The LR－dispersion problem

Toshihiro Akagi
Department of Computer Science，Gunma University
Tetsuya Araki
Principles of Informatics Research Division， National Institute of Informatics
Shin－ichi Nakano
Department of Computer Science，Gunma University

1 Introduction

The facility location problem and many of its variants have been studied［6，7］．A typical problem is to find a set of locations to place facilities with the designated cost minimized．By contrast，in this paper we consider the dispersion problem，which finds a set of locations with the designed cost maximized．

Given a set P of n points，and the distance d for each pair of points，and an integer k with $k \leq n$ ，we wish to find a subset $S \subset P$ with $|S|=k$ such that some designated cost is maximized $[1,4,5,9,10,11,12,13]$ ．

In one of typical cases the cost to be maximized is the minimum distance between two points in S ．If P is a set of points on the plane then the problem is NP－hard［11，13］，and if P is a set of points on the line then the problem can be solved in $O(\max \{n \log n, k n\})$ time［11，13］by dynamic programming approach，and in $O(n \log \log n)$ time［1］by sorted matrix search method $[3,8]$ ．

In this paper we consider two variants of the dispersion problem on the line．Let P be a set of points on the horizontal line．We wish to find a subset $S \subset P$ with $|S|=k$ maximizing $\operatorname{cost}(S)$ defined as follows．

Let the cost $\operatorname{cost}(s)$ of $s \in S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ be the sum of the distance to its left neighbor in S and the distance to its right neighbor in S ．We assume $s_{1}, s_{2}, \ldots, s_{k}$ are sorted from left to right．Especially the leftmost point $s_{1} \in S$ has no left neighbor，so we define the cost of s_{1} is $d\left(s_{1}, s_{2}\right)$ ．Similarly the cost of the rightmost point s_{k} is $d\left(s_{k-1}, s_{k}\right)$ ． And the $\operatorname{cost}(S)$ of S is the minimum cost among the $\operatorname{costs} \operatorname{cost}\left(s_{1}\right), \operatorname{cost}\left(s_{2}\right), \ldots, \operatorname{cost}\left(s_{k}\right)$ ． We call the problem above the $L R$－dispersion problem．An $O\left(k n^{2} \log n\right)$ time algorithm based on dynamic programming is known［2］．

In this paper we design an algorithm to solve the LR-dispersion problem. Our algorithm runs in $O(n \log n)$ time, and based on matrix search method[3, 8].

The remainder of this paper is organized as follows. Section 2 contains an algorithm for the decision version of the LR-dispersion problem. Section 3 gives our algorithm for the LR-dispersion problem. Section 4 treats one more variant of the dispersion problem. Finally Section 5 is a conclusion.

$2(\lambda, k)$-LR-dispersion

In this section we give a linear time algorithm to solve a decision version of the LRdispersion problem.

Given a set $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ of points on a horizontal line, and two numbers k and λ we wish to decide if there exists a subset $S \subset P$ with $|S|=k$ and $\operatorname{cost}(S) \geq \lambda$. We call the problem as the (λ, k)-LR-dispersion problem.

We have the following lemma.
Lemma 1. If (λ, k)-LR-dispersion problem has a solution $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\} \subset P$, then $S^{\prime}=\left\{p_{1}, s_{2}, s_{3}, \ldots, s_{k-1}, p_{n}\right\}$ is also a solution of the (λ, k)-LR-dispersion problem.
Proof. Since $\operatorname{cost}(S) \leq \operatorname{cost}\left(S^{\prime}\right)$, if S is a solution then S^{\prime} is also a solution and $\operatorname{cost}(S)=$ $\operatorname{cost}\left(S^{\prime}\right)$ holds.

The algorithm below is a greedy algorithm to solve the (λ, k)-LR-dispersion problem. Note that $\operatorname{cost}\left(s_{i}\right)$ for $i=3,4, \ldots, k-1$ is $d\left(s_{i-2}, s_{i}\right)$. By setting a dummy point $s_{0}=\dot{s}_{1}$, $\operatorname{cost}\left(s_{2}\right)$ is also $d\left(s_{2-2}, s_{2}\right)=d\left(s_{1}, s_{2}\right)$. Also note that $\operatorname{cost}(k)=d\left(s_{k-1}, s_{k}\right)$.

