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Abstract. We develop a systematic procedure for extending the two‐dimensional Green‐

Naghdi (GN) model to include higher‐order dispersive effects, and present various model

equations for both flat and uneven bottom topographies. We derive the linear dispersion
relation for the extended GN models to explore the well‐posedness of the linearized prob‐
lem. Last, we show that these models permit the same Hamiltonian formulation as that

of the original GN model.

1. Introduction

The Green‐Naghdi (GN) model equation describes the one‐dimensional (1D) propa‐

gation of the fully nonlinear and weakly dispersive surface gravity waves on fluid of finite

depth. A large number of works have been devoted to the studies of the GN equation

from both analytical and numerical points of view. See, for example, a review article [1]
for the basic properties of the GN equation, and [2] for the recent advances, as well as

monographs [3, 4] which detail the derivation and mathematical properties of the GN and

other water wave equations.
The GN equation is a system of equations for the total depth of fluid h and the depth‐

averaged (or mean) horizontal velocity \overline{u} . It reads in an appropriate dimensionless form

as

h_{t}+ $\epsilon$(h\overline{u})_{x}=0, \displaystyle \overline{u}_{t}+ $\epsilon$\overline{u}\overline{u}_{x}+$\eta$_{x}=\frac{$\delta$^{2}}{3h}\{h^{3}(\overline{u}_{xt}+ $\epsilon$\overline{u}\overline{u}_{xx}- $\epsilon$\overline{u}_{x}^{2})\}_{x} , (h=1+ $\epsilon \eta$) , (1.1)

where  $\eta$ is the profile of the free surface and  $\epsilon$ and  $\delta$ are the nonlinearity and dispersion

parameters, respectively. Unlike the classical Boussinesq system, the GN equation exhibits

an exact solitary wave solution

 h=1+(c^{2}-1) sech2 \displaystyle \frac{\sqrt{3(c^{2}-1)}}{2c $\delta$} $\xi$,  $\xi$=x-ct, (c>1) . (1.2)

There are several extensions of the 1\mathrm{D} GN model. Recently, we have derived the

extended GN models that take into account the arbitrary higher‐order dispersive effects,
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and showed that they have the same Hamiltonian structure as that of the original GN

model [5]. In this paper, we report on some results associated with the 2\mathrm{D} extension of the

GN model. Specifically, we generalize the 1\mathrm{D} extended GN system mentioned above to the

2\mathrm{D} system by making use of a novel asymptotic analysis, and show that it has the same

Hamiltonian structure as that of the original 2\mathrm{D} GN system. This 2\mathrm{D} extension includes

some new results. Among them, a highlight is an analysis of the linear dispersion relation

for the extended GN equations which makes it possible to explore the well‐posedness of

the linearized model equations. The detail of the present work is found in a recent paper

[6], and hence we shall summarize the main results.

The governing equation of the water wave problem is given in terms of the dimension‐

less variables by

 $\delta$^{2}\nabla^{2} $\phi$+$\phi$_{zz}=0, -1+ $\beta$ b<z< $\epsilon \eta$ , (1.3)

 $\eta$_{t}+ $\epsilon$\displaystyle \nabla $\phi$\cdot\nabla $\eta$=\frac{1}{$\delta$^{2}}$\phi$_{z}, z= $\epsilon \eta$ , (1.4)

 $\phi$_{t}+\displaystyle \frac{ $\epsilon$}{2$\delta$^{2}}\{$\delta$^{2}(\nabla $\phi$)^{2}+$\phi$_{z}^{2}\}+ $\eta$=0, z= $\epsilon \eta$ , (1.5)

 $\beta \delta$^{2}\nabla b\cdot\nabla $\phi$=$\phi$_{z}, z=-1+ $\beta$ b , (1.6)

subjected to the boundary conditions

\displaystyle \lim_{|x|\rightarrow\infty}\nabla $\phi$(x, z, t)=0, \displaystyle \lim_{|x|\rightarrow\infty}$\phi$_{z}(x, z, t)=0, -1+ $\beta$ b<z< $\epsilon \eta$, \displaystyle \lim_{|il|\rightarrow\infty} $\eta$(x, t)=0.
(1.7)

Here,  $\phi$= $\phi$(x, z, t) is the velocity potential with x=(x, y) being a vector in the horizontal

plane and z the vertical coordinate pointing upwards, \nabla=(\partial/\partial x, \partial/\partial y) is the 2\mathrm{D} gradient

operator,  $\eta$ =  $\eta$(x, t) is the profile of the free surface, b = b(x) specifies the bottom

topography, the parameter  $\beta$ measures the variation of the bottom topography, and the

subscripts  z and t appended to  $\phi$ and  $\eta$ denote partial differentiations.

The dimensional quantities, with tildes, are related to the corresponding dimensionless

ones by the relations \tilde{x}=lx, \tilde{z}= h_{0}z, \tilde{t}= (l/c_{0})t,\tilde{ $\eta$}= a $\eta$, \tilde{ $\phi$}= (gla/c_{0}) $\phi$ and \tilde{b}=b_{0}b,
where l, h_{0}, a , and b_{0} denote a characteristic wavelength, water depth, wave amplitude
and bottom profile, respectively. g is the acceleration due to the gravity, and c_{0}=\sqrt{gh_{0}}
is the long wave phase velocity. There arise the following three independent dimensionless

parameters from the above scalings of the variables:

 $\epsilon$=\displaystyle \frac{a}{h_{0}},  $\delta$=\frac{h_{0}}{l},  $\beta$=\frac{b_{0}}{h_{0}} . (1.8)

The nonlinearity parameter  $\epsilon$ characterizes the magnitude of nonlinearity whereas the

dispersion parameter  $\delta$ characterizes the dispersion or shallowness, and the parameter  $\beta$
measures the variation of the bottom topography.
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2. Derivation of the extended Green‐Naghdi equations

