THE DETERMINANT OF A ROW－FACTORIZATION MATRIX IN A NUMERICAL SEMIGROUP

KAZUFUMI ETO
NIPPON INSTITUTE OF TECHNOLOGY

1．Notations and Definitions

In this paper，we study the determinant of row－factrization matrix in a numerical semigrooup．Row－factrization matrices，in short RF－ matrices，for pseudo－Frobenius numbers f in a numerical semigroup S are defined by Moscariello in［5］，to prove the type of almost symmetric semigroups generated by four elements is less than or equal to three． Their determinants，in general，is multiples of f ．If its absolute value is f ，then we get a basis of the kernel space defined by S ，from the RF－matrix．Then we can also get a generating system of a defining ideal of the semigroup associated with S ．Hence，it is important to investigate the determinants of RF－matrices．

First，we give notations and definitions．Let \mathbb{Z} be the ring of integers， and \mathbb{N} the set of non negative integers．Let S be a non empty subset in \mathbb{N} ．We say that S is a semigroup in \mathbb{N} ，if
（1） $0 \in S$ ，
（2）$a+b \in S$ ，if $a, b \in S$ ．
Let S be a semigroup in \mathbb{N} and $n_{1}, \ldots, n_{s} \in \mathbb{N}$ ．We say that S is generated by n_{1}, \ldots, n_{s} if

$$
S=\left\{a_{1} n_{1}+\cdots+a_{s} n_{s}: a_{1}, \ldots, a_{s} \in \mathbb{N}\right\} .
$$

We also say that S is minimally generated by n_{1}, \ldots, n_{s} ，if any proper subset of $\left\{n_{1}, \ldots, n_{s}\right\}$ does not generate S ．Then we denote S by $\left\langle n_{1}, \ldots, n_{s}\right\rangle$ and call s the embedding dimension of S ．

If $\mathbb{N}-S$ is finite，we say that S is numerical．We note that S is numerical if and only if the general common divisor of n_{1}, \ldots, n_{s} is one．

Example 1.

$$
\langle 3,5\rangle=\{0,3,5,6,8,9,10, \ldots\}
$$

is a numerical semigroup generated by 3 and 5 ．

From now, all semigroups are assumed to be numerical semigroups in \mathbb{N}. Let S be a semigroup. The number

$$
\mathrm{F}(S)=\max \{a \in \mathbb{Z}: a \notin S\}
$$

is called the Frobenius number of S. We also define

$$
\operatorname{PF}(S)=\{a \in \mathbb{Z}: a+x \in S \text { if } x \in S \text { and } x \neq 0\}
$$

and an element in $\operatorname{PF}(S)$ is called a pseudo-Frobenius number. Obviously, $\mathrm{F}(S) \in \mathrm{PF}(S)$. We say that the number of $\mathrm{PF}(S)$ is the type of S, denoted by $\mathrm{t}(S)$. For $d \in S$, We define the Apery set $\operatorname{Ap}(S, d)$ as follows:

$$
\operatorname{Ap}(S, d)=\{x \in S: x-d \notin S\}
$$

Note $|\operatorname{Ap}(S, d)|=d$ and, for any $a \in\{0,1, \ldots, d-1\}$, there is $x \in$ $\operatorname{Ap}(S ; d)$ with $a \equiv x \bmod d$.

Next, we define RF-matrices. Let $S=\left\langle n_{1}, \ldots, n_{s}\right\rangle$ be a semigroup and $f \in \mathbb{Z}-S$. For each i, there is $a_{i i}<0$ with $f-a_{i i} n_{i} \in \operatorname{Ap}\left(S, n_{i}\right)$. Then there are $a_{i j} \geq 0$ for $j \neq i$ satisfying $f-a_{i i} n_{i}=\sum_{j \neq i} a_{i j} n_{j}$. We say that the matrix $\operatorname{RF}(f)=\left(a_{i j}\right)$ is an RF-matrix (row-factorization matrix) for f in S. We denote it by $\operatorname{RF}(f)$.
Example 2. (Examples of RF-matrices)
(1) Let $S=\langle 3,4,5\rangle$ and $f=2 \notin S$. Then

$$
\mathrm{RF}(2)=\left(\begin{array}{ccc}
-1 & 0 & 1 \\
2 & -1 & 0 \\
1 & 1 & -1
\end{array}\right)
$$

(2) Let $S=\langle 4,5,6\rangle$ and $f=7 \notin S$. Then

$$
\mathrm{RF}(7)=\left(\begin{array}{ccc}
-1 & 1 & 1 \\
3 & -1 & 0 \\
2 & 1 & -1
\end{array}\right) \text { or }\left(\begin{array}{ccc}
-1 & 1 & 1 \\
0 & -1 & 2 \\
2 & 1 & -1
\end{array}\right)
$$

From above example, it follows that an RF-matrix for pseudo-Frobenius number is not unique in general.

