varphi$'(z_{0})|=\displaystyle \frac{1}{2} . On the other hand,  $\varphi$(-1)=1 , so  $\varphi$(\overline{\mathrm{D}})\not\leqq \mathrm{D} and the composition

operator C_{ $\varphi$} on D^{1}(\mathrm{D}) is not compact. However, |$\varphi$_{2}(z)| \leq \displaystyle \frac{1}{2} < 1 for all z\in\overline{\mathrm{D}} . Hence,

C_{ $\varphi$} is power compact on D^{1}(\overline{\mathrm{D}}) and then \cap$\varphi$_{n}(\overline{\mathrm{D}})=\{z_{0}\} and r_{e}(C_{ $\varphi$})=0.

A question which may be asked is whether every quasicompact or Riesz operator on

D^{n}(X) is necessarily power compact. As proven by Feinstein and Kamowitz, there exists

a quasicompact operator on C^{1}([0,1]) which is not Riesz and there exists a Riesz operator

on C^{1}([0,1]) which is not power compact [10, Corollary 3.3].

Example 4.4. Let  $\varphi$(x) = \displaystyle \frac{x+x^{2}}{3} . Then \cap$\varphi$_{n}([0,1]) = \{0\} and r_{e}(C_{ $\varphi$}) = |$\varphi$'(0)| = \displaystyle \frac{1}{3}.
Therefore, C_{ $\varphi$} is a quasicompact operator on C^{1}([0,1]) which is not Riesz.
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Let now  $\varphi$(x) = \displaystyle \frac{x^{2}}{2} . Then \cap$\varphi$_{n}([0,1]) = \{0\} and r_{e}(C_{ $\varphi$}) = |$\varphi$'(0)| = 0 . Therefore,

C_{ $\varphi$} is a Riesz operator on C^{1}([0,1]) which is not power compact since non‐iterate of  $\varphi$ is

constant.

The following example shows that there exists a quasicompact operator on  D^{n}(X)
which is not necessarily power compact.

Example 4.5. [2, Example 2.9] Let c>1 and  $\varphi$(z)=\displaystyle \frac{z+(c-1)}{c} for every z\in\overline{\mathrm{D}} . Then C_{ $\varphi$} is

a composition operator on D^{n}(\overline{\mathrm{D}}) and r_{e}(C_{ $\varphi$})<1 . Hence C_{ $\varphi$} is a quasicompact operator

on D^{n}(\overline{\mathrm{D}}) which is not power compact since \cap$\varphi$_{m}(\overline{\mathrm{D}})=\{1\}\not\subset \mathrm{D}.

However, as shown by Feinstein and Kamowitz, if Dales‐Davie algebra D(X, M) is a

natural Banach function algebra on a connected perfect compact plane set X with a

non‐analytic weight sequence M = {Mn}, then every quasicompact endomorphism of

D(X, M) induced by an analytic self‐map of X is power compact [10, Theorem 2.2].
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