(a) Extended Green‐Naghdi system

Let \overline{u} be the depth averaged horizontal velocity defined by

\displaystyle \overline{u}=\frac{1}{h}\int_{-1+ $\beta$ b}^{ $\epsilon \eta$}\nabla $\phi$(x, z, t)\mathrm{d}z, h=1+ $\epsilon \eta$- $\beta$ b, (2.1a)
with its components

\displaystyle \overline{u}=\frac{1}{h}\int_{-1+ $\beta$ b}^{ $\epsilon \eta$}$\phi$_{x}(x, z, t)\mathrm{d}z, \overline{v}=\frac{1}{h}\int_{-1+ $\beta$ b}^{ $\epsilon \eta$}$\phi$_{y}(x, z, t)\mathrm{d}z. (2.1b)
The horizontal component u=(u, v) and verical component w of the surface velocity are

given respectively by

u(x, t)=\nabla $\phi$(x, z, t)|_{z= $\epsilon \eta$}, (2.2a)

with its components

u(x, t)=$\phi$_{x}(x, z, t)|_{z= $\epsilon \eta$}, v(x, t)=$\phi$_{y}(x, z, t)|_{z= $\epsilon \eta$}, (2.2b)

and

w(x, t)=$\phi$_{z}(x, z, t)|_{z= $\epsilon \eta$} . (2.3)

Let us now derive the equations for h and u . First, we multiply (2.1a) by h and then

apply the divergence operator to the resultant expression. This leads, after using (1.3)
and (1.6), to

w=$\delta$^{2}\{-\nabla\cdot(h\overline{u})+ $\epsilon$ u\cdot\nabla $\eta$\} . (2.4)

Insersion of w from (2.4) into (1.4) now yields the evolution equation for h=h(x, t) :

 h_{t}+ $\epsilon$\nabla .(  hu‐) =0 . (2.5)

It is important that (2.5) is an exact equation without any approximation.
To obtain the equation of u , we use the relation which follows from the definition of

u

\nabla($\phi$_{t}|_{z= $\epsilon \eta$})=u_{t}+ $\epsilon$ w_{t}\nabla $\eta$- $\epsilon \eta$_{t}\nabla w . (2.6)

Applying the gradient operator to (1.5) and using (2.6) as well as (2.4) and (2.5), we

arrive at the evolution equation for u :

u_{t}+ $\epsilon$ w_{t}\displaystyle \nabla $\eta$+\frac{ $\epsilon$}{2}\nabla u^{2}+$\epsilon$^{2}(u\cdot\nabla $\eta$)\nabla w+\nabla $\eta$=0 . (2.7)
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Now, we introduce the new quantity V by

 V=u+ $\epsilon$ w\nabla $\eta$ . (2.8)

To interpret the physical meaning of  V , we introduce the velocity potential evaluated at

the free surface

 $\psi$(x, t)= $\phi$(x,  $\epsilon \eta$_{)}t) . (2.9)

In view of the definition (2.2) and (2.3) of the surface velocity, the gradient of  $\psi$ is found

to be

\nabla $\psi$=(\nabla $\phi$+ $\epsilon \phi$_{z}\nabla $\eta$)|_{z= $\epsilon \eta$}=u+ $\epsilon$ w\nabla $\eta$ . (2.10)

It immediately follows from (2.8) and (2.10) that

 V=\nabla $\psi$ , (2.11)

implying that  V is equal to the 2\mathrm{D} gradient of the velocity potential evaluated at the

free surface, and it lies in the (x, y) plane. We can rewrite equation (2.7) in terms of V,

giving

V_{t}+ $\epsilon$\displaystyle \nabla(u\cdot V-\frac{1}{2}u^{2}-\frac{1}{2$\delta$^{2}}w^{2}+\frac{ $\eta$}{ $\epsilon$}) =0 . (2.12)

Equation (2.12) represents an exact conservation law for the vector V . The system of

equations (2.5) and (2.7) (or (2.12)) is a consequence deduced from the basic Euler system

(1.3)-(1.6) . The extended GN equations are obtained if one can express the variables u, w

in equation (2.7) in terms of h and \overline{u} . As will be shown below, this is always possible.

Then, we establish

Proposition 1. The evolution equation for \overline{u} can be recast in the form

\displaystyle \overline{u}_{t}=\sum_{m=0}^{\infty}$\delta$^{2m}K_{m} , (2.13)

where K_{m}\in \mathbb{R}^{2} are vector functions of h and \nabla\cdot\overline{u}, \nabla\cdot\overline{u}_{t} as well as the spatial derivatives

of these variables.

The evolution equation (2.13) for \overline{u} is an infinite‐order Boussinesq‐type equation

which, coupled with equation (2.5), constitutes the extended GN system. If one trun‐

cates the right‐hand side of equation (2.13) at order $\delta$^{2n} , then equation (2.13) yields the

evolution equation for a which is accurate to $\delta$^{2n}

\displaystyle \overline{u}_{t}=\sum_{m=0}^{n}$\delta$^{2m}K_{m} . (2.14)
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We call the system of equations (2.5) and (2.14) for h and a the $\delta$^{2n} model. For the special

case n=1 ,
it reduces to the original 2\mathrm{D} GN model.

