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Abstract

This short note is a writeup of the talk presented by the first named author in the RIMS

workshop 2016 �Automorphic forms, Automorphic L‐‐functions and Related topics�. We

report the recent progress about our lifting construction of real analytic automorphic forms

on real hyperbolic spaces.

1 Introduction

An interesting construction of cusp forms on a reductive group or its corresponding symmetric
space is a lifting from a group or a symmetric space of smaller dimension. As is well‐known,
Saito‐Kurokawa lifting provided a construction of holomorphic Siegel cusp forms of genus two

with a liftming from eMptic cusp forms on the complex upper half plane. What is surprising is

that this lifting leads to counterexamples to the Ramanujan conjecture. Since the diScovery of

the Saito‐Kurokawa lifting many specialists have been believing that such counterexamples for

a higher‐dimensional group or symmetric space would be given by lifting from smaller groups

or symmetric spaces.

Our research reported here started from two works [11] and [8], which deal with lifting
constructions of real analytic cusp forms on orthogonal groups of signature (1, 4) and (1, 5) or on

real hyperbolic spaces of dimensions four or five. We are trying higher‐dimensional generalization
of them. Our result is a lifting construction of automorphic forms on O(1, \mathrm{S}n+1) with respect
to discrete subgroups associated with even unimodular lattices. When n=1 the automorphic
forms are proved to be cusp forms. The fundamental tool of our resarch is Maass�s converse

theorem (cf. [7]) for real analytic automorphic forms on real hyperbolic spaces. More precisely
we slightly modify the converse theorem to show the automorphy of our lifts.

2 Maass�s converse theorem with a slight modification

2.1 Basic notation

Let H_{n} be the real hyperbolic space of dimension n+1 reaJized as

H_{n}:=\{(x,y)\in \mathbb{R}^{n}\times \mathbb{R}|x\in \mathbb{R}^{n}, y>0\}.
*

Partly supported by Grant‐in‐Aid for Scientific Rmsearch C \mathrm{K}\mathrm{M}101-16\mathrm{K}05065(\mathrm{K}1
'Partly supported by National Science Foundation grant DMS‐1100541.

数理解析研究所講究録
第2036巻 2017年 196-203

196



This is a Riemannian symmetric space realized also as O(1,n+1)/O(1,n+1)\cap O(n+2) ,

where O(1, l) (respectively O(m)) denotes the orthogonal group with signature (1, n+1) (re
spectively signature (m, 0) or (0, m)). With this identification we view H_{n} as a O(1, n+1)-
homogeneous space

Given a discrete subgroup  $\Gamma$ of  O(1,n+1) we now define real analytic automorphic forms

on H_{n} , which we call Maass forms on H_{n} :

Definition 2.1 A C^{\infty} ‐function F:H_{m}\rightarrow \mathbb{C} is defined to be a Maass form with respect to  $\Gamma$ if
it satisfies the following conditions:

1.  F( $\gamma$(z))=F(z)\forall( $\gamma$, z)\in $\Gamma$\times H_{n}.

2.  $\Omega$\displaystyle \cdot F=-\frac{1}{2n}(r^{2}+\frac{n^{2}}{4})F with the Casimir operator  $\Omega$ (r\in \mathbb{C}) .

3. F is of moderate grouth.

We denote by M( $\Gamma$,r) the space of Maass forms on H_{n} as are defined above.

We deal with M( $\Gamma$, r) for a specified discrete subgroup  $\Gamma$ . For that purpose we introduce an

even lattice (L,S) of \mathbb{Z}_{\'{Y}}‐rank n with a positive definite symmetric matrix S , where L\subset \mathbb{R}^{n} . Let

Q := \left(1 & -S & 1\right) and o(Q) denote the orthogonal group defined Uy

O(Q):=\{g\in M_{n+2}(\mathbb{R})|^{t}gQg=Q\},

which can be denoted also by O(1,n+1) . We will need an Iwasawa decomposition of O(Q) . To

describe it we introduce three subgroups of O(Q) às follows:

