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1 Introduction

The facility location problem and many of its variants have been studied[6, 7]. \mathrm{A}

typical problem is to find a set of locations to place facilities with the des gnated cost

minimized. By contrast, in this paper we consider the dispersion problem, which finds a

set of locations with the designed cost maximized.

Given a set P of n points, and the distance d for each pair of points, and an integer k

with k\leq n , we wish to find a subset S\subset P with |S|=k such that some designated cost

is maximized[1, 4, 5, 9, 10, 11, 12, 13].
In one of typical cases the cost to be maximized is the minimum distance between two

points in S . If P is a set of points on the plane then the problem is NP‐hard[ll, 13], and

if P is a set of points on the line then the problem can be solved in O(\displaystyle \max\{n\log n, kn\})
time[ll, 13] by dynamic programming approach, and in O (n loglog n) time[1] by sorted

matrix search method[3, 8].
In this paper we consider two variants of the dispersion problem on the line. Let P

be a set of points on the horizontal \mathrm{h}\mathrm{n}\mathrm{e} . We wish to find a subset  S\subset  P with |S| =k

maximizing cost(S) defined as follows.

Let the cost cost (s) of s \in  S= \{s_{1}, s_{2}, . . . , s_{k}\} be the sum of the distance to its left

.neighbor in S and the distance to its right neighbor in S . We assume s_{1}, s_{2} ,
. . .

, s_{k} are

sorted from left to right. Especially the leftmost point s_{1}\in S has no left neighbor, so we

define the cost of s_{1} is d(s_{1}, s_{2}) . Similariy the cost of the rightmost point s_{k} ig d(s_{k-1}, s_{k}) .

And the cost(S) of S is the minimum cost among the costs cost(sl), cost(s2), . . .

, cost(sk).
We call the problem above the LR‐dispersion problem. An O(kn^{2}\log n) time algorithm
based on dynamic programming is known[2].
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In this paper we design an algorithm to solve the LR‐dispersion problem. Our algorithm
runs in O(n\log n) time, and based on matrix search method[3, 8].

The remainder of this paper is organized as follows. Section 2 contains an algorithm
for the decision version of the LR‐dispersion problem. Section 3 gives our algorithm for

the LR‐dispersion problem. Section 4 treats one more variant of the dispersion problem.

Finally Section 5 is a conclusion.

2 ( $\lambda$, k)-\mathrm{L}\mathrm{R}‐dispersion
In this section we give a linear time algorithm to solve a decision version of the LR‐

dispersion problem.
Given a set P=\{p_{1}, p_{2}, . . . , p_{n}\} of points on a horizontal line, and two numbers k and

 $\lambda$ we wish to decide if there exists a subset  S\subset P with |S|=k and cost (S)\geq $\lambda$ . We call

the problem as the ( $\lambda$, k)-\mathrm{L}\mathrm{R}‐dispersion problem.
We have the following lemma.

Lemma 1. If ( $\lambda$, k)-\mathrm{L}\mathrm{R}‐dispersion problem has a solution S = \{s_{1}, s_{2}, . . . , s_{k}\} \subset  P,
then S'=\{p_{1}, s_{2}, s_{3}, . . . , s_{k-1},p_{n}\} is also a solution of the ( $\lambda$, k)-\mathrm{L}\mathrm{R}‐dispersion problem.
Proof. Since cost (S)\leq cost(S') ,

if S is a solution then S' is also a solution and cost(S)=
cost(S') holds. \square 

The algorithm below is a greedy algorithm to solve the ( $\lambda$, k)-\mathrm{L}\mathrm{R}‐dispersion problem.
Note that  $\omega$ st(s_{i}) for i=3 , 4, . . .

, k-1 is d(s_{i-2}, s_{i}) . By setting a dummy point s_{0}=s_{1},

cost (s_{2}) is also d(s_{2-2}, s_{2})=d(s_{1}, s_{2}) . Also note that cost (k)=d(s_{k-1}, s_{k}) .