(b) Expressions of the velocities u, w and V in terms of h and \overline{u}

(i) Flat bottom topography

First, we solve the Laplace equation (1.3) in the case of a flat bottom topography,

and express the surface velocity u, w and the velocity V in terms of the variables h and

\overline{u} . This enables us to obtain a closed system of equations for the latter variables, i.e.,

the extended GN system. Under the assumption $\delta$^{2}\ll 1 which is relevant to the shallow

water models, the solution of equation (1.3) subjected to the boundary condition (1.6)
with b=0 can be written explicitly in the form of an infinite series

 $\phi$(x, z, t)=\displaystyle \sum_{n=0}^{\infty}\frac{(-1)^{n}$\delta$^{2n}}{(2n)!}(z+1)^{2n}\nabla^{2n}f , (2.15)

where f=f(x, t) is the velocity potential at the fluid bottom. We substitute this expres‐

sion into (2.1a) and perform the integration with respect to z to obtain

\displaystyle \overline{u}=\nabla f+\sum_{n=1}^{\infty}\frac{(-1)^{n}$\delta$^{2n}h^{2n}}{(2n+1)!}\nabla\nabla^{2n}f, h=1+ $\epsilon \eta$ . (2.16)

Using the formula \nabla^{2}f=\nabla\cdot(\nabla f) , we can rewrite (2.16) in an alternative form

\displaystyle \nabla f=\overline{u}-\sum_{n=1}^{\infty}\frac{(-1)^{n}$\delta$^{2n}h^{2n}}{(2n+1)!}\nabla\nabla^{2(n-1)}(\nabla\cdot\nabla f) . (2.17)

To derive the expansion of \nabla f in terms of h and \overline{u} , we look for the solution in the

form of an infinite series in $\delta$^{2}

\displaystyle \nabla f=\overline{u}+\sum_{n=1}^{\infty}(-1)^{n}$\delta$^{2n}F_{n} , (2.18)

where F_{n}\in \mathbb{R}^{2} are unknown vector functions to be determined below. Substituting this

expression into (2.17) and comparing the coefficients of $\delta$^{2n} (n= 1,2 ,
on both sides,

we obtain

F_{1}=-\displaystyle \frac{h^{2}}{6}\nabla(\nabla\cdot\overline{\mathrm{u}}) , (2.19a)

F_{n}=-\displaystyle \frac{h^{2n}}{(2n+1)!}\nabla\nabla^{2(n-1)}(\nabla\cdot\overline{u})-\sum_{r=1}^{n-1}\frac{h^{2r}}{(2r+1)!}\nabla\nabla^{2(r-1)}(\nabla\cdot F_{n-r}) , (n\geq 2) . (2.19b)

86



The recursion relation (2.19b) for F_{n} can be solved successively with the initial condition

(2.19a) , the first two of which read

F_{2}=-\displaystyle \frac{h^{4}}{120}\nabla\nabla^{2}(\nabla\cdot\overline{u})+\frac{h^{2}}{36}\nabla\nabla\cdot\{h^{2}\nabla(\nabla\cdot\overline{u})\}, (2.20a)
F_{3}=-\displaystyle \frac{h^{\^{o}}}{5040}\nabla\nabla^{4}(\nabla\cdot\overline{u})-\frac{h^{2}}{6}\nabla(\nabla\cdot F_{2})-\frac{h^{4}}{120}\nabla\nabla^{2}(\nabla\cdot F_{1}) . (2.20b)

The series expansions of u, w and V can be derived simply by substituting (2.18) with

F_{n} from (2.19) and (2.20) into (2.2), (2.3) and (2.11), respectively. We write them up to

order $\delta$^{4} for later use:

u=\displaystyle \overline{u}-\frac{$\delta$^{2}}{3}h^{2}\nabla(\nabla\cdot\overline{u})+$\delta$^{4}[-\frac{1}{18}h^{2}\nabla\nabla\cdot\{h^{2}\nabla(\nabla\cdot\overline{u})\}+\frac{1}{30}h^{4}\nabla\nabla^{2}(\nabla\cdot\overline{u})]+O($\delta$^{6}) , (2.21)

w=-$\delta$^{2}h\displaystyle \nabla\cdot\overline{u}-\frac{$\delta$^{4}}{3}h^{2}\nabla h\cdot\nabla(\nabla\cdot\overline{u})+O($\delta$^{6}) , (2.22)

V=\displaystyle \overline{u}-\frac{$\delta$^{2}}{3h}\nabla(h^{3}\nabla\cdot\overline{u})-\frac{$\delta$^{4}}{45h}\nabla[\nabla\cdot\{h^{5}\nabla(\nabla\cdot\overline{u})\}]+O($\delta$^{6}) . (2.23)

(ii) Uneven bottom topography

The effect of an uneven bottom topography on the propagation characteristics of water

waves is prominent in the coastal zone. Here, we provide the formulas of u, w and V in

terms of h, \overline{u} and b . In this case, the solution of the Laplace equation (1.3) subjected to

the boundary condition (1.7) can be written in the form

 $\phi$(x, z, t)=\displaystyle \sum_{n=0}^{\infty}(z+1- $\beta$ b)^{n}$\phi$_{n}(x, t) , (2.24)

where the orders of unknown functions $\phi$_{n} are to be determined. Substituting (2.24) into

equation (1.3), we obtain the recursion relation that determines $\phi$_{n} . For small $\delta$^{2} , the first

three of $\phi$_{n} are found to be

$\phi$_{1}= $\beta \delta$^{2}(\nabla b\cdot\nabla$\phi$_{0})\{1-$\beta$^{2}$\delta$^{2}(\nabla b)^{2}\}+O($\delta$^{6}) , (2.25a)

$\phi$_{2}=-\displaystyle \frac{$\delta$^{2}}{2}\nabla^{2}$\phi$_{0}+$\beta$^{2}$\delta$^{4}\{\frac{1}{2}(\nabla b)^{2}\nabla^{2}$\phi$_{0}+\nabla b\cdot\nabla(\nabla b\cdot\nabla$\phi$_{0})+\frac{1}{2}\nabla^{2}b(\nabla b\cdot\nabla$\phi$_{0})\}+O($\delta$^{6}) ,

(2.25b)