Now we prove the correctness of the algorithm. Assume for a contradiction that the algorithm output NO for a given problem but it has a solution.

Let $G=\left\{g_{1}, g_{2}, \ldots, g_{k^{\prime}}\right\}$ with $k^{\prime}<k$ be the points chosen by the algorithm, and $O=\left\{o_{1}, o_{2}, \ldots, o_{k}\right\}$ the points of a solution. By Lemma 1 we can assume $o_{1}=p_{1}$ and $o_{k}=p_{n}$. Note that $g_{1}=o_{1}=p_{1}$ and $g_{k^{\prime}}=o_{k}=p_{n}$ hold. We have the following two cases.
Case 1: For all $i, 1 \leq i<k^{\prime}, g_{i} \leq o_{i}$ holds.
Then our greedy algorithm can choose at least one more point $o_{k^{\prime}}$ or more left point. A contradiction.
Case 2: For some $i, 1 \leq i<k^{\prime}, g_{i}>o_{i}$ holds.
Since g_{2} is chosen in a greedy manner, we can assume $g_{2} \leq o_{2}$. Let j be the minimum such i. Since $g_{j-2} \leq o_{j-2}$ and $g_{j-1} \leq o_{j-1}$ hold, our greedy algorithm choose o_{i} or more left point as g_{i}. A contradiction.
Theorem 1. One can solve the decision version of the LR-dispersion problem in $O(n)$ time.

```
Algorithm 1 find ( \(\lambda, k\) )-LR-dispersion ( \(P, k, \lambda\) )
    \(/^{*} P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}\) and \(p_{1}, p_{2}, \ldots, p_{n}\) are sorted from left to right */
    \(/^{*}\) Choose \(s_{1}\) and \(s_{k}{ }^{*} /\)
    \(s_{1}=p_{1}, s_{k}=p_{n}\)
    \(s_{0}=s_{1} \quad / *\) Dummy */
    \(/ *\) Choose \(s_{2}, s_{3}, \ldots, s_{k-1}{ }^{*} /\)
    \(c=2\)
    for \(i=2\) to \(k-1\) do
        while \(d\left(s_{i-2}, p_{c}\right)<\lambda\) and \(d\left(p_{c}, p_{n}\right) \geq \lambda\) do
            \(c++\)
        end while
        if \(d\left(p_{c}, p_{n}\right)<\lambda\) then
            \(/^{*}\) no solution since \(d\left(p_{c}, p_{n}\right)<\lambda^{*} /\)
            return NO
        else
            \(/^{*} d\left(s_{i-2}, p_{c}\right) \geq \lambda\) holds */
            \(s_{i}=p_{c}\)
            \(c++\)
        end if
    end for
    /* Output */
    return \(S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}\)
```


3 LR-dispersion

One can design an $O(n \log n)$ time algorithm to solve the LR-dispersion problem, based on the sorted matrix search method $[3,8]$.

First let M be the matrix in which each element $m_{i, j}$ is $d\left(p_{i}, p_{j}\right)$ if $i<j$, otherwise 0 . Then $m_{i, j} \leq m_{i, j+1}$ and $m_{i, j} \geq m_{i+1, j}$ always holds, so the elements in the rows and columns are sorted, respectively. The cost $\operatorname{cost}(S)$ of a solution S of the LR-dispersion problem is some element in the matrix. We are going to find the largest λ in M for which the (λ, k)-LR-dispersion problem has a solution.

By appending a suitable number of large enough elements to M as the elements in the topmost rows and the rightmost columns we can assume n is a power of 2 . Note that the elements in the rows and columns are still sorted, respectively. Let M be the resulting matrix. Our algorithm consists of rounds $s=1,2, \ldots, \log n$, and maintains a set L_{s} of (non-overlapping) submatrices of M possibly containing the optimal value λ^{*}. Hypothetically first we set $L_{0}=\{M\}$. Assume we are now staring round s.

For each subset M in L_{s-1} we divide M into the four submatrices with $n / 2^{s}$ rows and $n / 2^{s}$ columns and put them into L_{s}. We never copy these submatrices. We just update the index of the corner elements of each submatrix.

Let $\lambda_{\text {min }}$ be the median of the lower left corner elements of the submatrices in L_{s}. Then for the $\lambda=\lambda_{\text {min }}$ we solve the (λ, k)-LR-dispersion problem, using the algorithm in Section2. We have the following two cases.

