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ABSTRACT. In this article, we review the hybrid (hybridìzed or hybridizable) discon‐

tinuous Galerkin (HDG) method based on a classical hybrid finite element method

for second‐order elliptic problems. Our HDG method was firstly obtained by sta‐

bilizing the simplified hybrid displacement method. Optimal error estimates in the

energy and L^{2} norms were proved for the Poisson equation. The method was ex‐

tended to convection‐diffusion problems by introducing a kind of an upwind term. It

was verified mathematically and numerically that the method is robust even in the

convection‐dominated case, where the standard finite element method fails due to its

numerical instability.

1. INTRODUCTION

In recent years, hybrid (hybridized or hybridizable) discontinuous Galerkin (HDG)
methods have been investigated and applied to various problems. The usual discon‐

tinuous Galerkin (DG) method utilizes two types of numerical fluxes to deal with the

discontinuity of an approximate solution u_{h} on inter‐element boundaries. In the HDG

method, a numerical trace ûh is introduced to approximate the trace of a solution

besides u_{h} , which is a new unknown and may be called the hybrid unknown.

The number of degrees of freedom (DOF) of the DG method is much larger than that

of the standard finite element method. By the static condensation, that is, eliminating
the hybrid unknown ûh by u_{h} , we obtain a discretized equation in terms of only on ûh.
As a result, the number of DOF of the HDG method can be considerably reduced, which

is the main advantage of the HDG method over the DG method. We note that the HDG

method has remarkable features besides the above advantage, such as superconvergence

properties and various connections with other numerical methods (nonconforming and

mixed finite element methods, etc

The HDG method was firstly introduced by Cockburn et al. [10], in which the hy‐
bridization of the local discontinuous Galerkin (LDG) method (cf. [3]) is successful to

unify the formulations of various hybrid methods. An overview of the HDG methods

was already provided in [10], and we refer the readers to it as a survey paper.

In this article, we revisit and review a different hybridization of the DG method based

on a classical hybrid finite element method. Hybridization of the finite element method
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was early proposed by Pian in 1964 (cf. [36]) and by de Veubeque in 1965 [11, 43]. Later,
the hybrid displacement method was proposed by Tong in 1970 [41], in which the hybrid
displacement and Lagrange multiplier are introduced as new unknowns on inter‐element

boundaries. The simplified hybrid displacement method, where the Lagrange multiplier
is taken to be the normal gradient of u_{h} , was also investigated by Kikuchi and Ando

[19, 21, 22, 20, 23, 18, 24, 25]. Those methods were partially successful, however, they
suffered from numerical instability. Decades later, in [26, 30, 35, 31], stabilized methods

were developed for linear elasticity problems and the Poisson equation. The instability
was overcome by introducing the stabilization technique of the interior penalty method

[2], which is described in Section 2. Numerical results are not shown in this article, see,

e.g. [26, 30, 35, 31].
For stationary convection‐diffusion problems, the HDG method has been developed

and there have been many published papers, for example, see [27, 13, 7, 8, 32, 14,
6, 38]. Here we focus on the present author�s work [32] because the resulting HDG

methods listed above are not so different from each other. In the HDG method, \mathrm{a}

convection‐diffusion equation is decomposed into diffusive and convective parts, and

they are discretized separately. The diffusive part can be discretized in the same way

as the Poisson equation. The convective part is discretized by newly introducing a kind

of an upwind term. The key idea of devising the upwind term is to switch u_{h} and ûh

according to the outflow and inflow inter‐element boundaries. In Section 3, we are going
to state the upwind scheme proposed by the present author [32] for convection‐diffusion

problems. Numerical results will be presented to validate the stability ,of the scheme.

2. HDG METHOD FOR DIFFUSION PROBLEMS

Let  $\Omega$\subset \mathbb{R}^{n}(n=2,3) be a bounded polygonal or polyhedral domain and f\in L^{2}( $\Omega$)
be a given function. We consider the Poisson equation with homogeneous boundary
condition:

(2.1a) - $\Delta$ u=f in  $\Omega$,

(2.1b) u=0 on \partial $\Omega$.

The HDG method can also be applied to the problems with non‐homogeneous Dirich‐

let and Neumann boundary conditions, but we here consider only the homogeneous
Dirichlet boundary condition for simplicity.