$\phi$_{3}=-\displaystyle \frac{ $\beta \delta$^{4}}{6}\{\nabla^{2}(\nabla b\cdot\nabla$\phi$_{0})+2\nabla b\cdot\nabla(\nabla^{2}$\phi$_{0})+\nabla^{2}b\nabla^{2}$\phi$_{0}\}+O($\delta$^{6}) . (2.25c)

The depth‐averaged horizontal velocity a and the surface velocity (u, w) are expressed
in terms of $\phi$_{n} by introducing (2.24) into (2.1)-(2.3) . Explicitly, they read

\displaystyle \overline{u}=\sum_{n=0}^{\infty}\frac{h^{n}}{n+1}\nabla$\phi$_{n}- $\beta$\nabla b\sum_{n=1}^{\infty}h^{n-1}$\phi$_{n}, h=1+ $\epsilon \eta$- $\beta$ b , (2.26)
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u = \displaystyle \sum_{n=0}^{\infty}h^{n}\nabla$\phi$_{n} -  $\beta$\displaystyle \nabla b\sum_{n=1}^{\infty}nh^{n-1}$\phi$_{n}, (2.27)

w=\displaystyle \sum_{n=1}^{\infty}nh^{n-1}$\phi$_{n} . (2.28)

Inverting (2.26) and using (2.25), we can express \nabla$\phi$_{0} in terms of \overline{\mathrm{u}}, h and b . The ap‐

proximate expression which retains the terms of order $\delta$^{2} is given by

\displaystyle \nabla$\phi$_{0}=\overline{u}+$\delta$^{2}[\frac{h^{2}}{6}\nabla(\nabla\cdot\overline{u})-\frac{ $\beta$}{2}\{h\nabla(\nabla b\cdot\overline{u})+(h\nabla\cdot\overline{u})\nabla b\}+$\beta$^{2}(\nabla b\cdot\overline{u})\nabla b] +O($\delta$^{4}) .

(2.29)
Substitution of (2.25) with (2.29) into (2.27) and (2.28) yields the approximate expressions
of u and w

u=\displaystyle \overline{u}+$\delta$^{2}[-\frac{h^{2}}{3}\nabla(\nabla\cdot\overline{u})+\frac{ $\beta$}{2}\{h\nabla(\nabla b\cdot\overline{u})+(h\nabla\cdot\overline{u})\nabla b\}] +O($\delta$^{4}) , (2.30)

w=$\delta$^{2}(-h\nabla\cdot\overline{u}+ $\beta$\nabla b\cdot\overline{u})+O($\delta$^{4}) . (2.31)

Last, by making use of (2.30) and (2.31), V from (2.8) is shown to have an approximate

expression

V=\displaystyle \overline{u}+\frac{$\delta$^{2}}{h} [-\displaystyle \frac{1}{3}\nabla(h^{3}\nabla\cdot\overline{u})+\frac{ $\beta$}{2}\{\nabla(h^{2}\nabla b\cdot\overline{u})-h^{2}\nabla b(\nabla\cdot\overline{u})\}+$\beta$^{2}h\nabla b(\nabla b\cdot\overline{u})] +O($\delta$^{4}) .

(2.32)

(c) Linear dispersion relation for the extended GN system

Here, we show that the exact linear dispersion relation for the current water wave

problem can be derived from the extended GN system, and discuss its structure. We

consider the flat bottom case for simplicity. Linearization of equations (2.5) and (2.7)
about the uniform state h=1 and \overline{u}=0 yields the system of linear equations for  $\eta$ and

\overline{u}

$\eta$_{t}+\nabla\cdot\overline{u}=0, u_{t}+\nabla $\eta$=0 . (2.33)

We eliminate the variable  $\eta$ from the system of equations (2.33) and obtain the linear

wave equation for a

 u_{tt}-\nabla(\nabla\cdot\overline{u})=0 . (2.34)

Recall that the variable u is a linear function of \overline{u} and its spatial derivatives. It follows

from (2.2a) and (2.15) with h=1 that

u=\displaystyle \nabla f+\sum_{n=1}^{\infty}\frac{(-1)^{n}$\delta$^{2n}}{(2n)!}\nabla\nabla^{2(n-1)}(\nabla\cdot\nabla f) , (2.35)
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where \nabla f is given by (2.18) with F_{n} being given by

F_{n}=$\alpha$_{n}\nabla\nabla^{2(n-1)}(\nabla\cdot\overline{u}) , n\geq 1 . (2.36)

Here, the coefficients $\alpha$_{n} are determined by the recuirsion relation

$\alpha$_{1}=-\displaystyle \frac{1}{6} , $\alpha$_{n}=-\frac{1}{(2n+1)!}-\sum_{r=1}^{n-1}\frac{$\alpha$_{n-r}}{(2r+1)!} , n\geq 2 . (2.37)

Inserting (2.18) with (2.36) into (2.35), we obtain the expression of u in terms of a

u=\displaystyle \overline{u}+\sum_{n=1}^{\infty}(-1)^{n}$\delta$^{2n}\{\frac{1}{(2n)!}+\sum_{r=0}^{n-1}\frac{$\alpha$_{n-r}}{(2r)!}\}\nabla\nabla^{2(n-1)}(\nabla\cdot\overline{u}) . (2.38)

The linear dispersion relation for the extended GN system can be derived from (2.34)
and (2.38). It reads

$\omega$^{2}=\displaystyle \frac{k^{2}}{D(k $\delta$)}, (k=|k|) , D(k $\delta$)=1+\displaystyle \sum_{n=1}^{\infty}(k $\delta$)^{2n}\{\frac{1}{(2n)!}+\sum_{r=0}^{n-1}\frac{$\alpha$_{n-r}}{(2r)!}\} . (2.39)

The explicit form of D follows by using (2.37), giving D(k $\delta$) =  k $\delta$\coth k $\delta$ . Thus, we

obtain
2  k

 $\omega$ =\overline{ $\delta$}^{\tanh k $\delta$}� (2.40)

which coincides perfectly with that derived from the linearized system of equations for

the current water wave problem (1.3)-(1.7) .

