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1. NOTATIONS AND DEFINITIONS

In this paper, we study the determinant of row-factrization matrix
in a numerical semigrooup. Row-factrization matrices, in short RF-
matrices, for pseudo-Frobenius numbers f in a numerical semigroup S
are defined by Moscariello in [5], to prove the type of almost symmetric
semigroups generated by four elements is less than or equal to three.
Their determinants, in general, is multiples of f. If its absolute value
is f, then we get a basis of the kernel space defined by S, from the
RF-matrix. Then we can also get a generating system of a defining
ideal of the semigroup associated with S. Hence, it is important to
investigate the determinants of RF-matrices. '

First, we give notations and definitions. Let Z be the ring of integers,
and N the set of non negative integers. Let S be a non empty subset
in N. We say that S is a semigroup in N, if

(1)0es,.

(2) a+beS,ifa,beS.
Let S be a semigroup in N and n,...,n, € N. We say that S is
generated by ny,...,ng if

S={an +---+asms:ai,...,a; € N}.

We also say that S is minimally generated by ng,...,n,, if any proper
subset of {ni,...,ns} does not generate S. Then we denote S by
(nq,...,ns) and call s the embedding dimension of S.

If N — S is finite, we say that S is numerical. We note that S is
numerical if and only if the general common divisor of ny,...,n, is
one.

Example 1.
(3,5) ={0,3,5,6,8,9,10,...}

is a numerical semigroup generated by 3 and 5.



151

From now, all semigroups are assumed to be numerical semigroups
in N. Let S be a semigroup. The number

F(S)=max{a € Z:a ¢ S}
is called the Frobenius number of S. We also define
PF(S)={a€Z:a+z€ Sifz €S and z # 0}

and an element in PF(S) is called a pseudo-Frobenius number. Obvi-
ously, F(S) € PF(S). We say that the number of PF(S) is the type of
S, denoted by t(S). For d € S, We define the Apery set Ap(S,d) as
follows:

Ap(S,d)y={zeS:z—-d¢ S}.
Note | Ap(S,d)| = d and, for any a € {0,1,...,d — 1}, there is z €
Ap(S;d) with a =2 mod d.

Next, we define RF-matrices. Let S = (ny,...,n,) be a semigroup
and f € Z — S. For each i, there is a;; < 0 with f — a;n; € Ap(S, n;).
Then there are a;; > 0 for j # ¢ satisfying f — aun; = Zj i . We
say that the matrix RF(f) = (ay;) is an RF-matriz (row-factorization
matrix) for f in S. We denote it by RF(f).

Example 2. (Examples of RF-matrices)
(1) Let S = (3,4,5) and f =2 ¢ S. Then

-1 0 1
RF(2)=|2 -1 0 ].
1 1 -1

(2) Let S=(4,5,6) and f =7 ¢ S. Then

-1 1 1 -1 1 1
RF(7)=13 -1 0]or | 0O -1 2|.
2 1 -1 2 1 -1

From above example, it follows that an RF-matrix for pseudb—Frobenius
number is not unique in general.

2. THE DETERMINANTS OF RF-MATRICES

In this section, we consider the following question: Let S be a nu-
merical semigroup with embedding dimension s and f € PF(S). Then,
does the equation

(%) det RF(f) = (=1)**'f
hold?
Theorem 1. If s = 2 or 3, then (x) holds.



Proof. Assume s = 2 and let S = (n;,ny). Then F(S) = niny—n; —ng
is a unique pseudo-Frobenius number and

reEs) = (0 ™).

thus det RE(F(S)) = — F(S).
Assume s = 3 and let S = (ny,nq,n3). If t(S) = 1, then we may
assume dnz € (ny,ng) where d = ged(ny,ne). Then F(S) = niny/d —
ny — ng + (d — 1)ng is a unique pseudo-Frobenius number and

-1 m/d-1 d-1\
RF(F(S)) = (ng/d—l -1 d- 1),

as; - a3 -1

where dnz = (az1 + 1 — ny/d)n; + (ase + 1)ny or (az; + 1)n1 + (asz +
1 —ny/d)ns. Then det RF(F(S)) = F(S).

The rest case is that of s = 3 and t(S) = 2. Let PF(S) = {f1, fo}
and put RF(f1) = (a;;) and RF(f1) = (b;;). By classical result, they
are unique and we may assume

a1z = b3y = azp + b1z + 1,

az3 = bz = ai3 + bz + 1,

asy = by = ag; + b3 +1
~ Since |
ny = (@12 + 1)(a13 + 1) + (bi2 + 1)(bas + 1),
Ny = (ags + 1)(az1 + 1) + (baz + 1)(bs1 + 1),
ns = (as1 + 1)(asa + 1) + (bs1 + 1)(b12 + 1),

we have det RF(f;) = f; for i =1,2. O

Definition. Let S;, S2 be numerical semigroups and d; € Sz and ds €
S1. If dy and dy are coprime, then

S=d;S +dyS; = {dli?}-l-dzy X € S1,y S Sz}
is a numerical semigroup. We say that S is glued by S; and Ss.