2. The determinants of RF-matrices

In this section, we consider the following question: Let S be a numerical semigroup with embedding dimension s and $f \in \operatorname{PF}(S)$. Then, does the equation

$$
\begin{equation*}
\operatorname{det} \mathrm{RF}(f)=(-1)^{s+1} f \tag{*}
\end{equation*}
$$

hold?
Theorem 1. If $s=2$ or 3 , then $(*)$ holds.

Proof. Assume $s=2$ and let $S=\left\langle n_{1}, n_{2}\right\rangle$. Then $\mathrm{F}(S)=n_{1} n_{2}-n_{1}-n_{2}$ is a unique pseudo-Frobenius number and

$$
\mathrm{RF}(\mathrm{~F}(S))=\left(\begin{array}{cc}
-1 & n_{1}-1 \\
n_{2}-1 & -1
\end{array}\right)
$$

thus $\operatorname{det} \mathrm{RF}(\mathrm{F}(S))=-\mathrm{F}(S)$.
Assume $s=3$ and let $S=\left\langle n_{1}, n_{2}, n_{3}\right\rangle$. If $\mathrm{t}(S)=1$, then we may assume $d n_{3} \in\left\langle n_{1}, n_{2}\right\rangle$ where $d=\operatorname{gcd}\left(n_{1}, n_{2}\right)$. Then $\mathrm{F}(S)=n_{1} n_{2} / d-$ $n_{1}-n_{2}+(d-1) n_{3}$ is a unique pseudo-Frobenius number and

$$
\operatorname{RF}(\mathrm{F}(S))=\left(\begin{array}{ccc}
-1 & n_{1} / d-1 & d-1 \\
n_{2} / d-1 & -1 & d-1 \\
a_{31} & a_{32} & -1
\end{array}\right)
$$

where $d n_{3}=\left(a_{31}+1-n_{2} / d\right) n_{1}+\left(a_{32}+1\right) n_{2}$ or $\left(a_{31}+1\right) n_{1}+\left(a_{32}+\right.$ $\left.1-n_{1} / d\right) n_{2}$. Then $\operatorname{det} \operatorname{RF}(\mathrm{F}(S))=\mathrm{F}(S)$.

The rest case is that of $s=3$ and $\mathrm{t}(S)=2$. Let $\operatorname{PF}(S)=\left\{f_{1}, f_{2}\right\}$ and put $\operatorname{RF}\left(f_{1}\right)=\left(a_{i j}\right)$ and $\operatorname{RF}\left(f_{1}\right)=\left(b_{i j}\right)$. By classical result, they are unique and we may assume

$$
\begin{gathered}
a_{12}=b_{32}=a_{32}+b_{12}+1, \\
a_{23}=b_{13}=a_{13}+b_{23}+1, \\
a_{31}=b_{21}=a_{21}+b_{31}+1
\end{gathered}
$$

Since

$$
\begin{aligned}
& n_{1}=\left(a_{12}+1\right)\left(a_{13}+1\right)+\left(b_{12}+1\right)\left(b_{23}+1\right), \\
& n_{2}=\left(a_{23}+1\right)\left(a_{21}+1\right)+\left(b_{23}+1\right)\left(b_{31}+1\right), \\
& n_{3}=\left(a_{31}+1\right)\left(a_{32}+1\right)+\left(b_{31}+1\right)\left(b_{12}+1\right),
\end{aligned}
$$

we have $\operatorname{det} \operatorname{RF}\left(f_{i}\right)=f_{i}$ for $i=1,2$.
Definition. Let S_{1}, S_{2} be numerical semigroups and $d_{1} \in S_{2}$ and $d_{2} \in$ S_{1}. If d_{1} and d_{2} are coprime, then

$$
S=d_{1} S_{1}+d_{2} S_{2}=\left\{d_{1} x+d_{2} y: x \in S_{1}, y \in S_{2}\right\}
$$

is a numerical semigroup. We say that S is glued by S_{1} and S_{2}.
Definition. We say that S is completely glued if one of the following is satisfied:
(1) $S=\langle 1\rangle$,
(2) S is glued by completely glued semigroups.

If the embedding dimension of S is 2 , then S is completely glued. If S is completely glued, then its type is one.

Theorem 2. If S is completely glued, then there is an RF-matrix of $\mathrm{F}(S)$ which satisfies $(*)$.