In accordance with the above result, we provide the following proposition.

Proposition 2. The linear dispersion relation of the $\delta$^{2n} model (i.e. , the system of

equations (2. 5) and (2. 14)) is given by

$\omega$^{2}=\displaystyle \frac{k^{2}}{D_{2n}(k $\delta$)}, (2.41a)
with

D_{2n}( $\kappa$)=1+\displaystyle \sum_{r=1}^{n}\frac{(-1)^{r-1}2^{2r}}{(2r)!}B_{r}$\kappa$^{2r},
where B_{r} are Bernoulli�s numbers.

B_{r}=\displaystyle \frac{2(2r)!}{(2 $\pi$)^{2r}}\sum_{j=1}^{\infty}\frac{1}{j^{2r}}, r\geq 1, (2.41b)

Using the inequality for the Bernoulli numbers, we can show that D_{2n} with odd n are

positive for all  k $\delta$ whereas  D_{2n} with even n exhibit single positive zero. It turns out that
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the $\delta$^{2n} models with even n exhibit an unphysical dispersion characteristic which leads to

the ill‐posedness result for the linearized systems of equations. In accordance with these

observations, the $\delta$^{2n} models with odd n may be more tractable as the practical model

equations than the $\delta$^{2n} models with even n . This issue deserves further research.

3. Approximate model equations

(a) The $\delta$^{4} model

For the purpose of deriving the $\delta$^{4} model with a flat bottom topography, we only need

the evolution equation for \overline{u} since the equation for h is already at hand, as indicated by

equation (2.5). Actually, substituting (2.21)-(2.23) into (2.12) and retaining terms up to

order $\delta$^{4} , we finally arrive at the evolution equation for \overline{u} :

\overline{u}_{t}+ $\epsilon$(\overline{u}\cdot\nabla)\overline{u}+\nabla $\eta$=$\delta$^{2}R_{1}+$\delta$^{4}R_{2}+O($\delta$^{6}) , (3.1a)

with

R_{1}=\displaystyle \frac{1}{3h}\nabla[h^{3}\{\nabla\cdot\overline{u}_{t}+ $\epsilon$(\overline{u}\cdot\nabla)(\nabla\cdot\overline{u})- $\epsilon$(\nabla\cdot\overline{u})^{2}\}], (3.1b)
R_{2}=\displaystyle \frac{1}{45h}\nabla[\nabla\cdot\{h^{5}\nabla(\nabla\cdot\overline{u}_{t})+ $\epsilon$ h^{5}(\nabla^{2}(\nabla\cdot\overline{u}))\overline{u}-5 $\epsilon$ h^{5}(\nabla\cdot\overline{u})\nabla(\nabla\cdot\overline{u})+ $\epsilon$\nabla h^{5}\times(\overline{u}\times\nabla(\nabla\cdot\overline{u}))\}

-2 $\epsilon$ h^{5}\displaystyle \{\nabla(\nabla\cdot\overline{u})\}^{2}] -\frac{ $\epsilon$}{45h}[\nabla\cdot\{h^{5}\nabla(\nabla\cdot\overline{u})\}\nabla(\nabla\cdot\overline{u})+\frac{h^{5}}{2}\nabla\{\nabla(\nabla\cdot\overline{u})\}^{2}]. (3.1c)
The linear dispersion relation for the $\delta$^{4} model is given by

$\omega$^{2}=\displaystyle \frac{k^{2}}{1+\frac{1}{3}(k $\delta$)^{2}-\frac{1}{45}(k $\delta$)^{4}}, k=|k| . (3.2)

The property of (3.2) has been discussed in the 1\mathrm{D} case. See Matsuno [5]. Note that  $\omega$

from (3.2) exhibits a singularity at  k $\delta$\simeq 4.19.

Various reductions are possible for the $\delta$^{4} model. Indeed, if we neglect the $\delta$^{4} terms in

equation (3.1), then it reduces to the 2\mathrm{D} GN system when coupled with equation (2.5)

 h_{t}+ $\epsilon$\nabla .(hu‐) =0, (3.3a)

\displaystyle \overline{u}_{t}+ $\epsilon$(\overline{u}\cdot\nabla)\overline{u}+\nabla $\eta$=\frac{$\delta$^{2}}{3h}\nabla[h^{3}\{\nabla\cdot\overline{u}_{t}+ $\epsilon$(\overline{u}\cdot\nabla)(\nabla\cdot\overline{u})- $\epsilon$(\nabla\cdot\overline{u})^{2}\}], (3.3b)
whereas the $\delta$^{4} model reduces to the classical 2\mathrm{D} Boussinesq system

 h_{t}+ $\epsilon$\nabla .(hu‐) =0, (3.4a)

\displaystyle \overline{u}_{t}+ $\epsilon$(\overline{u}\cdot\nabla)\overline{u}+\nabla $\eta$=\frac{$\delta$^{2}}{3}\nabla(\nabla\cdot\overline{u}_{t}) , (3.4b)
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after neglecting the  $\epsilon \delta$^{2} and higher‐order terms. On the other hand, the 1\mathrm{D} forms of

equations (2.5) and (3.1) become

h_{t}+ $\epsilon$(h\overline{u})_{x}=0, (3.5a)

\displaystyle \overline{u}_{t}+ $\epsilon$\overline{u}\overline{u}_{x}+$\eta$_{x}=\frac{$\delta$^{2}}{3h}\{h^{3}(\overline{u}_{xt}+ $\epsilon$\overline{u}\overline{u}_{xx}- $\epsilon$\overline{u}_{x}^{2})\}_{x}
+\displaystyle \frac{$\delta$^{4}}{45h}[\{h^{5}(\overline{u}_{xxt}+ $\epsilon$\overline{u}\overline{u}_{xxx}-5 $\epsilon$\overline{u}_{x}\overline{u}_{xx})\}_{x}-3 $\epsilon$ h^{5}\overline{u}_{xx}^{2}]_{x}+O($\delta$^{6}) , (3.5b)

which are in agreement with equations (2.5) and (2.21) of Matsuno [5], respectively.