If the (λ, k)-LR-dispersion problem has no solution then we remove from L_{s} each submatrix with the lower left corner element (the smallest element) greater than $\lambda_{\text {min }}$. Since $\lambda_{\min }>\lambda^{*}$ holds, each removed submatrix has no chance to contain λ^{*}. Thus we can remove at least $\left|L_{s}\right| / 2$ submatrices from L_{s}.

Otherwise if the (λ, k)-LR-dispersion problem has a solution then we remove from L_{s} each submatrix with the upper right corner element (the largest element) smaller than $\lambda_{\text {min }}$. Since $\lambda_{\text {min }} \leq \lambda^{*}$ holds, each removed submatrix has no chance to contain λ^{*}. Also if L_{s} has several submatrices with the upper right corner element equal to $\lambda_{\text {min }}$ then we remove them except one from L_{s}. Now we can observe that, for each "chain" of submatrices, which is the sequence of submatrices in L_{s} with lower left to upper right diagonals on the same line, the number of submatrices (1) having the lower left corner element smaller than $\lambda_{\min }(2)$ but remaining in L_{s}, is at most one (since the elements on "the common diagonal line" are sorted). Thus, if $\left|L_{s}\right| / 2>D_{s}$, where $D_{s}=2^{s+1}$ is the number of chains plus one, then we can remove at least $\left|L_{s}\right| / 2-D_{s}+1$ submatrices from L_{s}.

Similarly let $\lambda_{\max }$ be the median of the upper right corner elements of submatrices in L_{s}, and for the $\lambda=\lambda_{\text {max }}$ we solve the (λ, k)-LR-dispersion problem and similarly removè some submatrices from L_{s}. This ends round s.

Now after round $\log n$ each matrix in $L_{\log n}$ has just one element, then we can find the λ^{*} using a binary search with the linear time decision algorithm in Section 2.

We can prove that at the end of round s the number of submatrices in L_{s} is at most $2 D_{s}$, as follows.

First L_{0} has 1 submatrix, which is less than $2 D_{0}=4$. By induction assume that $\dot{L_{s-1}}$ has $2 D_{s-1}=2 \cdot 2^{s}$ submatrices.

At round s we first partite each submatrix in L_{s-1} into four submatrices then put them into L_{s}. Now the number of submatrices in L_{s} is at most $4 \cdot 2 D_{s-1}=4 D_{s}$. We have four cases.

If the (λ, k)-LR-dispersion problem has no solution for $\lambda=\lambda_{\text {min }}$ then we can remove at least a half of the submatrices in L_{s} is at most $2 D_{s}$, as desired. If the $(\lambda ; k)$-LR-dispersion problem has a solution for $\lambda=\lambda_{\text {max }}$ then we can remove at least a half of the submatrices in L_{s} is at most $2 D_{s}$, as desired. Otherwise if $\left|L_{s}\right| / 2 \leq D_{s}$ then the number of the submatrices in L_{s} (even before the removal) is at most $2 D_{s}$, as desired. Otherwise (1) after the check for $\lambda=\lambda_{\text {min }}$ we can remove at least $\left|L_{s}\right| / 2-D_{s}$ submatrices (consisting of too small elements) from L_{s}, and (2) after check for $\lambda=\lambda_{\max }$ we can remove at least $\left|L_{s}\right| / 2-D_{s}$ submatrices (consisting of too large elements) from L_{s}, so the number of the remaining submatrices in L_{s} is at most $\left|L_{s}\right|-2\left(\left|L_{s}\right| / 2-D_{s}\right)=2 D_{s}$, as desired.

Thus at the end of round s the number of submatrices in L_{s} is always at most $2 D_{s}$, and at the end of round $\log n$ the number of submatrices is at most $2 D_{\log n}=4 n$.

Now we consider the running time. We implicitly treat each submatrix as the index of the upper right element in M and the number of lows (= the number of columns). Except for the calls of the linear time decision algorithm for the (λ, k)-LR-dispersion problem, we need $O\left(\left|L_{s-1}\right|\right)=O\left(D_{s-1}\right)$ time for each round $s=1,2, \ldots, \log n$, and $D_{0}+D_{1}+\cdots+D_{\log n-1}=2+4+\cdots+2^{\log n}<2 \cdot 2^{\log n}=2 n$ holds, so this part needs $O(n)$ time in total. (Here we use the linear time algorithm to find the median.)
Since each round calls the linear time decision algorithm twice and the number of round is $\log n$ this part needs $O(n \log n)$ time in total.

