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1. NOTATIONS AND DEFINITIONS

In this paper, we study the determinant of row‐factrization matrix

in a numerical semigrooup. Row‐factrization matrices, in short RF‐

matrices, for pseudo‐Frobenius numbers f in a numerical semigroup S

are defined by Moscariello in [5], to prove the type of almost symmetric
semigroups generated by four elements is less than or equal to three.

Their determinants, in general, is multiples of f . If its absolute value

is f , then we get a basis of the kernel space defined by S , from the

RF‐matrix. Then we can also get a generating system of a defining
ideal of the semigroup associated with S . Hence, it is important to

investigate the determinants of RF‐matrices.

First, we give notations and definitions. Let \mathbb{Z} be the ring of integers,
and \mathrm{N} the set of non negative integers. Let S be a non empty subset

in N. We say that S is a semigroup in \mathrm{N} , if

(1) 0\in S,
(2) a+b\in S ,

if a, b\in S.

Let S be a semigroup in \mathbb{N} and n_{1} ,
. . .

, n_{s} \in \mathbb{N} . We say that S is

generated by n_{1} ,
\cdots

,  n_{s} if

S=\{a_{1}n_{1}+\cdots+a_{s}n_{s} : a_{1}, \cdots, a_{s}\in \mathbb{N}\}.

We also say that S is minimally generated by n_{1} ,
. . .

, n_{s} ,
if any proper

subset of \{n_{1}, . .., n_{s}\} does not generate S . Then we denote S by
\langle n_{1} ,

. . .

,  n_{s}\rangle and call  s the embedding dimension of S.

If \mathbb{N}-S is finite, we say that S is numerical. We note that S is

numerical if and only if the general common divisor of n_{1} , . . .

, n_{s} is

one.

Example 1.

\langle3,  5\rangle=\{0 , 3, 5, 6, 8, 9, 10, . . . \}
is a numerical semigroup generated by 3 and 5.

数理解析研究所講究録
第2035巻 2017年 150-155

150



From now, all semigroups are assumed to be numerical semigroups
in \mathbb{N} . Let S be a semigroup. The number

 $\Gamma$(S)=\displaystyle \max\{a\in \mathbb{Z} : a\not\in S\}
is called the Frobenius number of S . We also define

\mathrm{P}\mathrm{F}(S)= {a\in \mathbb{Z}:a+x\in S if x\in S and x\neq 0}
and an element in \mathrm{P} $\Gamma$(S) is called a pseudo‐Frobenius number. Obvi‐

ously,  $\Gamma$(S)\in \mathrm{P}\mathrm{F}(S) . We say that the number of \mathrm{P}\mathrm{F}(S) is the type of

S ,
denoted by \mathrm{t}(S) . For  d\in  S , We define the Apery set \mathrm{A}\mathrm{p}(S, d) as

follows:

\mathrm{A}\mathrm{p}(S, d)=\{x\in S : x-d\not\in S\}.
Note |\mathrm{A}\mathrm{p}(S, d)| = d and, for any a \in \{0, 1, . . . , d-1\} , there is x \in

\mathrm{A}\mathrm{p}(S_{;}d) with a\equiv x \mathrm{m}\mathrm{o}\mathrm{d} d.

Next, we define RF‐matrices. Let S= \langle n_{1} , ..
.

,  n_{s}\rangle be a semigroup
and  f\in \mathbb{Z}-S . For each i , there is a_{ii}<0 with f-a_{ii}n_{i}\in \mathrm{A}\mathrm{p}(S, n_{i}) .

Then there are a_{ij}\geq 0 for j\neq i satisfying f-a_{ii}n_{i}=\displaystyle \sum_{j\neq i}a_{ij}n_{j} . We

say that the matrix \mathrm{R} $\Gamma$(f)=(a_{ij}) is an \mathrm{R}F ‐matrix (row‐factorization
matrix) for f in S . We denote it by \mathrm{R}\mathrm{F}(f) .