Proof. If $S=\langle 1\rangle$, then the assertion is clear. Assume $S=d_{1} S_{1}+d_{2} S_{2}$ where $d_{1} \in S_{2}, d_{2} \in S_{1}$ and both S_{1} and S_{2} are completely glued. Then

$$
\mathrm{F}(S)=d_{1} \mathrm{~F}\left(S_{1}\right)+d_{2} \mathrm{~F}\left(S_{2}\right)+d_{1} d_{2}
$$

and there is an RF-matrix M_{1} (resp. M_{2}) for $\mathrm{F}\left(S_{1}\right)$ (resp. $\mathrm{F}\left(S_{2}\right)$) in S_{1} (resp. $\left(S_{2}\right)$) satisfying $\operatorname{det} M_{1}=(-1)^{s_{1}} \mathrm{~F}\left(S_{1}\right)$ (resp. $\operatorname{det} M_{2}=$ $(-1)^{s_{2}} \mathrm{~F}\left(S_{2}\right)$) where s_{1} (resp. s_{2}) is the embedding dimension of M_{1} (resp. $\quad M_{2}$). Since $\mathrm{F}\left(S_{1}\right)+d_{2} \in S_{1}$ (resp. $\mathrm{F}\left(S_{2}\right)+d_{1} \in S_{2}$), we may write $\mathrm{F}\left(S_{1}\right)+d_{2}=\sum_{i} a_{i} n_{i}$ (resp. $\mathrm{F}\left(S_{2}\right)+d_{1}=\sum_{i} a_{i}^{\prime} n_{i}^{\prime}$) where $S_{1}=\left\langle n_{1}, \ldots, n_{s_{1}}\right\rangle$ (resp. $\left.S_{2}=\left\langle n_{1}^{\prime}, \ldots, n_{s_{2}}^{\prime}\right\rangle\right)$ and $a_{i} \geq 0$ (resp. $a_{i}^{\prime} \geq 0$) for each i. Let N_{1} (resp. N_{2}) be an $s_{2} \times s_{1}$-matrix (resp. $s_{1} \times s_{2}$-matrix) whose $i j$-entry is a_{i} (resp. a_{i}^{\prime}) for each i, j. And put

$$
M=\left(\begin{array}{ll}
M_{1} & N_{2} \\
N_{1} & M_{2}
\end{array}\right) .
$$

Then M is an RF-matrix for $\mathrm{F}(S)$ in S and $\operatorname{det} M=(-1)^{s_{1}+s_{2}} \mathrm{~F}(S)$.

Theorem 3. Assume $s=4$. If the type of S is one, or if S is pseudosymmetric, then there is an RF-matrix of $\mathrm{F}(S)$ which satisfies ($*$). We say that S is pseudo-symmetric if $\operatorname{PF}(S)=\{\mathrm{F}(S) / 2, \mathrm{~F}(S)\}$.

Proof. Let $S=\left\langle n_{1}, n_{2}, n_{3}, n_{4}\right\rangle$. Assume $\mathrm{t}(S)=1$. Further, we may assume that S is not completely glued. Then, by [1], after suitable renumbering, we have

$$
\operatorname{RF}(\mathrm{F}(S))=\left(\begin{array}{cccc}
-1 & \alpha_{2}-1 & \alpha_{3}-1 & a_{14} \\
a_{21} & -1 & \alpha_{3}-1 & \alpha_{4}-1 \\
\alpha_{1}-1 & a_{32} & -1 & \alpha_{4}-1 \\
\alpha_{1}-1 & \alpha_{2}-1 & a_{43} & -1
\end{array}\right)
$$

where α_{i} is the minimal positive number satisfying that $\left(\alpha_{i}-1\right) n_{i}$ has the unique factorization by n_{1}, \ldots, n_{4} for each i and $0<a_{21}<\alpha_{1}$, $0<a_{32}<\alpha_{2}, 0<a_{43}<\alpha_{3}$, and $0<a_{14}<\alpha_{4}$. From this, we have $\operatorname{det} \mathrm{RF}(\mathrm{F}(S))=-\mathrm{F}(S)$.