N:=\{n(x):= \left(\begin{array}{lll}
1 & tx3 & \frac{1}{2}txSx\\
 & 1_{n} & x\\
 &  & 1
\end{array}\right)
A:=\{a_{y}:= \left(y & 1_{n} & y^{-1}\right)

x\in \mathbb{R}^{n} ,

y\in \mathbb{R}>0 ,

K:=O(Q)\cap O(R) ,

where O(R) denotes the orthogonal group defined by the positive definite symmetric matrix

R= \left(1 & S & 1\right) . With these subgroups an Iwasawa decomposition is described as

O(Q)=NAK.

From this we see the identification H_{n}\simeq NA\simeq O(Q)/K.
We next introduce the discrete subgroup $\Gamma$_{S} of O(Q) by

$\Gamma$_{S}:=\{ $\gamma$\in O(Q)| $\gamma$(\mathbb{Z}\oplus L\oplus \mathbb{Z})=\mathbb{Z}\oplus L\oplus \mathbb{Z}\}.
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We let  $\Gamma$ś be the subgroup of  $\Gamma$_{S} generated by

\{\left(\begin{array}{lll}
1 & {}^{t}$\lambda$ S & \frac{\mathrm{l}}{2}{}^{t}$\lambda$ S $\lambda$\\
 & 1_{n} &  $\lambda$\\
 &  & 1
\end{array}\right) , \left( $\epsilon$ & \mathrm{l}_{n} &  $\epsilon$\right) , \left(1 & M & \mathrm{l}\right)  $\lambda$\in L,  $\epsilon$\in\{\pm 1\}, M\in \mathrm{A}\mathrm{u}\mathrm{t}(L, S)\}.
2.2 Converse theorem

We are going to formulate Maass�s converse theorem. Let q_{S}(x):=\displaystyle \frac{1}{2}txSx for x\in \mathbb{R}�. To state

the converse theorem let F be a smooth function on H_{n}\simeq NA given by the Fourier series

F(n(x)a_{y}):=\displaystyle \sum_{ $\lambda$\in L\#\backslash \{0\}}C_{ $\lambda$}y^{n/2}K_{r}(4 $\pi$ y\sqrt{q_{S}( $\lambda$)})\exp(2 $\pi$\sqrt{-1}^{t} $\lambda$ Sx) , (2.1)

where  L\# denotes the dual lattice of  L and K_{r} denotes the K‐Bessel function parametrized by
r\in \mathbb{C} . For this function we remark that F satisfies the second condition of Definition 2.1. We

are now able to state the converse theorem as follows:

Theorem 2.2 (�Modified� Maass�s converse theorem) Let F be as above and recall that

 $\Gamma$ś has been introduced in Section 2.1. For F \in M(  $\Gamma$ś, r) the following conditions are necessary

and sufficient:

1.  C_{ $\lambda$}=C_{u $\lambda$} for u\in \mathrm{A}\mathrm{u}\mathrm{t}(L, S) ,

2. |C_{ $\lambda$}|=O(q_{S}( $\lambda$)^{ $\kappa$}) with some  $\kappa$>0,

3. For any fiưed non‐negative integer l , let \{P_{l, $\nu$}\}_{\mathrm{v}} be a basis of harmonic polynomials on \mathbb{R}^{n}

of degree l . Then, for any (l,  $\nu$) , the Difichlet series

 $\xi$(s, P_{l, $\nu$}):=(2 $\pi$)^{-2s} $\Gamma$(s+\displaystyle \frac{\sqrt{-1}r}{2}) $\Gamma$(s-\frac{\sqrt{-1}r}{2})\sum_{ $\lambda$\in L\#\backslash \{0\}}\frac{C_{ $\lambda$}P_{l, $\nu$}( $\lambda$)}{q_{S}( $\lambda$)^{s}}
satisfies the following

\bullet  $\xi$(s, P_{l,\mathrm{v}}) is entire and bounded on any vertical stripes,

\bullet the functional equation  $\xi$(s, P_{l, $\nu$})= $\xi$(\displaystyle \frac{n}{2}+l-s, B_{ $\nu$}) holds

We have remarks on this theorem. The original converse theorem by Maass [7] uses the coordi‐

nate of the Clifford algebra to realize the real hyperbolic spaces and is formulated for smooth

functions on the hyperbolic spaces given by the Fourier series with the constant term. We further

remark that Maass�s originâì formulation does not contain the first condition on C_{ $\lambda$}\mathrm{s} as above,
which is the modification we have made.