(b) The GN model with an uneven bottom topography

In accordance with the method developed in §2, let us derive the GN model which

takes into account an uneven bottom topography. The evolution equation for a follows

by substituting (2.30)-(2.32) into equation (2.12) and retaining tems of order $\delta$^{2} . We can

write it compactly as

(1+\displaystyle \frac{$\delta$^{2}}{h}\mathcal{L}(h, b))\overline{v}_{4}+ $\epsilon$(\overline{u}\cdot\nabla)\overline{u}+\nabla $\eta$=\frac{ $\epsilon \delta$^{2}}{3h}\nabla[h^{3}\{(\overline{u}\cdot\nabla)\nabla\cdot\overline{u}-(\nabla\cdot\overline{u})^{2}\}]+ $\epsilon \delta$^{2}Q, (3.6a)

with

Q=-\displaystyle \frac{ $\beta$}{2h}[\nabla\{h^{2}\overline{u}\cdot\nabla(\nabla b\cdot\overline{u})\}-h^{2}\{\overline{u}\cdot\nabla(\nabla\cdot\overline{u})-(\nabla\cdot\overline{u})^{2}\}\nabla b] -$\beta$^{2}\{(\overline{u}\cdot\nabla)^{2}b\}\nabla b, (3.6b)

where \mathcal{L}(h, b) is a linear differential operator defined by

\displaystyle \mathcal{L}(h, b)f=-\frac{1}{3}\nabla(h^{3}\nabla\cdot f)+\frac{ $\beta$}{2}\{\nabla(h^{2}\nabla b\cdot f)-h^{2}\nabla b(\nabla\cdot f)\}+$\beta$^{2}h\nabla b(\nabla b\cdot f) , (3.6c)

for any vector function f\in \mathbb{R}^{2}.

(c) Remark

The dispersion relation for the $\delta$^{4} model exhibits a singularity at k $\delta$\simeq 4.19 , and this

feature may limit the range of applicability of the model. The simplest extended GN

model which avoids this undesirable behavior in higher wavenumber is the 1\mathrm{D} $\delta$^{6} model

with a flat bottom topography. The evolution equation for \overline{u} which extends equation

(3.5b) to order $\delta$^{6} can now be written in the form

\displaystyle \overline{u}_{t}+ $\epsilon$\overline{u}\overline{u}_{x}+$\eta$_{x}=\frac{$\delta$^{2}}{3h}\{h^{3}(\overline{u}_{xt}+ $\epsilon$\overline{u}\overline{u}_{xx}- $\epsilon$\overline{u}_{x}^{2})\}_{x}
+\displaystyle \frac{$\delta$^{4}}{45h}[\{h^{5}(\overline{u}_{xxt}+ $\epsilon$\overline{u}\overline{u}_{xxx}-5 $\epsilon$\overline{u}_{x}\overline{u}_{xx})\}_{x}-3 $\epsilon$ h^{5}\overline{u}_{xx}^{2}]_{x}
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+\displaystyle \frac{$\delta$^{6}}{945h}[\{h^{7}(2\overline{u}_{xxxxt}+2 $\epsilon$\overline{u}\overline{u}_{xxxxx}-14 $\epsilon$\overline{u}_{x}\overline{u}_{xxxx}-30_{\mathrm{E}}\overline{u}_{xx}\overline{u}_{xxx})\}_{x}
+\{h^{6}h_{x}(14\overline{u}_{xxxt}+14 $\epsilon$\overline{u}\overline{u}_{xxxx}-112 $\epsilon$\overline{u}_{x}\overline{u}_{xxx}+42 $\epsilon$\overline{u}_{xx}^{2})\}_{x}

+\{h^{5}(hh_{x})_{x}(7\overline{u}_{xxt}+7 $\epsilon$\overline{u}\overline{u}_{xxx}-63 $\epsilon$\overline{u}_{x}\overline{u}_{xx})\}_{x}+ $\epsilon$\{10h^{7}\overline{u}_{xxx}^{2}-35h^{5}(hh_{x})_{x}\overline{u}_{xx}^{2}\}]_{x} (3.7)

The linear dispersion relation for the system of equations (3.5a) and (3.7) is then given

by

$\omega$^{2}=\displaystyle \frac{k^{2}}{1+\frac{1}{3}(k $\delta$)^{2}-\frac{1}{45}(k $\delta$)^{4}+\frac{2}{945}(k $\delta$)^{6}} . (3.8)

Obviously, the singularity does not occur in  $\omega$ for arbitrary values of  k $\delta$ , as opposed to

the  $\delta$^{4} model. This ensures the well‐posedness of the system of linearized equations for

the model.