2.1. Notation. Let \{T_{h}\}_{h>0} be a family of meshes of the domain  $\Omega$ . The subscript  h

stands for the mesh size h :=\displaystyle \max_{K\in T_{h}}\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(K) . We assume that \{T_{h}\}_{h} satisfies the

chunkiness condition [5, 17], which is equivalent to the shape‐regular condition if all
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meshes consist of only triangles or tetrahedrons. We also assume that \{T_{h}\}_{h} satisfies the

local quasi‐uniformity [17],i.e., there exists a constant C such that diam (K)/\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(e)\leq
 C for any K \in  T_{h} and edge e \subset \partial K . Throughout the article, the symbol C denotes

a generic constant independent of h . The set of all edges of T_{h} is denoted by \mathcal{E}_{h} =

\{e\subseteq\partial K : K\in T_{h}\} . The skeleton of T_{h} , defined by \displaystyle \bigcup_{K\in T_{h}}\partial K ,
is denoted by the same

symbol \mathcal{E}_{h} . We define L_{D}^{2}(\mathcal{E}_{h})= { \hat{v}\in L^{2}(\mathcal{E}_{h}) : \hat{v}=0 on \partial $\Omega$ }. We will use the standard

notation of the Sobolev spaces [1], such as  H^{m}(D) , W^{m,p}(D) , \Vert \Vert_{m,D} = \Vert . \Vert_{H^{m}(D)},
|\cdot|_{m,D}=|\cdot|_{H^{m}(D)} for an integer m and a domain D . The piecewise or broken Sobolev

spaces are introduced: H^{m}(T_{h}) := \{v \in L^{2}( $\Omega$) : v|_{K} \in H^{m}(K) \forall K \in T_{h}\} . The inner

products are denoted by

(u, v)_{T_{h}} :=\displaystyle \sum_{K\in T_{h}}\int_{K} uvdx, \{u, v\rangle_{\partial T_{h}} :=\displaystyle \sum_{K\in T_{h}}\int_{\partial K} uvds.

The finite element spaces for approximating u and its trace û are denoted by W_{h} and

M_{h} , respectively. We impose the homogeneous Dirichlet boundary condition on M_{h} , i.e.,
assume M_{h}\subset L_{D}^{2}(\mathcal{E}_{h}) . In usual cases, the finite element spaces are set to be piecewise

polynomial \cdot

spaces of same degree;  W_{h}=P_{k}(T_{h}) and M_{h}=P_{k}(\mathcal{E}_{h}) . Recently, it turned

out that optimal convergences can be achieved by setting W_{h}=P_{k+1}(T_{h}) , M_{h}=P_{k}(\mathcal{E}_{h})
and taking an L^{2}‐projection in the stabilization term, see [28, 33, 34, 39, 40, 29, 9, 37].

2.2. The scheme. We give the formulation of the HDG method proposed in [30, 35].
The method is equivalent to the IP‐H method defined in [10], and we will here call it

so. The IP‐H method is as follows: find u_{h}\in W_{h} and ûh \in Mh such that

(2.2)  a_{h}^{d}(u_{h} ,
ûh ; v_{h}, \hat{v}_{h})=(f, v_{h})_{ $\Omega$} \forall v_{h}\in W_{h}, \hat{v}_{h}\in M_{h},

where

a_{h}^{d}(u_{h},\hat{u}_{h|v_{h},\hat{v}_{h})} := (\nabla u_{h}, \nabla v_{h})_{T_{h}} + \langle n . \nabla u_{h}, \hat{v}_{h} - v_{h}\rangle_{\partial T_{h}}
+ \langle n . \nabla v_{h}, \hat{u}_{h} - u_{h}\rangle_{\partial T_{h}} + S_{h}(u_{h},\hat{u}_{h1}v_{h}, \hat{v}_{h}) ,

S_{h}(u_{h},\hat{u}_{h1}v_{h}, \hat{v}_{h}) := \langle $\tau$(\hat{u}_{h} -u_{h}) , \hat{v}_{h} -v_{h}\rangle_{\partial T_{h}}.