A convemient situation for us is that $\Gamma$_{S}=$\Gamma$_{S}' holds. However, it looks difficult to prove this

in general. We therefore provide such a convenient situation stated as follows:

Proposition 2.3 (1) Suppose that an even lattice (L, S) satisfies the following condition on

�covering radius�:
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For any x\in \mathbb{R}^{n} there is  $\lambda$\in L such that qs(x+ $\lambda$)<1.

Then we have  $\Gamma$S = $\Gamma$ś.
(2) For (L, S) as above we have M($\Gamma$_{S}, r) = M(  $\Gamma$ś,  r). Namely the converse theorem holds for
M($\Gamma$_{S},r) .

The first assertion is what was inspired by I. Kröcker [4]. We next come across the problem of

how many even lattices with the condition on the covering radius we have. Such even lattices

are totally classified by G. Nebe [10].

Proposition 2.4 (Nebe) There are 69 even lattices with the condition on covering radius. The

\mathbb{Z}‐rank of such lattices are at most eight.

What we should now note is that the table of even lattices with the condition on covering radius

includes only one even unimodular lattice, which is the E_{8}‐lattice. We consequently state the

following:

Proposition 2.5 Let (\mathbb{Z}^{8}, S) be the E_{8} ‐lattice. Let F be a C^{\infty} ‐function on H9 given by the

Fourier series (2.1) without the constant term. If F satisfies the three conditions in Theorem

2.2, F\in M($\Gamma$_{S},r) and F is a cusp form.

Let S be just as above. We remark that the number of $\Gamma$_{S}‐cusps is verified to be exactly one

for this S in a manner similar to [8, Lemma 2.3]. The class number of the ‐orthogonal group

defined by Q does not exceed that of the orthogonal group defined by S , and if the former class

number is proved to one, we can show that the number of $\Gamma$_{S}‐cusps coincides with the latter

class number. It is well‐known that the class numbers for S is exactly one, and we therefore see

that both of the class number for Q and the number of the $\Gamma$_{S}‐cusps are one. We consequently
know that F is cuspidal since its Fourier expansion has no constant term.

3 Lifting construction and the main theorem

3.1 Statement of the main theorem

Let \mathfrak{h} be the complex upper half plane \{x+\sqrt{-1}y\in \mathbb{C}|y>0\} , which has the SL_{2}(\mathbb{Z})‐action

by the linear fractional transformation. By  $\Delta$ we denote the hyperbolic Laplacian  y^{2}(\displaystyle \frac{\partial}{\partial}x $\Gamma$ 2+\overline{\partial}^{\frac{\partial^{2}}{y} $\Gamma$})
on \mathfrak{h} . We then introduce the notion of Maass cusp forms on \mathrm{b}.

Definition 3.1 A C^{\infty} ‐function f : \mathfrak{h}\rightarrow \mathbb{C} is called a Maass cusp form if it satisfies the follow‐
ing:

1. f( $\gamma$(z))=f(z)\forall $\gamma$\in SL_{2}(\mathbb{Z}) ,

2.  $\Delta$ f=-(\displaystyle \frac{1}{4}+\frac{r^{2}}{4})f(r\in \mathbb{R}) ,
3. f vanishes at \infty , which means that the Fourier expansion of  f is given by

f(z)=\displaystyle \sum_{n\neq 0}c_{f}(n)W_{0,\frac{\prime-1 $\tau$}{2}}(4 $\pi$|n|y)\exp(2 $\pi$\sqrt{-1}nx) ,
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where W_{0,\frac{\sqrt{-1}\mathrm{r}}{2}} ds the Whittaker function parametrized by (0, \displaystyle \frac{\sqrt{-1}r}{2}) . We denote the space of

these Maass czesp forms by S(SL_{2}(\mathbb{Z}), r) .

