
A Multi‐GPU Implementation of a Parallel Solver for

Incompressible Navier‐Stokes Equations Discretized by
Stabilized Finite Element Formulations

HUYNH Quang Huy Viet, SUITO Hiroshi
Graduate School of Environmental and Life Science, Okayama University

E‐‐mail: hqhviet \emptyset okayama−u. ac. jp, suito@okayama‐u.ac.jp

1 Introduction

For solving partial differential equations problems in Computational Fluid Dynamics (CFD), finite ele‐

ment methods are conventional numerical methods that are particularly used because of their accuracy.
In solving the Navier‐Stokes (NS) equations using finite element methods for simulation of incompress‐
ible flows, some instabilities arise from the presence of advection terms or the high Reynolds number.

Hughes and Tezduyar et al. [1, 2, 3, 4] proposed stabilized finite element formulations for incompressible
flows. Stabilization in solving Navier‐Stokes equations is achieved by adding two stabilization terms to

the Galerkin formulations of the Navier‐Stokes equations. The first stabilization term is the streamline

upwind /\mathrm{P}\mathrm{e}\mathrm{t}\mathrm{r}\mathrm{o}\mathrm{v}‐Galerkin (SUPG) term. The second stabilization term is the pressure stabilizing/Petrov‐
Galerkin (PSPG) term. This stabilized finite element method has been shown to be very effective for the

simulation of incompressible flows.

In engineering applications, when computational conditions become stiff, NS solvers might not con‐

verge to solutions within an allowed time limitation. Therefore it is necessary to develop fast and accurate

NS solvers using parallel processing techniques. Traditionally, parallel NS solvers are developed using
supercomputers or PC clusters with parallel programming platforms such as OpenMP and MPI. Recently,
because modern graphics processing units (GPUs) have many processors or cores, GPU computing has

been recognized as a powerful platform to achieve high performance in simulation and modeling in the

CFD. GPU computing is the use of GPUs in association with the use of CPUs to speed up computations.
A desktop machine or a workstation with a powerful GPU inside can achieve extremely high levels of

performance for computation and simulation. The necessity exists to develop parallel NS solvers on GPUs

for various engineering applications.
In a recent report [5], we briefly described our implementation of a solver based on the GPBi‐CG

algorithm for 3\mathrm{D} unsteady Navier‐Stokes equations discretized by the SUPG/PSPG stabilized finite

element formulation using a single GPU. In this paper, we report a new multi‐GPU implementation of

the solver and shows performance results.

2 Stabilized Finite Element Formulations

2.1 Governing Equations
We consider the following dimensionless form of the Navier‐Stokes equations in a spatial domain  $\Omega$\subset \mathrm{R}^{3} :

\displaystyle \frac{\partial u_{i}}{\partial t}+u_{j}\frac{\partial u_{i}}{\partial x_{j}}=-\frac{\partial p}{\partial x_{i}}+\frac{1}{Re}\frac{\partial}{\partial x_{j}}(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}) in  $\Omega$
, (1)

\displaystyle \frac{\partial u_{i}}{\partial x_{i}}=0 in  $\Omega$ . (2)

Here, we adopt the summation convention on repeated indices that have values 1, 2, and 3. The

 x, y, z axes in the Cartesian coordinate system are designated as x_{i}, i = 1 , 2, 3. Here, u_{i} represents the

component of the velocity vector field \mathrm{u} in the i^{th} dimension, p stands for the scalar pressure field, and

Re denotes the Reynolds number.

Let us discretize the spatial domain  $\Omega$ by elements  $\Omega$^{e}, e = 1
,
2 \ldots, n_{\mathrm{e}l} . Let S_{\mathrm{u}}, \mathcal{V}_{\mathrm{u}} be the trial and

test function spaces for velocity and S_{p}, \mathcal{V}_{p} (\mathcal{V}_{p}=S_{p}) be trial and test function spaces for pressure. The

stabilized finite element formulation of the equations (1) -(2) with the SUPG/PSPG stabilization terms

can be expressed as follows [1]: Find \mathrm{u}\in S_{\mathrm{u}} and p\in S_{p} such that \forall \mathrm{w}\in \mathcal{V}_{\mathrm{u}} and \forall q\in \mathcal{V}_{p} :

数理解析研究所講究録
第2037巻 2017年 149-152

149



\displaystyle \int_{ $\Omega$}w_{i}(\frac{\partial u_{i}}{\partial t}+\overline{u}_{j}\frac{\partial u_{i}}{\partial x_{j}})d $\Omega$-\int_{ $\Omega$}\frac{\partial w_{i}}{\partial x_{i}}pd $\Omega$+\int_{ $\Omega$}\frac{1}{Re}\frac{\partial w_{i}}{\partial x_{j}}(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}})d $\Omega$
+\displaystyle \sum_{e=1}^{n_{\mathrm{e}1}}\int_{$\Omega$_{\mathrm{e}}} $\tau$\overline{u}_{k}\frac{\partial w_{i}}{\partial x_{k}}(\frac{\partial u_{i}}{\partial t}+\overline{u}_{j}\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial p}{\partial x_{i}})d $\Omega$=0 , (3)