Here  $\tau$ is a stabilization parameter, which is usually set to be  $\tau$=$\tau$_{0}/h_{e} ,
where $\tau$_{0} is a

positive constant, h_{e} :=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(\mathrm{e}) for an edge e and n is the unit outward normal vector

to \partial K . It can be proved that the scheme is coercive if $\tau$_{0} is set to be sufficiently large.
In general, too large  $\tau$ is likely to spoil the discontinuity of the approximate solutions.

Therefore, we should select a moderate value for  $\tau$_{0} . The HDG method coercive for

any positive $\tau$_{0} was already obtained; the LDG‐H method [10] and the HDG method

using a lifting operator [31]. As will be shown later, both the methods are essentially
equivalent to each other.
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In the next section, we are going to describe how the method is derived.

2.3. Derivation. Let K \in  T_{h} and u \in  H^{2}( $\Omega$) . Multiplying (2.1a) by a test function

v\in H^{2}(K) and integrating it by parts over K
,

we get

(\nabla u;\nabla v)_{K}-\{n\cdot\nabla u, v\}_{\partial K}=(f, v)_{K}.

Summing the above over K\in T_{h} yields

(2.3) (\nabla u, \nabla v)_{T_{h}}-\langle n\cdot\nabla u, v\rangle_{\partial T_{h}}=(f, v)_{ $\Omega$}.

We now introduce a hybrid function \hat{v}\in L_{D}^{2}(\mathcal{E}_{h}) as a test function. Since n\cdot\nabla u and \hat{v}

are both single‐valued on \mathcal{E}_{h} and \hat{v} vanishes on \partial $\Omega$ , the transmission condition follows:

(2.4) \{n\cdot\nabla u,  $\gamma$ v_{\partial T_{h}}=0.

Adding this into (2.3) and symmetrizing it, we obtain

(2.5) (\nabla u, \nabla v)_{T_{h}}+\{n\cdot\nabla u, \hat{v}-v\rangle_{\partial T_{h}}+\langle n\cdot\nabla v, \hat{u}-u\rangle_{\partial T_{h}}=(f, v)_{ $\Omega$},

where û is the trace of u . Since the scheme is still not stable in general, we add the

stabilization or penalty term  $\tau$ {û—u, \hat{v}-v\rangle_{\partial T_{h}} . Thus we obtain (2.2).

Remark. In (2.2), taking \hat{v}_{h}\equiv 0 on \mathcal{E}_{h} and v_{h}\equiv 0 on  $\Omega$\backslash K for some K\in T_{h} , we have

(\nabla u_{h}, \nabla v_{h})_{K}-\langle n\cdot\nabla u_{h}, v_{h}\rangle_{\partial K}-\langle n . \nabla v_{h}, u_{h}\rangle_{\partial K}+\langle $\tau$ u_{h}, v_{h}\rangle_{\partial K}

= (_{f}, v_{h})_{K} + (\hat{u}_{h},  $\tau$ v_{h} - n \nabla v_{h}\rangle_{\partial K},

which implies that u_{h}|_{K} can be determińed by only ûh |\partialK. There is no direct connec‐

tion between  u_{h}|_{K} and u_{h}|_{K'} for distinct elements K, K'\in T_{h} , and they, are linked only
through the numerical trace ûh |_{\partial K\cap\partial K'} . It enables us to do the so‐called static condensa‐

tion, i.e., the construction of a linear system in terms of only ûh by element‐by‐element
elimination of u_{h}.

2.4. Error estimates. We present the outline of error analysis for the IP‐H method.

The energy norm is defined by

\Vert|(v_{h},\hat{v}_{h})\Vert|_{d}^{2}:=\Vert\nabla v_{h}\Vert_{T_{h}}^{2}+\Vert h_{e}^{-1/2}(\hat{v}_{h}-v_{h})\Vert_{\partial T_{h}}^{2},
where