Example 2. (Examples of RF‐matrices)
(1) Let S=\langle 3 , 4, 5} and f=2\not\in S . Then

\mathrm{R}\mathrm{F}(2)= \left(\begin{array}{lll}
-\mathrm{l} & 0 & 1\\
2 & -1 & 0\\
1 & 1 & -1
\end{array}\right)
(2) Let S=\langle 4 , 5, 6) and f=7\not\in S . Then

\mathrm{R} $\Gamma$(7)= \left(\begin{array}{lll}
-1 & 1 & 1\\
3 & -1 & 0\\
2 & 1 & -1
\end{array}\right) or \left(\begin{array}{lll}
-1 & 1 & 1\\
0 & -1 & 2\\
2 & 1 & -1
\end{array}\right)
From above example, it follows that an RF‐matrix for pseudo‐Frobenius

number is not unique in general.

2. THE DETERMINANTS OF RF‐MATRICES

In this section, we consider the following question: Let S be a nu‐

merical semigroup with embedding dimension s and f\in \mathrm{P} $\Gamma$(S) . Then,
does the equation

(*) \det RF (f)=(-1)^{s+1}f
hold?

Theorem 1. If s=2 or 3, then (*) holds.
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Proof. Assume s=2 and let S=\langle n_{1},  n_{2}\rangle . Then \mathrm{F}(S)=n_{1}n_{2}-n_{1}-n_{2}
is a unique pseudo‐FroUenius number and

RF (\mathrm{F}(S))= \left(\begin{array}{ll}
-1 & n_{\mathrm{l}}-1\\
n_{2}-1 & -1
\end{array}\right) ,

thus \det \mathrm{R}\mathrm{F}(\mathrm{F}(S))=-\mathrm{F}(S) .

Assume s = 3 and let S = \langle n_{1}, n_{2}, n_{3} ). If \mathrm{t}(S) = 1
, then we may

assume dn_{3} \in \{n_{1},  n_{2}\rangle where  d=\mathrm{g}\mathrm{c}\mathrm{d}(n_{1}, n_{2}) . Then \mathrm{F}(S) =n_{1}n_{2}/d-
n_{1}-n_{2}+(d-1)n_{3} is a unique pseudo‐FroUenius number and

RF (\mathrm{F}(S))= \left(\begin{array}{llll}
-1 & n_{1}/d-1 & d & -1\\
n_{2}/d-1 & -1 & d-\mathrm{l} & \\
a_{3\mathrm{l}} & a_{32} & -1 & 
\end{array}\right) ,

where dn_{3}= (a_{31}+1-n_{2}/d)n_{1}+(a_{32}+1)n_{2} or (a_{31}+1)n_{1}+(a_{32}+
1-n_{1}/d)n_{2} . Then \det RF ( $\Gamma$(S))=\mathrm{F}(S) .

The rest case is that of s=3 and \mathrm{t}(S) =2 . Let \mathrm{P}\mathrm{F}(S) =\{f_{1}, f_{2}\}
and put \mathrm{R} $\Gamma$(f_{1}) = (a_{ij}) and \mathrm{R} $\Gamma$(f_{1}) = (b_{ij}) . By classical result, they
are unique and we may assume

a_{12}=b_{32}=a_{32}+b_{12}+1,

a_{23}=b_{13}=a_{13}+b_{23}+1,

a_{31}=b_{21}=a_{21}+b_{31}+1

Since

n_{1}=(a_{12}+1)(a_{13}+1)+(b_{12}+1)(b_{23}+1) ,

n_{2}=(a_{23}+1)(a_{21}+1)+(b_{23}+1)(b_{31}+1) ,

n_{3}=(a_{31}+1)(a_{32}+1)+(b_{31}+1)(b_{12}+1) ,

we have \det RF (f_{i})=f_{i} for i=1 , 2. \square 

Definition. Let S_{1}, S_{2} be numerical semigroups and d_{1}\in S_{2} and  d_{2}\in
 S_{1} . If d_{1} and d_{2} are coprime, then

S=d_{1}S_{1}+d_{2}S_{2}=\{d_{1}x+d_{2}y : x\in S_{1}, y\in S_{2}\}
is a numerical semigroup. We say that S is glued by S_{1} and S_{2}.

Definition. We say that S is completely glued if one of the following
is satisfied:

(1) S=\langle 1\rangle,
(2) S is glued by completely glued semigroups.