4. Hamiltonian structure

(a) Hamiltonian

In this section, we show that the 2\mathrm{D} extended GN system derived in §2 can be for‐

mulated as a Hamiltonian form. First, recall that the basic Euler system of equations

(1.3)-(1.6) conserves the total energy (or Hamiltonian) H which is the sum of the kinetic

energy K and the potential energy U :

H=K+U=\displaystyle \frac{$\epsilon$^{2}}{2}\int_{\mathrm{R}^{2}} [\displaystyle \int_{-1+ $\beta$ b}^{ $\epsilon \eta$}\{(\nabla $\phi$)^{2}+\frac{1}{$\delta$^{2}}$\phi$_{z}^{2}\} dz] \displaystyle \mathrm{d}x+\frac{$\epsilon$^{2}}{2}\int_{1\mathrm{R}^{2}}$\eta$^{2}\mathrm{d}x . (4.1)

The integrand of K is then modified, after using (1.3) and (1.6), as well as the defini‐

tions (2.2), (2.3) and (2.9) in the form

K=\displaystyle \frac{$\epsilon$^{2}}{2}\int_{\mathrm{R}^{2}}[h\overline{u}\cdot\nabla $\psi$]\mathrm{d}x . (4.2)

Thus, the Hamiltonian can be rewritten in a simple form

H=\displaystyle \frac{$\epsilon$^{2}}{2}\'{I}_{\mathrm{N}^{2}} [h\displaystyle \overline{u}\cdot\nabla $\psi$+\frac{1}{$\epsilon$^{2}}(h-1+ $\beta$ b)^{2}] dx
, (4.3)

where we have replaced  $\eta$ by (h-1+ $\beta$ b)/ $\epsilon$ in the expression of the potential energy.

The quantity \nabla $\psi$(=V) expressed in terms of h and \overline{u} is available in the form of a series

expansion. See (2.32) for the expression of V up to order $\delta$^{2} . Inserting this into (4.3), we

obtain a series expansion of H in powers of $\delta$^{2}

H=$\epsilon$^{2}\displaystyle \sum_{n=0}^{\infty}$\delta$^{2n}H_{n}, (4.4a)
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with the first two of H_{n} being given by

H_{0}=\displaystyle \frac{1}{2}\int_{\mathrm{R}^{2}} [h\displaystyle \overline{u}^{2}+\frac{1}{$\epsilon$^{2}}(h-1+ $\beta$ b)^{2}] dx , (4.4b)

H_{1}=\displaystyle \frac{1}{6}\int_{\mathrm{R}^{2}}[h^{3}(\nabla\cdot\overline{u})^{2}-3 $\beta$ h^{2}(\nabla b\cdot\overline{u})\nabla\cdot\overline{u}+3$\beta$^{2}h(\nabla b\cdot\overline{u})^{2}] dx . (4.4c)

(b) Momentum density

The momentum density m is the fundamental quantity in formulating the extended

GN system as a Hamiltonian form. It is given by the following relation

 $\epsilon$ m=\displaystyle \frac{ $\delta$ H}{ $\delta$\overline{u}} , (4.5)

where the operator  $\delta$/ $\delta$\overline{u} is the variational derivative defined by

\displaystyle \frac{\partial}{\partial $\epsilon$}H(\overline{u}+\mathrm{E}w)|_{ $\epsilon$=0}=\int_{\mathrm{R}^{2}}\frac{ $\delta$ H}{ $\delta$\overline{u}}\cdot w dx , (4.6)

for arbitrary vector function w\in \mathbb{R}^{2} . As seen from (4.4) and its higher‐order analog, the

integrand of K is quadratic in \overline{u} , and hence K obeys the scaling law

K( $\epsilon$\overline{u}, h, b)=$\epsilon$^{2}K(\overline{u}, h, b) . (4.7)

Putting w=\overline{u} in (4.6) and noting that the potential energy U is independent of \overline{u} , we

see that

\displaystyle \frac{\partial}{\partial $\epsilon$}K((1+ $\epsilon$)\overline{u}, h, b)|_{ $\epsilon$=0}=\int_{\mathbb{R}^{2}}\frac{ $\delta$ K}{ $\delta$\overline{u}}\cdot\overline{u}\mathrm{d}x=\int_{\mathrm{R}^{2}}\frac{ $\delta$ H}{ $\delta$\overline{u}}\cdot\overline{u}\mathrm{d}x . (4.8)

On the other hand, in view of (4.7), \displaystyle \frac{\partial}{\partial $\epsilon$}K((1+ $\epsilon$)\overline{u}, h, b) ) |_{ $\epsilon$=0}=2K(\overline{u}, h, b) . Hence, (4.8)
gives, after introducing m from (4.5), K = \displaystyle \frac{ $\epsilon$}{2}\int_{\mathrm{R}^{2}}m\cdot\overline{u}\mathrm{d}x , so that H is expressed com‐

pactly as

H=\displaystyle \frac{1}{2}\int_{1\mathrm{R}^{2}}[ $\epsilon$ m\cdot\overline{u}+(h-1+ $\beta$ b)^{2}] dx . (4.9)

Comparing (4.3) and (4.9), we obtain the key relation which connects the variable \nabla $\psi$
with the momentum density  m :

 m= $\epsilon$ h\nabla $\psi$ . (4.10)

Note that the kinetic energy obeys the scaling law  K( $\epsilon$ m, h, b) =$\epsilon$^{2}K(m, h, b) ,
and

hence K=\displaystyle \frac{1}{2}\int_{\mathbb{R}^{2}} $\delta$ H/ $\delta$ m\cdot m dx. Comparing this expression with K=\displaystyle \frac{ $\epsilon$}{2}\int_{\mathrm{R}^{2}}m\cdot\overline{u}\mathrm{d}x , we

obtain the dual relation to (4.5)

 $\epsilon$\displaystyle \overline{u}=\frac{ $\delta$ H}{ $\delta$ m} . (4.11)
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(c) Evolution equation for the momentum density

To derive the evolution equation for the momentum density m , we first note the

following formula which provides the variational derivative of H with respect to h :

\displaystyle \frac{ $\delta$ H}{ $\delta$ h}=$\epsilon$^{2}(\frac{1}{2}u^{2}+\frac{w^{2}}{2$\delta$^{2}}-u\cdot\overline{u}+hw\nabla\cdot\overline{u}- $\beta$ w\nabla b\cdot\overline{u})+h-1+ $\beta$ b . (4.12)

By using (2.5), (2.12) and (4.12), we establish,

Proposition 3. The evolution equation for the momentum density \mathrm{m} can be put into

the form of local conservation law

(\displaystyle \frac{m}{h})_{t}+\nabla(\frac{ $\epsilon$\overline{u}\cdot m}{h}+\frac{ $\delta$ H}{ $\delta$ h}) =0 . (4.13)

The velocity \overline{u} in equation (4.13) can be expressed in terms of h and 7n . Thus, the

resulting evolution equation, when coupled with equation (2.5) for h
, constitutes a closed

system of equations for h and rn . This system is equivalent to the extended GN system

and will be used for establishing the Hamiltonian formulation of the latter system.