\Vert\nabla v_{h}\Vert_{T_{h}}^{2}:=(\nabla v_{h}, \nabla v_{h})_{T_{h}},

\Vert h_{e}^{-1/2}(\hat{v}_{h}-v_{h})\Vert_{\partial T_{h}}^{2}:=\langle h_{e}^{-1}(\hat{v}_{h}-v_{h}) , \displaystyle \hat{v}_{h}-v_{h}\rangle_{\partial T_{h}}=\sum_{K\in T_{h}}\sum_{\mathrm{e}\subset\partial K}\int_{e}h_{e}^{-1}|\hat{v}_{h}-v_{h}|^{2}ds.
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We assume the approximation property: for any v \in  H^{k+1}( $\Omega$) and its trace \hat{v}
,

there

exists a constant C independent of h such that

\displaystyle \inf_{v_{h}\in W_{h},\hat{v}_{h}\in M_{h}}\Vert|(v-v_{h}, \hat{v}-\hat{v}_{h})\Vert|_{d}\leq Ch^{k}|v|_{k+1, $\Omega$}.
The following fundamental properties on the bilinear form a_{h}^{d} ) hold.

Lemma 1. The following hold.

(1) (Consistency) Let u be the exact solution of (2.1) and û denote the trace of u.

Then

a_{h}^{d} (u, \^{u}; v_{h}, \hat{v}_{h})=(f, v_{h})_{ $\Omega$} \forall v_{h}\in W_{h}, \hat{v}_{h}\in M_{h}.

(2) (Boundedness) There exists a constant C such that

|a_{h}^{d}(w_{h},\hat{w}_{h};v_{h},\hat{v}_{h})|\leq C\Vert|(w_{h},\hat{w}_{h})\Vert|_{d}\Vert|(v_{h}, \hat{v}_{h})\Vert|_{d} \forall w_{h}, v_{h}\in W_{h}, \hat{w}_{h}, \hat{v}_{h}\in M_{h}.

(3) (Coercivity) There exists a constant C such that

a_{h}^{d}(v_{h}, \hat{v}_{h};v_{h},\hat{v}_{h}) \geq C\Vert|(v_{h},\hat{v}_{h})\Vert|_{d}^{2} \forall v_{h}\in W_{h}, \hat{v}_{h}\in M_{h}.

Proof. The full proof was firstly given in the present author�s Master�s thesis [30], which,
however, is written in Japanese. So, we refer to [32]. \square 

Remark. To obtain an error estimate, we need not only the consistency and boundedness

for W_{h} and. M_{h} but also those for H^{2}( $\Omega$) . However, we omitted it because those are not

directly used in this article and we have to introduce the auxiliary norm and notations.

From the above lemma, the following optimal error estimates can be deduced.

Theorem 2. Assume that \{T_{h}\}_{h} satisfies the chunkiness condition and the quasi‐
uniformity and that the approximation property holds. Let u be the solution of (2.1)
and û denote the trace of u . If u\in H^{k+1}( $\Omega$) , then

(2.6) \Vert|(u-u_{h}, \^{u} - \hat{u}_{h})\Vert|_{d}\leq Ch^{k}|u|_{k+1, $\Omega$}.

By Aubin‐Nitsche�s trick, we have

\Vert u-u_{h}\Vert_{L^{2}( $\Omega$)}\leq Ch^{k+1}|u|_{k+1, $\Omega$}.
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2.5. Nonsymmetric schemes. The third term in (2.5) is called a consistent term

because \langle n\cdot\nabla v, \hat{u}-u\rangle_{\partial T_{h}}=0 holds for the exact solution u and its trace û. We note

that the nonsymmetric version of the scheme [30, 35] can also be deduced, for a real

number s,

a_{h}^{d} (u_{h} , ûh ; v_{h}, \hat{v}_{h})=(\nabla u_{h}, \nabla v_{h})_{T_{h}}+\{n\cdot\nabla u_{h}, \hat{v}_{h}-v_{h}\rangle_{\partial T_{h}}

+S\langle n \nabla v_{h}, \hat{u}_{h} -u_{h}\rangle_{\partial T_{h}} +S_{h}(u_{h},\hat{u}_{h};v_{h}, \hat{v}_{h}) .

The IP‐H (symmetric) scheme (2.2) is included as s = 1 . We call the scheme with

s\neq 1 the nonsymmetric scheme. Although an optimal H^{1} ‐error estimate for the non‐

symmetric scheme was proved as well as the symmetric scheme, an optimal L^{2}‐error

estimate could not be proved because of the lack of the adjoint consistency. Note that

the order of convergence in the L^{2} norm is greater than or equal to that of the energy

norm, which follows easily from the fact that the energy norm is stronger than the

L^{2} norm. In [30, 35], it was shown by numerical experiments that the L^{2}‐orders of

convergence are actually suboptimal when the degrees of polynomials are even. For

odd polynomials, the optimal convergence in the L^{2} norm was observed in some cases.