If the embedding dimension of S is 2, then S is completely glued. If S

is completely glued, then its type is one.
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Theorem 2. If S is completely glued, then there is an RF‐matrix of

\mathrm{F}(S) which� satisfies (*) .

Proof. If  S=\langle 1\rangle , then the assertion is clear. Assume  S=d_{1}S_{1}+d_{2}S_{2}
where d_{1}\in S_{2}, d_{2}\in S_{1} and both S_{1} and S_{2} are completely glued. Then

 $\Gamma$(S)=d_{1}\mathrm{F}(S_{1})+d_{2}\mathrm{F}(S_{2})+d_{1}d_{2}

and there is an RF‐matrix M_{1} (resp. M_{2} ) for  $\Gamma$(S_{1}) (resp.  $\Gamma$(S_{2}) )
in S_{1} (resp. (S2)) satisfying \det M_{1} = (-1)^{s_{1}}\mathrm{F}(S_{1}) (resp. \det M_{2} =

(-1)^{s_{2}} $\Gamma$(S_{2})) where s_{1} (resp. s_{2} ) is the embedding dimension of M_{1}
(resp. M_{2} ). Since \mathrm{F}(S_{1})+d_{2} \in  S_{1} (resp. \mathrm{F}(S_{2}) +d_{1} \in  S_{2} ), we

may write \mathrm{F}(S_{1})+d_{2} =\displaystyle \sum_{i}a_{i}n_{i} (resp.  $\Gamma$(S_{2})+d_{1} =\displaystyle \sum_{i}a_{i}'n_{i}' ) where

S_{1}=\langle n_{1} , . . . ,  n_{s1}\rangle (resp.  S_{2}=\{n\'{i}, . . .

,  n_{s_{2}}'\rangle ) and  a_{i}\geq 0 (resp. a_{i}'\geq 0)
for each i . Let N_{1} (resp. N_{2} ) be an s_{2}\times s_{1}‐matrix (resp. s_{1}\times s_{2}‐matrix)
whose ij‐entry is a_{i} (resp. a_{i}' ) for each i,j . And put

M= \left(\begin{array}{ll}
M_{1} & N_{2}\\
N_{1} & M_{2}
\end{array}\right)
Then M is an RF‐matrix for \mathrm{F}(S) in S and \det M= (-1)^{s_{1}+S2}\mathrm{F}(S) .

\square 

Theorem 3. Assume s=4 . If the type of S is one, or if S is pseudo‐
symmetric, then there is an RF‐matrix of \mathrm{F}(S) which satisfies (*) . We

say that S is pseudo‐symmetric if \mathrm{P} $\Gamma$(S)=\{\mathrm{F}(S)/2, \mathrm{F}(S)\}.

Proof. Let S = \langle n_{1}, n_{2}, n_{3}, n_{4} }. Assume \mathrm{t}(S) = 1 . Further, we may
assume that S is not completely glued. Then, by [1], after suitable

renumbering, we have

RF (\mathrm{F}(S))= \left(\begin{array}{llll}
-1 & $\alpha$_{2}-\mathrm{l} & $\alpha$_{3}-1 & a_{\mathrm{l}4}\\
a_{21} & -1 & $\alpha$_{3}-1 & $\alpha$_{4}-1\\
$\alpha$_{1}-1 & a_{32} & -1 & $\alpha$_{4}-1\\
$\alpha$_{1}-1 & $\alpha$_{2}-1 & a_{43} & -\mathrm{l}
\end{array}\right) ,

where $\alpha$_{i} is the minimal positive number satisfying that ($\alpha$_{i}-1)n_{i} has

the unique factorization by n_{1} ,
. . .