\displaystyle \int_{ $\Omega$}q\frac{\partial u_{i}}{\partial x_{i}}d $\Omega$+\sum_{\mathrm{e}=1}^{n_{\mathrm{e}1}}\int_{$\Omega$_{\mathrm{e}}} $\tau$\frac{\partial q}{\partial x_{i}}(\frac{\partial u_{i}}{\partial t}+\overline{u}_{j}\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial p}{\partial x_{i}})d $\Omega$=0 , (4)

where  $\tau$ is the SUPG/PSPG stabilization parameter. The formulation to calculate the parameter  $\tau$

is given in details in the paper [1].

3 GPBi‐CG Algorithm

Algorithm 1 The Unpreconditioned GPBi‐CG

 x_{0} is an initial guess, r_{0}=b-Ax_{o} ;

Set r_{0}^{*}=r_{0}, t_{-1}=w_{-1}=0, $\beta$_{-1}=0 ;

for n=0 , 1, until ||r_{n}||\leq $\epsilon$||b|| do

p_{n}=r_{n}+$\beta$_{n-1}(p_{n-1}-u_{n-1}) ,

$\alpha$_{n}=\displaystyle \frac{(r_{\dot{\mathrm{o}}},r_{n})}{(r_{\mathrm{o}}^{*},Ap_{n})},
y_{n}=t_{n-1}-r_{n}-$\alpha$_{n}w_{n-1}+$\alpha$_{n}Ap_{n},
t_{n}=r_{n}-$\alpha$_{n}Ap_{n},

$\zeta$_{n}=\displaystyle \frac{(y_{n},' y_{n})(At_{n},t_{n})-(y_{n},t_{n})(At_{n},y_{n})}{(At_{n}At_{n})(y_{n},y_{n})-(y_{n},At_{n})(At_{n},y_{n})},
$\eta$_{n}=\displaystyle \frac{(At_{n},' At_{n})(y_{n},' t_{n})-(y_{n},At_{n})(At_{n},t_{\mathfrak{n}})}{(At_{n}At_{n})(y_{n}y_{n})-(y_{n},At_{n})(At_{n},y_{n})},
(if n=0 , then $\zeta$_{n}=\displaystyle \frac{(At_{n},t_{n})}{(At_{n},At_{n})}, $\eta$_{n}=0),
\mathrm{u}_{n}=$\zeta$_{n}Ap_{n}+$\eta$_{n}(t_{n-1}-r_{n}+$\beta$_{n-1}u_{n-1}) ,

z_{n}=$\zeta$_{n}r_{n}+$\eta$_{n}z_{n-1}-$\alpha$_{n}u_{n},
x_{n+1}=x_{n}+ $\alpha$ p_{n}+z_{n},
r_{n+1}=t_{n}-$\eta$_{n}y_{n}-$\zeta$_{n}At_{n},

$\beta$_{n}=\displaystyle \frac{$\alpha$_{n}}{$\zeta$_{n}}\frac{(r_{0}^{*},r_{n+1})}{(r_{\dot{0}},r_{n})},
w_{n}=At_{n}+$\beta$_{n}Ap_{n} ;

end for

stabilized finite element method leads to a large and

This linear equation system is solved by using the

To implement the GPBi‐CG algorithm on the GPU platform, we used the Nvidia�s GPU linear algebra
libraries cuSPARSE [7] and cuBLAS [8] to implement four basic vector operations of the algorithm:
SpMV, DOT, AXPY and SCAL as described below.

\bullet \mathrm{S}\mathrm{p}\mathrm{M}\mathrm{V} : the sparse matrix‐vector product,

. DOT: the inner product,

\bullet AXPY: add a multiple of one vector to another,

\bullet SCAL: scaling a vector by a constant.

The SpMV operation is implemented by using the cuSPARSE library. The DOT, AXPY and SCAL

operations are implemented by using the cuBLAS library.