The L^{2} suboptimality of the nonsymmetric DG method were investigated in [15, 12, 4],
whereas there are few studies for the HDG method. For the DG method, in [15], the

suboptimal convergence was in fact demonstrated in the one and two dimensions in

special cases where the mesh and exact solution are carefully designed. It might be the

case for the HDG method.

2.6. A lifting operator. In [31] , a lifting operator was introduced and the HDG

method using it was also proposed. The local lifting operator R_{h}^{\partial K} : L^{2}(\partial K)\rightarrow W_{h}(K)^{n}
is defined by, for \hat{ $\mu$}\in L^{2}(\partial K) ,

(R_{h}^{\partial K}(\hat{ $\mu$}), w)_{K}=\langle\hat{ $\mu$}, w . n\rangle_{\partial K} \forall w\in W_{h}(K)^{n}.

For  $\mu$\in H^{1}(K) ,
we define R_{h}^{\partial K}( $\mu$)=R_{h}^{\partial K}( $\mu$|_{\partial K}) .

The (global) lifting operator R_{h} : \displaystyle \prod_{K\in T_{h}}L^{2}(\partial K) \rightarrow  W_{h}^{n} is defined by R_{h}( $\mu$)|_{K} =

R_{h}( $\mu$|_{\partial K}) for all K\in T_{h} . Note that the lifting operator satisfies

(R_{h}( $\mu$), w)_{T_{h}}=\displaystyle \{ $\mu$, w\cdot n)_{\partial T_{h}}=\sum_{K\in T_{h}}\langle $\mu$|_{\partial K}, w\cdot n\rangle_{\partial K} \forall w\in W_{h}^{n}
for  $\mu$\displaystyle \in\prod_{K\in T_{h}}L^{2}(\partial K) .

The IP‐H method using the lifting operator, which is going to be called the IPL‐H

method in this article, read as: find u_{h}\in W_{h} and ûh \in Mh such that

(2.7)
 a_{h}^{d}(u_{h},\hat{u}_{h1}v_{h}, \hat{v}_{h}) + (R_{h} (\hat{u}_{h} -- u_{h}), R_{h}(\hat{v}_{h} -v_{h}))$\gamma$_{h} = (f, v_{h})_{ $\Omega$} \forall v_{h} \in  W_{h}, \hat{v}_{h} \in  M_{h}.
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Thanks to the additional stabilization term (Rh(ûh— u_{h} ), R_{h}(\hat{v}_{h}-v_{h}))_{T_{h}} , the scheme

is coercive for all  $\tau$>0 . We note that the scheme (2.7) can be rewritten as

(\nabla u_{h}+R_{h} (\hat{u}_{h} -u_{h}), \nabla v_{h}+R_{h}(\hat{v}_{h}-v_{h}))_{T_{h}}+S_{h}(u_{h},\hat{u}_{h};v_{h},\hat{v}_{h})=(f, v_{h})_{ $\Omega$}.

2.7. Equivalence between the IPL‐H and LDG‐H methods. We are going to

show that the IPL‐H method is essentially equivalent to the LDG‐H method. In the

LDG‐H method (cf. [10]), the mixed formulation of (2.1) is considered:

q+\nabla u=0, \nabla\cdot q=f.

Let V_{h} be the finite element space for approximating q . The LDG‐H method reads as:

find q_{h}\in V_{h}, u_{h}\in W_{h} and \^{u} h\in M_{h} such that

(2.8a) (q_{h}, v)$\tau$_{h} — (u_{h}, \nabla v)T_{h} + \langle\hat{u}_{h}, v n)_{\partial T_{h}} = 0, \forall v \in  V_{h},

(2.8b) -(q_{h}, \nabla w)_{T_{h}} + \{\hat{q}_{h} n, w\rangle_{\partial T_{h}} = (f, w)_{ $\Omega$}, \forall w \in Wh,

(2.8c) \langle\hat{q}_{h} n, \hat{w}\rangle_{ $\theta$ T_{h}} = 0, \forall\hat{w} \in M_{h},

where the numerical flux \hat{q}_{h} is defined by q
\hat{}

h
= qh + $\tau$ (uh—ûh)n.