(d) Hamiltonian formulation

In this section, we demonstrate that the 2\mathrm{D} extended GN system can be formulated

as a Hamiltonian system. To this end, we introduce the noncanonical Lie‐Poisson bracket

between any pair of smooth functional F and G

\displaystyle \{F, G\}=-\int_{\mathrm{R}^{2}} [\displaystyle \sum_{i,j=1}^{2}\frac{ $\delta$ F}{ $\delta$ m_{i}}(m_{j}\partial_{i}+\partial_{j}m_{i})\frac{ $\delta$ G}{ $\delta$ m_{j}}+h\frac{ $\delta$ F}{ $\delta$ m}\cdot\nabla\frac{ $\delta$ G}{ $\delta$ h}+\frac{ $\delta$ F}{ $\delta$ h}\nabla. (h\frac{ $\delta$ G}{ $\delta$ m})] dx,

(4.14)
where we have put m = (m_{1}, m_{2}) and \partial_{1} = \partial/\partial x, \partial_{2} = \partial/\partial y . Note that the partial
derivatives \partial_{i} (i= 1,2) operate on all terms they multiply to the right. Then, our main

result is given by the following theorem.

Theorem 1. The 2D extended GN system (2.5) and (2.12) (or equivalently, (4\cdot 13))
can be written in the form of Hamilton�s equations

h_{t}=\{h, H\}, (4.15a)

m_{i,t}=\{m_{i}, H\}, (i=1,2) . (4.15b)

It follows from theorem 1 that the truncated system like the $\delta$^{2n} model (2.5) and (2.14)
has the same Hamiltonian structure as that of the original GN model [7].
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5. Relation to Zakharov�s Hamiltonian formulation

(a) Zakharov�s formulation

Zakharov [8] showed that the water wave problem (1.3)-(1.7) permits a canonical

Hamiltonian formulation in terms of the canonical variables  $\eta$ and  $\psi$ . If we change the

variables from ( $\eta$,  $\psi$) to (h, \nabla $\psi$) , then the equations of motion for the variables h and \nabla $\psi$
are written in the form

 h_{t}=-\displaystyle \frac{1}{ $\epsilon$}\nabla\cdot\frac{ $\delta$ H}{ $\delta$\nabla $\psi$}, \nabla$\psi$_{t}=-\frac{1}{ $\epsilon$}\nabla\frac{ $\delta$ H}{ $\delta$ h} , (5.1)

where the Hamiltonian H is given by (4.1) rewritten in terms of the variables h and \nabla $\psi$.
If we define the Poisson bracket between any pair of smooth functionals F and G by

\displaystyle \{F, G\}=-\frac{1}{ $\epsilon$}\int_{\mathrm{R}^{2}} [\displaystyle \frac{ $\delta$ F}{ $\delta$ h}(\nabla\cdot\frac{ $\delta$ G}{ $\delta$\nabla $\psi$}) - (\nabla\cdot\frac{ $\delta$ F}{ $\delta$\nabla $\psi$})\frac{ $\delta$ G}{ $\delta$ h}] dx , (5.2)

then the system of equations (5.1) can be put into the form of Hamilton�s equations

h_{\mathrm{t}}=\{h, H\}, \nabla$\psi$_{t}=\{\nabla $\psi$, H\} . (5.3)

(b) Th ansformation of the Zakharov system to the extended GN system

The Zakharov system (5.3) can be transformed to the extended GN system (4.15)
by performoming a sequence of dependent variable transformations ( $\eta$,  $\psi$)\rightarrow (h, \nabla $\psi$) \rightarrow

(h, \mathrm{m}) . In the process, the relation (4.10) plays the centrl role. Consequently, we establish

the following theorem.

Theorem 2. Zakharov�s system of equations (5.3) \dot{u} equivalent to the extended GN

system (4 \cdot 15).

One can show that the noncanonical Lie‐Poisson bracket (4.14) has the the skew‐

symmetry, and satisfies the Jacobi identity. In particular, the latter follows by applying
a sequence of transformations mentioned above to the Jacobi identity for Zakharov�s

canonical Poisson bracket.

6. Concluding remarks

In this paper, we have developed a systematic procedure for extending the  2\mathrm{D} GN

model to include higher‐order dispersive effects while preserving full nonlinearity of the

original GN model, and presented various model equations for both flat and uneven bot‐

tom topographies. We have derived the linear dispersion relations for the $\delta$^{2n} model, and

95



examined its properties, revealing that the models with odd n have smooth dispersion

relations without any singularities, whereas the models with even n exhibit single positive

zero. We have also shown that the $\delta$^{2n} models with n \geq  2 have the same Hamiltonian

structure as that of the original GN model.

There are a number of interesting problems associated with the extended GN equations

that are worthy of further study. In conclusion, we list some of them:

(i) The effect of higher‐order dispersion on the wave characteristics in comparison with

that predicted by other asymptotic models like Boussinesq equations.

(ii) The identification of physically relevant models among various extended GN equa‐

tions.

(iii) Numerical computations of the initial value problems as well as solitary and periodic
wave solutions.

(iv) The justification of the asymptotic models by means of the rigorous mathematical

analysis.
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