Now we prove the correctness of the algorithm. Assume for a contradiction that the

algorithm output NO for a given problem but it has a solution.

Let G = \{g_{1}, g_{2}, . . . , g_{k'}\} with k' < k be the points chosen by the algorithm, and

O=\{0_{1}, 0_{2}, . . . , 0_{k}\} the points of a solution. By Lemma 1 we can assume 0_{1} =p_{1} and

o_{k}=p_{n} . Note that g_{1}=0_{1}=p_{1} and g_{k'}=0_{k}=p_{n} hold. We have the following two cases.

Case 1 : For all i, 1\leq i<k', g_{i}\leq 0_{i} holds.

Then our greedy algorithm can choose at least one more point 0_{k'} or more left point.
A contradiction.

Case 2 : Fojr some i, 1\leq i<k', g_{i}>0_{i} holds.

Since g_{2} is chosen in a greedy manner, we can assume g_{2}\leq 0_{2} . Let j be the minimum

such i . Since g_{j-2} \leq 0_{j-2} and g_{j-1} \leq 0_{j-1} hold, our greedy algorithm choose 0_{i} or more

left point as g_{i} . A contradiction.

Theorem 1. One can solve the decision version of the LR‐dispersion problem in O(n)
time.
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Algorithm 1 find ( $\lambda$, k)-\mathrm{L}\mathrm{R}‐dispersion (P, k,  $\lambda$)
/*P=\{p_{1}, p_{2}, . . . , p_{n}\} and p_{1},p_{2} ,

. . .

, p_{n} are sorted from left to right */
/* Choose s_{1} and s_{k}*/
s_{1}=p_{1}, s_{k}=p_{n}

s_{0}=s_{1}

/* Choose s_{2}, s_{3} , . . .

, s_{k-1^{*}}/
c=2

for i=2 to k-1 do

while  d(s_{i-2},p_{\mathrm{c}})< $\lambda$ and  d(p_{c},p_{n})\geq $\lambda$ do

 c++

end while

if  d(p_{\mathrm{c}},p_{n})< $\lambda$ then

/*_{\mathrm{n}\mathrm{o}} solution since d(p_{c},p_{n}) <$\lambda$^{*}/
return NO

else

/*d(s_{i-2},p_{\mathrm{c}})\geq $\lambda$ hold\mathrm{s}^{*}/
s_{i}=p_{c}

c++

end if

end for

/*\mathrm{O}_{\mathrm{u}\mathrm{t}\mathrm{p}\mathrm{u}\mathrm{t}^{*}}/
return S=\{s_{1}, s_{2}, . . . , s_{k}\}

/* Dumm\mathrm{y}^{*}/

/*s_{i} is foun\mathrm{d}^{*}/
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3 LR‐dispersion
One can design an O(n\log n) time algorithm to solve the LR‐dispersion problem, based

on the sorted matrix search method[3, 8].
First let M be the matrix in which each element m_{i,j} is d(p_{i},p_{j}) if i <j , otherwise

0. Then m_{i,j} \leq m_{i,j+1} and m_{i,j} \geq m_{i+1,j} always holds, so the elements in the rows and

columns are sorted, respectively. The cost cost (S) of a solution S of the LR‐dispersion
problem is some element in the matrix. We are going to find the largest  $\lambda$ in  M for which

the ( $\lambda$, k)-\mathrm{L}\mathrm{R}‐dispersion problem has a solution.

By appending a suitable number of large enough elements to M as the elements in

the topmost rows and the rightmost columns we can assume n is a power of 2. Note

that the elements in the rows and columns are still sorted, respectively. Let M be the

resulting matrix. Our algorithm consists of rounds s = 1
, 2, . . .

, \log n , and maintains a

set L_{s} of (non‐overlapping) submatrices of M possibly containing the optimal value $\lambda$^{*}.