Assume that S is pseudo-symmetric. By [3], after suitable renumbering, we also have

$$
\begin{aligned}
& \mathrm{RF}(\mathrm{~F}(S))=\left(\begin{array}{cccc}
-1 & \alpha_{2}-2 & \alpha_{3}-1 & 0 \\
\alpha_{1}-1 & -1 & \alpha_{3}-2 & \alpha_{4}-1 \\
\alpha_{1}-2 & \alpha_{2}-1 & -1 & \alpha_{4}-1 \\
\alpha_{1}-1 & a_{42}-1 & \alpha_{3}-1 & -1
\end{array}\right) \\
& \operatorname{RF}(\mathrm{F}(S) / 2)=\left(\begin{array}{cccc}
-1 & \alpha_{2}-1 & 0 & 0 \\
0 & -1 & \alpha_{3}-1 & 0 \\
\alpha_{1}-1 & 0 & -1 & \alpha_{4}-1 \\
\alpha_{1}-1 & a_{42} & 0 & -1
\end{array}\right),
\end{aligned}
$$

where α_{i} is defined above and $0<a_{42}<\alpha_{2}$. From this, we also have $\operatorname{det} \mathrm{RF}(\mathrm{F}(S))=-\mathrm{F}(S)$.

Finally, we give some examples of RF-matrices in an almost symmetric semigroup.

Definition. Let S be a semigroup. For any $f \in \operatorname{PF}(S)$ with $f \neq \mathrm{F}(S)$, if $\mathrm{F}(S)-f^{\prime} \in \mathrm{PF}(S)$, we say that S is almost symmetric.
Example 3 (Watanabe's example). Let $S=\langle 22,46,9,57\rangle$. Then S is almost symmetric of type 3 and $\operatorname{PF}(S)=\{35,70,105\}$. We also have

$$
\operatorname{RF}(70)=\left(\begin{array}{cccc}
-1 & 2 & 0 & 0 \\
2 & -1 & 8 & 0 \\
1 & 0 & -1 & 1 \\
0 & 1 & 9 & -1
\end{array}\right), \operatorname{RF}(35)=\left(\begin{array}{cccc}
-1 & 0 & 0 & 1 \\
0 & -1 & 9 & 0 \\
2 & 0 & -1 & 0 \\
0 & 2 & 0 & -1
\end{array}\right) .
$$

$\operatorname{det} \mathrm{RF}(70)=0, \operatorname{det} \mathrm{RF}(35)=-35$.
Example 4. Let $S=\langle 22,26,79,83\rangle$. Then S is almost symmetric of type 3 and $\operatorname{PF}(S)=\{57 ; 238,295\}$. We also have

$$
R F(57)=\left(\begin{array}{cccc}
-1 & 0 & 1 & 0 \\
0 & -1 & 0 & 1 \\
5 & 1 & -1 & 0 \\
4 & 2 & 0 & -1
\end{array}\right), \operatorname{RF}(238)=\left(\begin{array}{cccc}
-1 & 10 & 0 & 0 \\
12 & -1 & 0 & 0 \\
0 & 9 & -1 & 1 \\
11 & 0 & 1 & -1
\end{array}\right)
$$

and

$$
\mathrm{RF}(295)=\left(\begin{array}{cccc}
-1 & 9 & 0 & 1 \\
11 & -1 & 1 & 0 \\
0 & 8 & -1 & 2 \\
10 & 0 & 2 & -1
\end{array}\right) \text { or }\left(\begin{array}{cccc}
-1 & 9 & 0 & 1 \\
11 & -1 & 1 & 0 \\
4 & 11 & -1 & 0 \\
10 & 0 & 2 & -1
\end{array}\right) .
$$

$\operatorname{det} R F(57)=\operatorname{det} R F(238)=0$. We note that the determinant of the former RF-matrix for 295 is zero, and that of the latter one is -295 .

From above examples, it follows that the condition (*) does not hold for all RF-matrices for pseudo-Frobenius numbers. Hence we modify the question as follows:

Question. Let S be a semigroup with embedding dimension s. Then, does the equation

$$
\begin{equation*}
\operatorname{det} \mathrm{RF}(\mathrm{~F}(S))=(-1)^{s+1} \mathrm{~F}(S) \tag{*}
\end{equation*}
$$

hold for some RF-matrix for $\mathrm{F}(S)$?

References

[1] H. Bresinsky, Symmetric semigroups of integers generated by 4 elements, Manuscripta Math. 17 (1975), 205-219.
[2] J. Herzog and K.-i. Watanabe, Almost symmetric numerical semigroups and almost Gorenstein semigroup rings, (to appear)
[3] J. Komeda, On the existence of Weierstrass points with a certain semigroup generated by 4 elements, Tsukuba J. Math. 6 (1982), 237-270.
[4] E. Kunz, Introduction to Commutative Algebra and Algebraic Geometry, Birkhäuser, Boston, 1985.
[5] A. Moscariello, On the type of an almost Gorenstein monomial curve, J. Algebra 456 (2016), 266-277.

Department of Mathematics
Nippon Institute of Technology
Saitama 345-8501, Japan