, n_{4} for each i and 0 < a_{21} < $\alpha$_{1},
0 < a_{32} < $\alpha$_{2}, 0 < a_{43} < $\alpha$_{3} , and 0 < a_{14} < $\alpha$_{4} . From this, we have

\det RF (\mathrm{F}(S))=- $\Gamma$(S) .
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Assume that S is pseudo‐symmetric. By [3], after suitable renum‐

bering, we also have

\mathrm{R} $\Gamma$(\mathrm{F}(S))= \left(\begin{array}{llll}
-1 & $\alpha$_{2}-2 & $\alpha$_{3}-1 & 0\\
$\alpha$_{\mathrm{l}}-1 & -1 & $\alpha$_{3}-2 & $\alpha$_{4}-1\\
$\alpha$_{1}-2 & $\alpha$_{2}-1 & -1 & $\alpha$_{4}-1\\
$\alpha$_{1}-1 & a_{42}-1 & $\alpha$_{3}-1 & -1
\end{array}\right) ,

\mathrm{R}\mathrm{F}(\mathrm{F}(S)/2)= \left(\begin{array}{llll}
-1 & $\alpha$_{2}-1 & 0 & 0\\
0 & -1 & $\alpha$_{3}-1 & 0\\
$\alpha$_{\mathrm{l}}-1 & 0 & -1 & $\alpha$_{4}-1\\
$\alpha$_{\mathrm{l}}-1 & a_{42} & 0 & -1
\end{array}\right) ,

where $\alpha$_{i} is defined above and 0<a_{42} <$\alpha$_{2} . From this, we also have

\det RF (\mathrm{F}(S))=-\mathrm{F}(S) . \square 

Finally, we give some examples of RF‐matrices in an almost sym‐
metric semigroup.

Definition. Let S be a semigroup. For any f\in \mathrm{P}\mathrm{F}(S) with f\neq $\Gamma$(S) ,

if \mathrm{F}(S)-f'\in \mathrm{P}\mathrm{F}(S) , we say that S is almost symmetric.

Example 3 (Watanabe�s example). Let S=\langle 22 , 46, 9,  57\rangle . Then  S is

almost symmetric of type 3 and \mathrm{P} $\Gamma$(S)=\{35 , 70, 105 \} . We also have

RF(70) = \left(\begin{array}{llll}
-1 & 2 & 0 & 0\\
2 & -1 & 8 & 0\\
\mathrm{l} & 0 & -1 & 1\\
0 & 1 & 9 & -1
\end{array}\right) , RF(35) = \left(\begin{array}{llll}
-1 & 0 & 0 & 1\\
0 & -\mathrm{l} & 9 & 0\\
2 & 0 & -1 & 0\\
0 & 2 & 0 & -1
\end{array}\right)
\det RF(70) =0, \det RF(35) =-35.

Example 4. Let S=\{22 , 26, 79,  83\rangle . Then  S is almost symmetric of

type 3 and \mathrm{P}\mathrm{F}(S)=\{57;238, 295\} . We also have

\mathrm{R} $\Gamma$(57)= \left(\begin{array}{llll}
-1 & 0 & 1 & 0\\
0 & -1 & 0 & 1\\
5 & 1 & -1 & 0\\
4 & 2 & 0 & -\mathrm{l}
\end{array}\right), \mathrm{R} $\Gamma$(238)= \left(\begin{array}{llll}
-\mathrm{l} & 10 & 0 & 0\\
12 & -1 & 0 & 0\\
0 & 9 & -1 & \mathrm{l}\\
11 & 0 & 1 & -\mathrm{l}
\end{array}\right)
�

and

\mathrm{R}\mathrm{F}(295)= \left(\begin{array}{llll}
-1 & 9 & 0 & 1\\
11 & -\mathrm{l} & 1 & 0\\
0 & 8 & -\mathrm{l} & 2\\
10 & 0 & 2 & -1
\end{array}\right) or \left(\begin{array}{llll}
-1 & 9 & 0 & 1\\
\mathrm{l}1 & -1 & 1 & 0\\
4 & 1\mathrm{l} & -1 & 0\\
10 & 0 & 2 & -1
\end{array}\right)
detRF(57) =\det \mathrm{R}\mathrm{F}(238) =0 . We note that the determinant of the

former RF‐matrix for 295 is zero, and that of the latter one is -295.
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From above examples, it follows that the condition (*) does not hold

for all RF‐matrices for pseudo‐Frobenius numbers. Hence we modify
the question as follows:

Question. Let S be a semigroup with embedding dimension s.

Then, does the equation

(*) \det RF ( $\Gamma$(S))=(-1)^{s+1} $\Gamma$(S)
hold for some RF‐matrix for \mathrm{F}(S) ?
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