Proposition 3. The IPL‐H method is equivalent to the LDG‐H method with  V_{h}=W_{h}^{n}.

Proof. To begin with, integrating (2.8a) by parts, we have

(2.9) (q_{h}, v)_{T_{h}}+(\nabla u_{h}, v)_{\partial T_{h}}+ \langle û  h
—

u_{h}, v\cdot n\rangle_{\partial T_{h}}=0.

Substituting v=\nabla w into (2.9) yields

(q_{h}, \nabla w)$\tau$_{h} + (\nabla u_{h}, \nabla w)_{\partial T_{h}} + \langle\hat{u}_{h} —

u_{h}, n \nabla w\rangle_{\partial T_{h}} = 0.

From this and (2.8b), it follows that

(\nabla u_{h}, \nabla w)$\tau$_{h} + \langle\hat{u}_{h} - u_{h}, n \nabla w\rangle_{\partial T_{h}} + \{\hat{q}_{h} n, w\rangle_{\partial T_{h}} = (f, w)_{ $\Omega$}.

By (2.8c) and the definition of \hat{q}_{h} , we have

(\nabla u_{h}, \nabla w)$\tau$_{h} + \langle\hat{u}_{h} - u_{h}, n. \nabla w\rangle_{\partial T_{h}} + \langle(q_{h} +T (u_{h} -\hat{u}_{h})) n, W -\hat{W}\}_{\partial T_{h}}
(2.10)

= (f, w)_{ $\Omega$} \forall w \in W_{h}, \hat{w} \in M_{h}.

Substituting v=R_{h}(w-\hat{w}) into (2.9), we deduce

\langle q_{h}\cdot n, w-\hat{w}\rangle_{\partial T_{h}}=(q_{h}, R_{h}(w-\hat{w}))_{T_{h}}

=-(\nabla u_{h}, R_{h}(w-\hat{w}))_{T_{h}}- \langleûh—uh,  R_{h}(w-\hat{w})\cdot n\rangle_{\partial T_{h}}

=-(n\cdot\nabla u_{h}, w-\hat{w}\rangle_{\partial T_{h}}+(R_{h} (ûh—uh), R_{h}(\hat{w}-w))_{T_{h}}.

From this and (2.10), we obtain the scheme (2.7). \square 
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3. HDG METHOD FOR CONVECTION‐DIFFUSION PROBLEMS

We consider the stationary convection‐diffusion equation:

- $\epsilon \Delta$ u+b\cdot\nabla u+cu=f in  $\Omega$,

u=0 on \partial $\Omega$,

where  $\epsilon$>0 is the diffusion coefficient, b\in W^{1,\infty}( $\Omega$)^{n} is divergence‐free, c is a positive
constant. We are concerned with the convection‐dominated case, i.e.  $\epsilon$ \ll \Vert b\Vert_{\infty},
because the standard finite element method gets unstable in such a case as is well

known.

3.1. The upwind scheme. The convection‐diffusion problem is decomposed into dif‐

fusive and convective parts. In the HDG method, they are discretized separately. The

HDG method proposed in [32] is as follows: find u_{h}\in W_{h} and ûh \in Mh such that

 $\epsilon$ a_{h}^{d}(u_{h},\hat{u}_{h1}v_{h}, \hat{v}_{h}) +a_{h}^{c}(u_{h}, \hat{u}_{h1}v_{h}, \hat{v}_{h}) = (f, v_{h})_{ $\Omega$} \forall v_{h} \in W_{h}, \hat{v}_{h} \in M_{h},
where

a_{h}^{\mathrm{c}} (u_{h} ,
ûh ; v_{h}, \hat{v}_{h}):=(b\cdot\nabla u_{h}, v_{h})_{T_{h}}+\{\^{u} h -u_{h}, (b\cdot n)\hat{v}_{h}\rangle_{\partial T_{h}^{+}}

(3.1)
+ \{ûh

—

u_{h}, (b\cdot n)v_{h}\}_{\partial T_{h}^{-}}+(cu_{h}, v_{h})_{ $\Omega$}.
The inner products are defined by