Hypothetically first we set L_{0}=\{M\} . Assume we are now staring round s.

For each subset M in L_{s-1} we divide M into the four submatrices with n/2^{\mathrm{S}} rows and

n/2^{S} columns and put them into L_{s} . We never copy these submatrices. We just update
the index of the corner elements of each submatrix.

Let $\lambda$_{\min} be the median of the lower left corner elements of the submatrices in L_{s}.
Then for the  $\lambda$=$\lambda$_{\min} we solve the ( $\lambda$, k)-\mathrm{L}\mathrm{R}‐dispersion problem, using the algorithm in

Section2. We have the following two cases.

If the ( $\lambda$, k)-\mathrm{L}\mathrm{R}‐dispersion problem has no solution then we remove from L_{s} each sub‐

matrix with the lower left corner element (the smallest element) greater than $\lambda$_{\min} . Since

$\lambda$_{\min} > $\lambda$^{*} holds, each removed submatrix has no chance to contain $\lambda$^{*} . Thus we can

remove at least |L_{s}|/2 submatrices from L_{s}.
Otherwise if the ( $\lambda$, k)-\mathrm{L}\mathrm{R}‐dispersion problem has a solution then we remove from L_{s}

each submatrix with the upper right corner element (the largest element) smaller than

$\lambda$_{\min} . Since $\lambda$_{\min}\leq$\lambda$^{*} holds, each removed submatrix has no chance to contain $\lambda$^{*} . Also

if L_{s} has several submatrices with the upper right corner element equal to $\lambda$_{\min} then

we remove them except one from L_{s} . Now we can observe that, for each �chain� of

submatrices, which is the sequence of submatrices in L_{s} with lower left to upper right
diagonals on the same line, the number of submatrices (1) having the lower left corner

element smaller than $\lambda$_{\min}(2) but remaining in L_{s} ,
is at most one (since the \cdot elements on

�the common diagonal line� are sorted). Thus, if |L_{s}|/2 > D_{s} ,
where D_{s} =2^{s+1} is the

number of chains plus one, then we can remove at least |L_{s}|f2-D_{s}+1 submatrices from

L_{s}.

Similarly let $\lambda$_{\max} be the median of the upper right corner elements of submatrices in

L_{s} ,
and for the  $\lambda$=$\lambda$_{\max} we solve the ( $\lambda$, k)-\mathrm{L}\mathrm{R}‐dispersion problem and similarly remove

some submatrices from L_{s} . This ends round s.

Now after round \log n each matrix in L_{\log n} has just one element, then we can find the

$\lambda$^{*} using a binary search with the linear time decision algorithm in Section 2.

30



We can prove that at the end of round s the number of submatrices in L_{s} is at most

2D_{s} , as follows.

First L_{0} has 1 submatrix, which is less than 2D_{0}=4 . By induction assume that L_{s-1}
has 2D_{s-1}=2\cdot 2^{S} submatrices.

At round s we first partite each submatrix in L_{s-1} into four submatrices then put them

into L_{s} . Now the number of submatrices in L_{s} is at most 4 \cdot  2D_{s-1}=4D_{s} . We have four

cases.

If the ( $\lambda$, k)-\mathrm{L}\mathrm{R}‐dispersion problem has no solution for  $\lambda$=$\lambda$_{\min} then we can remove at

least a half of the submatrices in L_{s} is at most 2D_{s} , as desired. If the ( $\lambda$, k)-\mathrm{L}\mathrm{R}‐dispersion
problem has a solution for  $\lambda$=$\lambda$_{\max} then we can remove at least a half of the submatrices

in L_{s} is at most 2D_{s} ,
as desired. Otherwise if |L_{s}|/2 \leq  D_{s} then the number of the

submatrices in L_{s} (even before the removal) is at most 2D_{s} , as desired. Otherwise (1)
after the check for  $\lambda$=$\lambda$_{\min} we can remove at least |L_{s}|/2-D_{s} submatrices (consisting
of too small elements) from L_{s} ,

and (2) after check for  $\lambda$=$\lambda$_{\max} we can remove at least

|L_{s}|/2-D_{s} submatrices (consisting of too large elements) from L_{s} , so the number of the

remaining submatrices in L_{s} is at most |L_{s}|-2(|L_{s}|/2-D_{s})=2D_{s} ,
as desired.