For this definition we remark that r\in \mathbb{R}� in the eigenvalue condition for  $\Omega$ is due to the validity
of the Selberg conjecture for the Maass cusp forms for  SL_{2}(\mathbb{Z}) (cf. [3, Corollary 11.5]).

Now let (\mathbb{Z}^{8n}, S) be an even umimodular lattice defined by a positive definite symmetric
matrix S . In what follows, we often denote \sqrt{\frac{1}{2}txSx} by |x| . Given f\in S(SL_{2}(\mathbb{Z}), r) we define

a function on H_{8n+1} Uy

F_{f}(n(x)a_{y})=\displaystyle \sum_{ $\lambda$\in \mathrm{Z}^{8n}\backslash \{0\}}A( $\lambda$)y^{4n}K_{\sqrt{-1}r}(4 $\pi$| $\lambda$|y)\exp(2 $\pi$\sqrt{-1}^{t} $\lambda$ \mathcal{S}x) ,

where A( $\lambda$) is defined as

A( $\lambda$):=| $\lambda$|\displaystyle \sum_{h|d_{ $\lambda$}}c_{f}(-\frac{| $\lambda$|^{2}}{h^{2}})h^{4n-2}
with the greatest common divisor d_{ $\Lambda$} of entries of  $\lambda$ . We are able to state our result on the

lifting construction of Maass forms on a real hyperbolic space  H_{8n+1}.

Theorem 3.2 (Main theorem) (1) The mapping f\mapsto F_{f} leads to the lifting as follows:

S (SL_{2}(\mathbb{Z}), r) \ni f \mapsto Ff \in M(  $\Gamma$ś,  r).

In particular, when (\mathbb{Z}^{8n}, S) is the E_{8} ‐lattice (namely n=1), F_{f}\in M($\Gamma$_{S},r) and F_{f} \dot{u} a cusp

form.
(2) If f\not\equiv 0, F_{f}\not\equiv 0.

As an immediate consequence from Weyl�s law for SL_{2}(\mathbb{Z}) by Selberg (cf. [3, Section 11.1]) we

see the following:

Corollary 3.3 There esists a non‐zero F_{f}.

3.2 Sketch of the proof for the main theorem

Our method of proof is to follow the argument in [11] and [8]. The first assertion is proved by
the slightly modified converse theorem (cf. Theorem 2.2) and the proof of the second assertion

is similar to [8, Theorem 4.4]. The result for the case of E_{8}‐lattice then follows from Proposition
2.5.

Among the several points of the proof, the main difficulty is to study the analytic properties
of the \mathrm{D} chlet series attached to F_{f} as in the third condition of the converse theorem. The

Dirichlet series for F_{f} has an integral expression of Rankin‐Selberg type. To explain it we intro‐

duce theta series attached to harmonic polynomials \{P_{l, $\nu$}\} (cf. Theorem 2.2) and a normalized

Eisenstein series as follows:

$\Theta$_{l, $\nu$}(z):=\displaystyle \sum_{ $\beta$\in \mathrm{Z}^{8n}}B_{ $\nu$}( $\beta$)e^{2 $\pi$\sqrt{-1}| $\beta$|^{2}z},
E(z, s):=$\pi$^{\frac{l}{2}+2n-\frac{1}{2}}\displaystyle \frac{ $\Gamma$(s+2n+\frac{l}{2})}{ $\Gamma$(s)}($\pi$^{-s} $\Gamma$(s) $\zeta$(2s))\frac{1}{2}\sum_{ $\gamma$\in$\Gamma$_{\infty}\backslash SL_{2}(\mathrm{Z})}(\frac{cz+d}{|cz+d|})^{l+4n}(\frac{{\rm Im}(z)}{|cz+d|^{2}})^{s}.
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Here $\Gamma$_{\infty}=\{ $\gamma$\in SL_{2}(\mathbb{Z})| $\gamma$(\infty)=\infty\} . Let us introduce the Raknin‐Selberg zeta integral