Definition. We say that S is completely glued if one of the following
is satisfied:

(1) §=(1),

(2) S is glued by completely glued semigroups.

If the embedding dimension of S is 2, then S is completely glued If S
is completely glued, then its type is one.
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Theorem 2. If S is completely glued, then there is an RF-matrix of
F(S) which satisfies ().

Proof If S = (1), then the assertion is clear. Assume S = d; 51 + d2S2
| Where dy € S5, ds € S7 and both S and' S, are completely glued. Then

F(S) = dl F(Sl) + d2 F(Sg) -+ d1d2

and there is an RF-matrix M; (resp. M) for F(S1) (resp. F(S2))
in 57 (resp. (S2)) satisfying det My = (—1)** F(S;) (resp. det My =
(—1)*2 F(S2)) where s; (resp. s2) is the embedding dimension of M,
(resp. Ms). Since F(Sy) +dy € Sp (resp. F(S) +dy € S2), we
may write F(S1) +do = >, a;n; (resp. F(S2) +di = >, ainj) where
S1=(ny,...,ng) (resp. Sz = (ny,...,n,,)) and a; > 0 (resp. a; > 0)
for each i. Let Ny (resp. Nz2) be an s X s1-matrix (resp. s; X sp-matrix)
whose ij-entry is a; (resp. a’) for each 4,5. And put

_ (M1 N>
M= ( o M2) .
Then M is an RF-matrix for F(S) in S and det M = (—1)1+2 F(S).
(]

Theorem 3. Assume s = 4. If the type of S is one, or if S is pseudo-
symmetric, then there is an RF-matrix of F(S) which satisfies (x). We
say that S is pseudo-symmetric if PF(S) = {F(S)/2,F(S)}.

Proof. Let S = (ny,ng,n3,nyg). Assume t(S) = 1. Further, we may

assume that S is not completely glued. Then, by [1], after suitable
renumbering, we have

-1 a2—1 a3—1 Q14

_ a1 -1 az3—1 ay—1
RF(F(S)) - ;] — 1 [¢%9] —1 oy — 1 !
o1 — 1 Qg — 1 Q43 -1

where o; is the minimal positive number satisfying that (o; — 1)n; has
the unique factorization by ng,...,n4 for each 7 and 0 < as; < ay,
0 <az < ag, 0 < agz < az, and 0 < ayy < ayg. From this, we have

det RF(F(S)) = — F(S).
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Assume that S is pseudo-symmetric. By [3], after suitable renum-
bering, we also have

-1 012_-—2 Ofg—l 0

a;—1 —1 a3 —2 ag—1

RE(F(S) = | 4 _ 2 az—1 2 ai—l ’
a;—1 agp—1 az—1 -1
-1 a—1 0 0
0 -1 az3—1 0

REFES)/D =101 0 -1 as—1]"
Ofl-—l Qaq2 0 -1

where ¢; is defined above and 0 < a4o < ap. From this, we also have
det RF(F(S)) = — F(95). (]

Finally, we give some examples of RF-matrlces in an almost sym-
metric semigroup.

Definition. Let S be a semigroup. For any f € PF(S) with f # F(S),
if F(S) — f € PF(S), we say that S is almost symmetric.

Example 3 (Watanabe’s example). Let S = (22,46,9,57). Then S is
almost symmetric of type 3 and PF(S) = {35, 70,105}. We also have

12 0 o0 10 0 1
2 —1 8 0 0 -1 9 0
REO) =117 o —1 1 |PRE®I=|2 o 1 o
0 1 9 -1 0 2 0 -1

det RF(70) = 0, det RF(35) = —

Example 4. Let S = (22,26,79,83). Then S is almost symmetric of
type 3 and PF(S) = {57,238,295}. We also have

-1 0 1 0 ~1 10 0 0
0 -1 0 1 12 -1 0 0
RFGT) =| » 7 -, o |"RE@®)=|4 5 | |
4 2 0 -1 1 0 1 -1
and
-1 9 0 1 -1 9 0 1
11 -1 1 0 11 =1 1 0
RF29%)=1% g 1 o2 |° |4 11 -1 o0
0 0 2 -1 10 0 2 -1

det RF(57) = det RF(238) = 0. We note that the determinant of the
former RF-matrix for 295 is zero, and that of the latter one is —295.
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From above examples, it follows that the condition (*) does not hold
for all RF-matrices for pseudo-Frobenius numbers. Hence we modify
the question as follows:

Question. Let S be a semigroup with embedding dimension s.
Then, does the equation

(%) det RF(F(S)) = (—1)*"' F(9)
hold for some RF-matrix for F(S) 7
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