Thus at the end of round s the number of submatrices in L_{s} is always at most 2D_{s},
and at the end of round \log n the number of submatrices is at most 2D_{\log n}=4n.

Now we consider the running time. We implicitly treat each submatrix as the index

of the upper right element in M and the number of lows (= the number of columns).
Except for the. calls of the linear time decision algorithm for the ( $\lambda$, k)-\mathrm{L}\mathrm{R}‐dispersion

problem, we need O(|L_{s-1}|) = O(D_{s-1}) time for each round s = 1
, 2, .. .

, \log n ,
and

D_{0}+D_{1}+\cdots+D_{\log n-1} =2+4+\cdots+2^{\log n} < 2\cdot 2^{\log n}=2n holds, so this part needs

O(n) time in total. (Here we use the linear time algorithm to find the median.)
Since each round calls the linear time decision algorithm twice and the number of round

is \log n this part needs O(n\log n) time in total.

After round s=\mathrm{l}\mathrm{o}\mathrm{g}.n each matrix has just one element. Then we can find the $\lambda$^{*} among

the |L_{\log n}| \leq 2D_{\log n}=4n elements by (1) sorting them, then (2) performing binary search

with the linear time decision algorithm at most \log 4n times. This part needs O(n\log n)
time.

Thus the total running time is O(n\log n) . With a similar method we have solved the

(original) dispersion problem in O(n\log n) time[1].
Theorem 2. One can solve the LR‐dispersion problem in O(n\log n) time.

4 Generalization

In this section we consider one more variant of the dispersion problem and give an

algorithm to solve the problem, which runs in O(n\log n) time. In the original dispersion
problem the cost is the minimum distance between two points s_{i} and s_{i+1} . We generalize
this to the minimum distance between s_{i} and s_{i+h} ,

for given h.
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Given a set P = \{p_{1},p_{2}, . . . ,p_{n}\} of points on a horizontal line, and the distance d

for each pair of points, and two integers k, h with k, h \leq  n ,
we wish to find a subset

S=\{s_{1}, s_{2}, . . . , s_{k}\}\subset P maximizing cost(S) defined as follows.

Lcost (S)=\displaystyle \min\{d(s_{1}, s_{2}) , d(s_{1}, s_{3}) ,
. . .

, d(s_{1}, s_{h} Rcost (S)=\displaystyle \min\{d(s_{k-h+1}, s_{k}) ,

d(s_{k-h+2}, s_{k}) , . . .

, d(s_{k-1}, s_{k})\} and Mcost (S)=\displaystyle \min\{d(s_{1}, s_{1+h}), d(s_{2}, s_{2+h}), \cdots, d(s_{k-h}, s_{k})\}
then cost (S)=\displaystyle \min{  L $\omega$ st(S) , Rcost (S) ,

Mcost(S)}.
We call the problem above the h ‐dispersion problem. The original dispersion problem

on the line is the h‐dispersion problem with h=1 and the LR‐dispersion problem is the

h‐dispersion problem with h=2.

Lemma 2. If ( $\lambda$, k)-h‐dispersion problem has a solution S=\{s_{1}, s_{2}, . . . , s_{k}\}\subset P ,
then

S'=\{p_{1}, s_{2}, s_{3}, . . . , s_{k-1},p_{n}\} is also a solution of the ( $\lambda$, k)-h‐dispersion problem.
Proof. Since cost (S)\leq cost(S') ,

if S is a solution then S' is also a solution and cost(S)=
cost(S') holds. \square 

The algorithm below is a greedy algorithm to solve the problem. Now we prove the

correctness of the algorithm.
Assume for a contradiction that the algorithm output NO for a given problem but it

has a solution.