After round $s=\log n$ each matrix has just one element. Then we can find the λ^{*} among the $\left|L_{\log n}\right| \leq 2 D_{\log n}=4 n$ elements by (1) sorting them, then (2) performing binary search with the linear time decision algorithm at most $\log 4 n$ times. This part needs $O(n \log n)$ time.
Thus the total running time is $O(n \log n)$. With a similar method we have solved the (original) dispersion problem in $O(n \log n)$ time[1].
Theorem 2. One can solve the LR-dispersion problem in $O(n \log n)$ time.

4 Generalization

In this section we consider one more variant of the dispersion problem and give an algorithm to solve the problem, which runs in $O(n \log n)$ time. In the original dispersion problem the cost is the minimum distance between two points s_{i} and s_{i+1}. We generalize this to the minimum distance between s_{i} and s_{i+h}, for given h.

Given a set $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ of points on a horizontal line, and the distance d for each pair of points, and two integers k, h with $k, h \leq n$, we wish to find a subset $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\} \subset P$ maximizing $\operatorname{cost}(S)$ defined as follows.
$L \operatorname{cost}(S)=\min \left\{d\left(s_{1}, s_{2}\right), d\left(s_{1}, s_{3}\right), \ldots, d\left(s_{1}, s_{h}\right)\right\}, R \operatorname{cost}(S)=\min \left\{d\left(s_{k-h+1}, s_{k}\right)\right.$, $\left.d\left(s_{k-h+2}, s_{k}\right), \ldots, d\left(s_{k-1}, s_{k}\right)\right\}$ and $\operatorname{Mcost}(S)=\min \left\{d\left(s_{1}, s_{1+h}\right), d\left(s_{2}, s_{2+h}\right), \ldots, d\left(s_{k-h}, s_{k}\right)\right\}$ then $\operatorname{cost}(S)=\min \{L \operatorname{cost}(S), R \operatorname{cost}(S), M \operatorname{cost}(S)\}$.

We call the problem above the h-dispersion problem. The original dispersion problem on the line is the h-dispersion problem with $h=1$ and the LR-dispersion problem is the h-dispersion problem with $h=2$.
Lemma 2. If (λ, k) - h-dispersion problem has a solution $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\} \subset P$, then $S^{\prime}=\left\{p_{1}, s_{2}, s_{3}, \ldots, s_{k-1}, p_{n}\right\}$ is also a solution of the (λ, k) - h-dispersion problem.
Proof. Since $\operatorname{cost}(S) \leq \operatorname{cost}\left(S^{\prime}\right)$, if S is a solution then S^{\prime} is also a solution and $\operatorname{cost}(S)=$ $\operatorname{cost}\left(S^{\prime}\right)$ holds.

The algorithm below is a greedy algorithm to solve the problem. Now we prove the correctness of the algorithm.

Assume for a contradiction that the algorithm output NO for a given problem but it has a solution.

Let $G=\left\{g_{1}, g_{2}, \ldots, g_{k^{\prime}}\right\}$ with $k^{\prime}<k$ be the points chosen by the algorithm, and $O=\left\{o_{1}, o_{2}, \ldots, o_{k}\right\}$ the points of a solution. By Lemma 2 we can assume $o_{1}=p_{1}$ and $o_{k}=p_{n}$. Note that $g_{1}=o_{1}=p_{1}$ and $g_{k^{\prime}}=o_{k}=p_{n}$ hold. We have the following two cases. Case 1: For all $i, 1 \leq i<k^{\prime}, g_{i} \leq o_{i}$ holds.

Then our greedy algorithm can choose at least one more points $o_{k^{\prime}}$ or more left point. A contradiction.
Case 2: For some $i, 1 \leq i<k^{\prime}, g_{i}>o_{i}$ holds. Since $g_{2}, g_{3}, \ldots, g_{h}$ are chosen in a greedy manner, we can assume $g_{j} \leq o_{j}$ for $j=2,3, \ldots, h$. Let j be the minimum such i. Since $g_{j-h} \leq o_{j-h}, g_{j-h+1} \leq o_{j-h+1}, \ldots, g_{j-1} \leq o_{j-1}$ hold, our greedy algorithm choose o_{i} or more left point as g_{i}. A contradiction.
Theorem 3. One can solve the decision version of the h-dispersion problem in $O(n)$ time.