I(s) :=\displaystyle \int_{SL_{2}(\mathrm{Z})\backslash \int_{f}}f(z)\mathrm{e}_{l, $\nu$}(z)E(z, s)y^{\frac{l+4n}{2}}\frac{dxdy}{y^{2}},
and we then state the following:

Proposition 3.4 (1) The zeta integral I(s) is entire and bounded on any critical stripes, and

satisfies the functional equation I(s)=I(1-s) .

(2) We have

 $\xi$(s+\displaystyle \frac{l}{2}+2n-\frac{1}{2}, P_{l, $\nu$})=\left\{\begin{array}{ll}
I(s) & (l:even)\\
0 & (l:odd) '
\end{array}\right.
which implies the desired functional equation

 $\xi$(s, P_{l, $\nu$})= $\xi$(\displaystyle \frac{l}{2}+4n-s, P_{l, $\nu$}) .

4 Remaining problems

Around the end of the talk by the first author several problems in future were proposed. We

now write down the two of them.

(1) Study of the automorphic representation generated by our lifts

If we successfully construct cusp forms by the lifting, an important problem is to study the

�ffimanujan property� of the cusp forms, namely to know whether the cuspidal representations
generated by the lifts have tempered local components at all places or not. Our previous work

[8] provides a lifting construction for the case of the five dimensional hyperbolic space and shows

that it lifts Hecke‐eigen Maass cusp forms to Hecke‐eigem cusp forms, namely the lifting is Hecke‐

equivariant. For this, note that there is an accidental isomorphism between GSpin(1,5) and

GL(2) over a division quaternion algebra. In view of the global multiplicity one theorem for a

general hnear group over a division algebra by Badulescu‐Renard [1] and [2], the images of the

lifling [8] from Hecke eigen Maass forms generates irreducible cuspidal representations, and thus

decompose into the restricted tensor products of local representations. The explicit calculation

of the Hecke eigenvalues of the lifts carried out by [8] leads to the result that such a cuspidal
representation has non‐tempered local components for all non‐archimedean primes.

However, we have no global multiplicity one theorem for orthogonal groups in general. In‐

stead we think that the work [9] is useful to study the problem for our situation. It implies that

the study on the Ramanujan properties of our lfting is reduced to that of Hecke‐equivariance
and Hecke eigenvalues for our hfting if the archimedean local representation is proved to be

irreducible and tempered similarly as in [8, Theorem 6.8].

(2) Lifting from holomorphic modular forms

It is quite natural to consider the lifling of (holomorphic \rangle elliptic cusp forms instead of that

of (non‐holomorphic) Maass cusp forms. For this we note that (SL(2), O(p,q)) forms a dual
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pair and that we can thus consider the theta lifting construction of the cusp forms on real

hyperbolic spaces. The theta lifting construction from eliptic cusp forms (more generally, cusp

forms generating discrete series representations at archimedean places) has been studied by
Li [5]. In Li‐Tan‐Zhu [6] the archimedean representations of the theta lifts for the case of

O(1, n) are verified to be degenerate principal series representations which are cohomological
representations A_{ $\eta$}( $\lambda$) �. From these works we know that the cusp forms on O(1,n) obtained

by theta lifting from elliptic cusp forms contribute to the cohomologies of arithmetic groups
and that the archimedean representation types of such cusp forms are explicitly given. We can

thus say that such lifting construction would have arithmetic significance. Let us now note that

the work by Li [5] is given in the framework of automorphic representations. We should then

remark that the explicit hfting construction of the cusp forms on O(1,n) with explicit Fourier

coefficients are still open and significant problem to be investigated.
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