Let G = \{g_{1}, g_{2}, . . . , g_{k'}\} with k' < k be the points chosen by the algorithm, and

O=\{0_{1}, 0_{2}, . . . , 0_{k}\} the points of a solution. By Lemma 2 we can assume 0_{1} =p_{1} and

o_{k}=p_{n} . Note that g_{1}=0_{1}=p_{1} and g_{k'}=0_{k}=p_{n} hold. We have the following two cases.

Case 1 : For all i, 1\leq i<k', g_{i}\leq 0_{i} holds.

Then our greedy algorithm can choose at least one more points 0_{k'} or more left point.
A contradiction.

Case 2 : For some i, 1\leq i<k', g_{i}>0_{i} holds. Since g_{2}, g_{3} ,
. . .

, g_{h} are chosen in a greedy
manner, we can assume g_{j} \leq 0_{j} for j=2 , 3, . . .

, h . Let j be the minimum such i . Since

g_{j-h} \leq  0_{j-h}, g_{j\cdot-h+1} \leq  0_{j-h+1} ,
. . .

, g_{\mathrm{j}-1} \leq  0_{\mathrm{j}-1} hold, our greedy algorithm choose 0_{i} or

more left point as g_{i} . A contradiction.

Theorem 3. One can solve the decision version of the h-\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{i}_{0}^{ $\eta$}\mathrm{n} problem in o(n)
time.

Therefore, similar to the algorithm in Section 3, we can design O(n\log n) time algorithm
to solve the h‐dispersion problem.
Theorem 4. One can solve the h‐dispersion problem in O(n\log n) time.

5 Conclusion

In this paper we have presented two algorithms to solve the LR‐dispersion problem and

the h‐dispersion problem. The running time of the algorithms are O(n\log n) .

An O (n loglog n) time algorithm to solve the original dispersion problem on the line

is known[1]. Can we design an O (n loglog n) time algorithm to solve the h‐dispersion

problem?
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\displaystyle \frac{\mathrm{A}1\mathrm{g}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{t}\mathrm{h}\mathrm{m}2\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{d}( $\lambda$,k)-h-\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{i}\mathrm{o}\mathrm{n}(P,h,k, $\lambda$)}{/^{*}\mathrm{C}\mathrm{h}\mathrm{o}\mathrm{o}\mathrm{s}\mathrm{e}s_{1}\mathrm{a}\mathrm{n}\mathrm{d}s_{k^{*}}/}
s_{1}=p_{1}, s_{k}=p_{n}

/* Dumm\mathrm{y}^{*}/
s_{0}=s_{1}, s_{-1}=s_{1}, s_{-2}=s_{1} ,

. . .

, s_{-h+2}=s\mathrm{i}

/* Choose s_{2}, s_{3} , . . .

, s_{k-1} */
c=2

for i=2\mathrm{t}\mathrm{o}k —ldo

while d(s_{i-h},p_{\mathrm{c}}) < $\lambda$ and  d(p_{c},p_{n}) \geq $\lambda$ do

 c++

end while

if  d(p_{c},p_{n})< $\lambda$ then

/*_{\mathrm{n}\mathrm{o}} solution since d(p_{c},p_{n})<$\lambda$^{*}/
return NO

else

/*d(s_{i-h},p_{c})\geq $\lambda$ \mathrm{h}\mathrm{o}\mathrm{l}\mathrm{d}\mathrm{s}^{*}/
s_{i}=p_{c}

c++

end if

end for

/*\mathrm{O}_{\mathrm{u}\mathrm{t}\mathrm{p}\mathrm{u}\mathrm{t}^{*}}/
return S=\{s_{1}, s_{2}, . . . , s_{k}\}

/*_{S_{i}} is foun\mathrm{d}^{*}/
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