Therefore, similar to the algorithm in Section 3, we can design $O(n \log n)$ time algorithm to solve the h-dispersion problem.
Theorem 4. One can solve the h-dispersion problem in $O(n \log n)$ time.

5 Conclusion

In this paper we have presented two algorithms to solve the LR-dispersion problem and the h-dispersion problem. The running time of the algorithms are $O(n \log n)$.

An $O(n \log \log n)$ time algorithm to solve the original dispersion problem on the line is known[1]. Can we design an $O(n \log \log n)$ time algorithm to solve the h-dispersion problem?

```
Algorithm 2 find \((\lambda, k)\) - \(h\)-dispersion ( \(P, h, k, \lambda\) )
    /* Choose \(s_{1}\) and \(s_{k}{ }^{*} /\)
    \(s_{1}=p_{1}, s_{k}=p_{n}\)
    /* Dummy */
    \(s_{0}=s_{1}, s_{-1}=s_{1}, s_{-2}=s_{1}, \ldots, s_{-h+2}=s_{1}\)
    /* Choose \(s_{2}, s_{3}, \ldots, s_{k-1}{ }^{*} /\)
    \(c=2\)
    for \(i=2\) to \(k-1\) do
        while \(d\left(s_{i-h}, p_{c}\right)<\lambda\) and \(d\left(p_{c}, p_{n}\right) \geq \lambda\) do
            \(c++\)
        end while
        if \(d\left(p_{c}, p_{n}\right)<\lambda\) then
            \(/^{*}\) no solution since \(d\left(p_{c}, p_{n}\right)<\lambda^{*} /\)
            return NO
        else
            \(/^{*} d\left(s_{i-h}, p_{c}\right) \geq \lambda\) holds*/
            \(s_{i}=p_{c}\)
            \(c++\)
        end if
    end for
    /* Output */.
    return \(S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}\)
```


References

[1] T. Akagi and S. Nakano, Dispersion problem on the Line, Technical Report, 2016-AL-158-4, IPSJ (2016).
[2] T. Akagi, T. Araki and S. Nakano, Variants of the Dispersion Problem, Technical Report, 2017-AL-161-3, IPSJ (2017).
[3] P. Agarwal and M. Sharir, Efficient Algorithms for Geometric Optimization, Computing Surveys, 30, pp.412-458 (1998).
[4] C. Baur and S. P. Feketee, Approximation of Geometric Dispersion Problems, Pro. of APPROX '98, Page 63-75 (1998).
[5] B. Chandra and M. M. Halldorsson, Approximation Algorithms for Dispersion Problems, J. of Algorithms, 38, pp.438-465 (2001).
[6] Z. Drezner, Facility Location: A Survey of Applications and Methods, Springer (1995).
[7] Z. Drezner and H. W. Hamacher, Facility Location: Applications and Theory, Springer (2004).
[8] G. Frederickson, Optimal Algorithms for Tree Partitioning, Proc. of SODA'91 Pages 168-177 (1991).
[9] R. Hassin, S. Rubinstein and A. Tamir, Approximation Algorithms for Maximum Dispersion, Operation Research Letters, 21, pp.133-137 (1997).
[10] T. L. Lei and R. L. Church, On the unified dispersion problem: Efficient formulations and exact algorithms, European Journal of Operational Research, 241, pp.622-630 (2015).
[11] S. S. Ravi, D. J. Rosenkrantz and G. K. Tayi, Heuristic and Special Case Algorithms for Dispersion Problems, Operations Research, 42, pp.299-310 (1994).
[12] M. Sydow, Approximation Gurantees for Max Sum and Max Min Facility Dispersion with Parameterised Triangle Inequality and Applications in Result Diversification, Mathematica Applicanda, 42, pp.241-257 (2014).
[13] D. W. Wang and Y. S. Kou, A study on Two Geometric Location Problems, Information Processing Letters, 28, pp.281-286 (1988).