\{w,  v\rangle_{\partial T_{h}}\pm := \displaystyle \sum_{K\in T_{h}} \displaystyle \int_{\partial K^{\pm}} wvds,

where

\partial K^{-}:=\{x\in\partial K : b(x)\cdot n(x)<0\},

\partial K^{+}:=\{x\in\partial K : b(x)\cdot n(x)\geq 0\},

see also Figure 1. We note that, before the upwind scheme (3.1) was proposed in [32],
the HDG discretization for the convective part was already proposed in [10, 13]. The

scheme of [10, 13] was as follows:

\overline{a}_{h}^{c}(u_{h},\hat{u}_{h1}v_{h}, \hat{v}_{h}) := -(u_{h}, b \nabla v_{h})$\tau$_{h} + \langle(b n)u_{h} , vh -\hat{v}_{h}\rangle_{\partial T_{h}}+
+\{ (b. n)ûh , v_{h}-\hat{v}_{h}\rangle_{\partial T_{h}^{-}}+(cu_{h}, v_{h})_{ $\Omega$}.

We can show that both the schemes are equivalent to each other.

Proposition 4. It holds that a_{h}^{\mathrm{c}} (u_{h} , ûh; v_{h}, \hat{v}_{h}) =\overline{a}_{h}^{c}(u_{h} , ûh; v_{h},\hat{v}_{h}) for all u_{h}, v_{h} \in  W_{h}
and ûh, \hat{v}_{h}\in M_{h}.
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FIGURE 1. Inflow and outflow element boundaries.

Proof. We assume that c = 0 only for simplicity. Integrating by parts and recalling
that b is divergence‐free, we have

(b \nabla u_{h}, v_{h})=-(u_{h}, b . \nabla v_{h})+\{(b . n)u_{h}, v_{h}\rangle_{\partial T_{h}^{+}}+\{(b . n)u_{h}, v_{h}\rangle_{\partial T_{h}^{-}}.
The bilinear form a_{h}^{c} can be rewritten as

a_{h}^{c} (u_{h} , ûh; v_{h},\hat{v}_{h})=-(u_{h}, b\cdot\nabla v_{h})+

+

=:I_{3} =:I_{4}

and we have

I_{1}+I_{3}=\langle u_{h}, (b\cdot n)(v_{h}-\hat{v}_{h})\}_{\partial T_{h}^{+}}+\{\hat{u}_{h}, (b\cdot n)\hat{v}_{h}\rangle_{\partial T_{h}^{+}}=:I_{5}+I_{6},
I2 + I4 = \langle ûh, (b\cdot n)v_{h}\}_{\partial T_{h}^{-}} = : I7.

Using the transmission condition

\{ (b. n)ûh , \hat{v}_{h}\rangle_{\partial T_{h}}=\langle(b. n) ûh , \hat{v}_{h}\rangle_{\partial T_{h}^{+}}+\langle(b. n) ûh , \hat{v}_{h}\rangle_{\partial T_{h}^{-}} =0,

we get

I_{6}+I_{7}=\{ (b. n)ûh , v_{h}-\hat{v}_{h}\rangle_{\partial T_{h}^{-}}.
Thus, it follows that

I_{1}+I_{2}+I_{3}+I_{4}=\{(b\cdot n)u_{h}, v_{h}-\hat{v}_{h}\rangle_{\partial T_{h}^{+}}+\{(b . n)ûh , v_{h}-\hat{v}_{h}\}_{\partial T_{h}^{-}},
which completes the proof.

\square 
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3.2. Error analysis. We quote theoretical results proved in [42]; the coercivity, inf‐

sup condition of \overline{a}_{h}^{c} (\cdot, a_{h}^{c} ) as proved in the previous section) and state the error

estimates. The norm corresponding to the convective term is defined by

\Vert|(v_{h},\hat{v}_{h})\Vert|_{c}^{2} :=c\Vert u_{h}\Vert_{L^{2}( $\Omega$)}^{2}+\Vert h_{K}^{1/2}b\cdot\nabla v_{h}\Vert_{T_{h}}^{2}+\Vert|b\cdot n|^{1/2}(\hat{v}_{h}-v_{h})\Vert_{\partial T_{h}}^{2}.
Lemma 5. The following hold.