150



4 Multi‐GPU Implementation

To extend to multi‐GPU implementation of the GPBi‐CG algorithm, we implemented the multi‐GPU

version of SpMV, DOT, AXPY, and SCAL operations by using the MPI library, the cuSPARSE library
and the cuBLAS library. It is trivial to implement the multi‐GPU version of the DOT, AXPY, and

SCAL operations by using the MPI library and cuBLAS library. However, the implementation of the

multi‐GPU version of the SpMV operation is not straightforward. It is carried out by subdividing the

computational domain into subdomains that are distributed over the GPUs by using the MPI library. To

reduce communication cost, we develop an efficient procedure that each GPU receives from other GPUs

only data each GPU needs. We consider the problem of matrix‐vector multiplication of a sparse matrix

 A and a dense vector b . We partition the matrix A into groups of adjacent complete rows and assign
one such group to one GPU. Each GPU is now obligated to compute entries of the result vector Ab that

match with the partitioned rows of the matrix A to form a partial result of the result vector Ab . This

submatrix‐vector computation can be carried out after each GPU receives the entries of the vector b that

correspond to non‐zero entries in the rows of the submatrix A which are assigned to each GPU. A simple
implementation for this problem is to implement a code that all the GPUs receives all the entries of the

entire vector b . However, this implementation is not efficient because the number of non‐zero entries per
a row of a sparse matrix generated by fimite element methods is small. To solve this problem, we develop
an efficient procedure that each GPU receives from other GPUs only the entries of the vector b which

each GPU needs to compute submatrix‐vector multiplications.

5 Performance Results

Figure 1: Computational domain of the test problem

We consider a test problem which consists of an object immersed in a fluid domain as shown in Fig. 1.

Starting from a surface mesh, we created three tetrahedral meshes with different resolutions. We carried

out the computation by using a GPU system with the following specification:

\bullet Intel Xeon CPU E5630, 2.  53\mathrm{G}\mathrm{H}\mathrm{z},

\bullet 2 GPUs‐ Tesla C2070,

\bullet 24 GB System Memory.

151



Thble 1: Speed‐up ratios and execution times

We measured the time of the execution on two GPU devices and that of two CPU threads. As shown

in Tab. 1, the GPU execution is 1.8 times faster than the CPU execution for the large mesh with 638447

elements. The speedup ratio increases as the number of elements of meshes increases.

6 Conclusions

We propose an efficient implementation of a multi‐GPU parallel solver based on the GPBi‐CG algorithm
for  3\mathrm{D} unsteady Navier‐Stokes equations discretized by the stabilized finite element formulations. We

develop a hybrid CPU‐GPU strategy that distributes the computation across GPUs by using the MPI

library. In future research, we plan to evaluate the scalability of the program (speedup factor versus the
number of GPU devices) in multi‐GPU high‐performance computing systems. We also plan to improve
the current implementation by using multigrid‐ preconditioners.

Acknowledgment
This work was supported by Japan Science and Technology Agency, Core Research for Evolutional Science
and Technology (JST‐CREST). The first author would like to acknowledge Mr. Ryota Yamane (Okayama
University) for providing the STL file used for test computations.

References

[1] T. E. Tezduyar, Stabilized fimite element formulations for incompressible flow computations, Advances

in Applied Mechanics 28 (1992) 1‐44.

[2] T. E. Tezduyar, S. Mittal, S. E. Ray, R. Shih, Incompressible flow computations with stabilized

bilinear and linear equal order interpolation velocity pressure elements, Computer Methods in Applied
Mechanics and Engineering 95 (1992) 221‐242.

[3]  $\Gamma$ . Shakib, T. J. R. Hughes, Z. Johan, A new finite element formulation for computational fluid

dynamics: X. the compressible Euler and Navier‐Stokes equations, Computer Methods in Applied
lMechanics and Engineering 89 (1991) 141‐219.

[4] L. P. Franca, S. L. Fhey, T. J. R. Hughes, Stabilized finite element methods: I. application to the

advective‐diffusive model, Computer Methods in Applied Mechanics and Engineering 95 (1992) 235‐

276.

[5] V. Huynh, H. Suito, A GPU Parallel Solver for 3D Incompressible Navier‐Stokes Equations Dis‐

cretized by the SUPG/PSPG Stabilized Finite Element Formulation, GPU Technology Confer‐
ence 2016, http: //\mathrm{o}\mathrm{n}‐demand. gputechconf. \mathrm{c}\mathrm{o}\mathrm{m}/\mathrm{g}\mathrm{t}\mathrm{c}/2016/\mathrm{p}\mathrm{o}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{s}/\mathrm{G}\mathrm{T}\mathrm{C}_{-}2016_{-}\mathrm{C}\mathrm{o}\mathrm{m}\mathrm{p}\mathrm{u}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{a}1_{-}-
 $\Gamma$ 1\mathrm{u}\mathrm{i}\mathrm{d}_{-} Dynami c \mathrm{s}_{-}\mathrm{C} $\Gamma$ \mathrm{D}_{-}01_{-}\mathrm{P}6160_{-}\mathrm{W}\mathrm{E}\mathrm{B} . pdf (Accessed Oct. 2016).

[6] S. L. Zhang, GPBi‐CG: Generalized product‐type methods based on Ui‐CG for solving nonsymmetric
linear systems, SIAM J. Sci. Comput. 18 (1997) 537‐551.

[7] CuSPARSE, https: //developer. nvidia. com/cusparse (accessed Oct. 2016).

[8] CuBLAS, https: //developer. nvidia. com/cublas (Accessed Oct. 2016).

152