(1) (Coercivity) [42, Lemma 4.2] For all v_{h}\in W_{h} and \hat{v}_{h}\in M_{h} , we have the equality

\displaystyle \overline{a}_{h}^{c}(v_{h}, \hat{v}_{h};v_{h}, \hat{v}_{h})=c\Vert v_{h}\Vert_{L^{2}( $\Omega$)}^{2}+\frac{1}{2}\Vert|b\cdot n|^{1/2}(\hat{v}_{h}-v_{h})\Vert_{\partial T_{h}}^{2}.
(2) (Inf‐sup stability) [42, Lemma 4.5] There exists a constant C such that

C\displaystyle \Vert|(v_{h}, \hat{v}_{h})\Vert|_{c}\leq\sup_{w_{h}\in W_{h},\hat{w}_{h}\in M_{h}} \Vert|(w_{h},\hat{w}_{h})\Vert|_{c}\overline{a}_{h}^{c}(v_{h}.., \hat{v}_{h};w_{h},\hat{w}_{h}) \forall v_{h}\in W_{h}, \hat{v}_{h}\in M_{h}.
From this and Lemma 1, the following error estimate can be obtained, which is an

improved result shown in [32, Theorem 3].

Theorem 6. If u\in H^{k+1}( $\Omega$) , then we have

$\epsilon$^{1/2}(u—uh, u-\hat{u}_{h})\Vert|_{d}+\Vert|(u-u_{h}, u-\hat{u}_{h})\Vert|_{c}\leq C($\epsilon$^{1/2}+h^{1/2})h^{k}\Vert u\Vert_{k+1}.
In particular, if  $\epsilon$ is smaller than  h and \{T_{h}\}_{h} is quasi‐uniform, then the errors in the

streamline and L^{2} norms are bounded as

\Vert b\cdot\nabla(u-u_{h})\Vert_{T_{h}} \leq Ch^{k}\Vert u\Vert_{k+1, $\Omega$},

\Vert u-u_{h}\Vert_{L^{2}( $\Omega$)}\leq Ch^{k+1/2}\Vert u\Vert_{k+1, $\Omega$}.
Remark. The above error estimates are no longer useful when  $\epsilon$ is very small since

\Vert u\Vert_{k+1, $\Omega$} may depend on negative powers of  $\epsilon$ . In [32], to show the robustness of the

HDG method, it was shown that the HDG solution is close to the solution of the reduced

problem.

3.3. Numerical results. To validate the stability of the HDG method in the convection‐

dominated case, we provide numerical results and compare the HDG method with the

standard finite element method and the streamline upwind Petrov‐Galerkin (SUPG)
method. The test problem is as follows.

- $\epsilon \Delta$ u+(1,0)^{T}\cdot\nabla u=1 in  $\Omega$ :=(0,1)^{2},
u=0 on \partial $\Omega$.

When  $\epsilon$ is very small, in this problem, boundary layers appear along the characteristic

boundary (near  y=0 and y=1 ) and the outflow boundary (near x=1 ), which causes

the extreme numerical instability of the standard finite element method.
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We fixed the mesh size h \approx  1/10 and the stabilization parameter $\tau$_{0} = 8 and,
an unstructured triangular mesh was used. All computations were carried out with

 $\Gamma$ \mathrm{r}\mathrm{e}\mathrm{e} $\Gamma$ \mathrm{e}\mathrm{m}++ [16] . In Figure 2, the numerical solutions are displayed for  $\epsilon$ = 10^{-k}(k =

1
, 3, 5, 7). The standard finite element solutions break down due to numerical instability

when  $\epsilon$\leq 10^{-3} . The SUPG method seems to be robust even for very small  $\epsilon$ , however,
overshoot appears near the outflow boundary. We observe that the HDG method is ro‐

bust and free from the overshoot phenomena unlike the SUPG method. We can also see

that the HDG solutions get closer to the solution of the reduced problem,  u(x, y)=x,
as  $\epsilon$ tends to zero.
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FIGURE 2. Solutions of the HDG (left), SUPG (center) iand standard

finite element (right) methods, where  $\epsilon$=10^{-k}(k=1,3,5,7) from top to

bottom.
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