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1 Introduction

In this note we report on a local regularity for the evolution of p‐harmonic maps, the

p‐harmonic flow, in the super‐ and sub‐ quadratic cases, which has been recently obtained

by the authour.

Let \mathcal{N} be a n ‐dimensional smooth compact Riemannian manifold without boundary
and isometrically embedded in \mathbb{R}^{l} (l >n) . For a smooth map u from time‐space region
\mathbb{R}_{\infty}^{m} :=(0, \infty) \times \mathbb{R}^{m} (m\geq 2) to \mathbb{R}^{l} we consider the quasilinear parabolic type system of

2\mathrm{n}\mathrm{d}‐ordered partial differential equations

(1.1) \left\{\begin{array}{l}
\partial_{t}u-\mathrm{d}\mathrm{i}\mathrm{v} (|Du|^{p-2} Du) =|Du|^{p-2}A(u) (Du, Du)\\
u\in \mathcal{N}\subset \mathbb{R}^{l}.
\end{array}\right.
In this note we study a local regularity of solutions to the p‐harmonic flow (1.1). Here p>
1

, and u= (ui), i=1
,

. . .

,
l , is a \mathbb{R}^{l} ‐valued function, Du= (D_{ $\alpha$}u^{i}) is the gradient of a map

u with partial derivatives D_{ $\alpha$} = \partial/\partial x_{ $\alpha$},  $\alpha$ = 1
,

. . .

,
m , and |Du|^{2} = \displaystyle \sum_{ $\alpha$=1}^{m}\sum_{i=1}^{l}(D_{ $\alpha$}u^{i})^{2},

and A(u)(Du ,
Du) is the second fundamental form of \mathcal{N}\subset \mathbb{R}^{l} (provided that, if necessary,

the manifold \mathcal{N} is assumed to be orientable). The solution of (1.1) is the trajectory of

negative direction gradient flow of the p‐energy

(1.2) E(u)=\displaystyle \int_{\mathbb{R}^{m}}\frac{1}{p} |Du|^{p}dx
defined for maps u from \mathbb{R}^{m} to \mathcal{N}\subset \mathbb{R}^{l} . A critical point of the p‐energy is prescribed
as a solution of the Euler‐Lagrange equation

(1.3) \left\{\begin{array}{l}
-\mathrm{d}\mathrm{i}\mathrm{v}(|Du|^{p-2}Du) =|Du|^{p-2}A(u) (Du, Du)\\
u\in \mathcal{N}\subset \mathbb{R}^{l}.
\end{array}\right.
and is named the p‐harmonic map.

Here our interest is to have the restriction that the image of maps is imposed on the

manifold \mathcal{N} , yielding the second fundamental form of \mathcal{N} in the corresponding equations.
Now we explicitly look at the second fundamental form of \mathcal{N} in \mathbb{R}^{l}.

First we simply derive the Euler‐Lagrange equation of (1.2) and the gradient flow (1.1).
Let u be a smooth map from \mathbb{R}^{m} to \mathcal{N} and  $\phi$ a smooth \mathbb{R}^{l} ‐vector valued function on \mathbb{R}^{m}

with compact support. Let  $\Pi$ : \mathbb{R}^{l} \supset \mathcal{O}(\mathcal{N}) \rightarrow \mathcal{N}\subset \mathbb{R}^{l} be the nearest point projection
from a tubular neighborhood \mathcal{O}(\mathcal{N})\subset \mathbb{R}^{l} of \mathcal{N} , to \mathcal{N} . For any sufficient small number  $\tau$,

| $\tau$|\ll| $\phi$|_{\infty} ,
the map  u+ $\tau \phi$ has its value in \mathcal{O}(\mathcal{N}) and so,  $\Pi$(u+ $\tau \phi$) \in \mathcal{N} is a admissible
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comparison map. The first variation (Gâteaux derivative) is computed by integration by
parts as

(1.4)

\displaystyle \frac{d}{d $\tau$}E( $\Pi$(u+ $\tau \phi$))|_{ $\tau$=0} = \displaystyle \int_{\mathbb{R}^{m}} (-\displaystyle \mathrm{d}\mathrm{i}\mathrm{v}(|Du|^{p-2}Du)+|Du|^{p-2}\frac{d^{2} $\Pi$}{du^{2}}(u)(Du, Du))  $\phi$ dx.

Thus, the Euler‐Lagrange equation (1.3) is the first variational formula, (1.4)=0 . For

smooth maps u\in C^{\infty}(\mathbb{R}^{m}, \mathcal{N})  $\dagger$
,

its gradient‐like vector field \nabla E(u) of the p‐energy is

formally defined as

\displaystyle \langle\nabla E(u) ,  $\phi$\rangle^{ $\ddagger$} = \frac{d}{d $\tau$}E( $\Pi$(u+ $\tau \phi$))|_{ $\tau$=0}
and thus, by (1.4)

\displaystyle \nabla E(u)=-\mathrm{d}\mathrm{i}\mathrm{v}(|Du|^{p-2}Du)+|Du|^{p-2}\frac{d^{2} $\Pi$}{du^{2}}(u) (Du, Du)

and so, the solution‐curve \{u(t)\} \subset  C^{\infty}(\mathbb{R}^{m}, \mathcal{N}) , 0 \leq  t < \infty , of its negative direction

gradient vector field is the solution to the differential equation (1.1).
Next let \mathbb{R}^{l} = T_{u}\mathcal{N}\oplus(T_{u}\mathcal{N})^{\perp} be the orthogonal decomposition of \mathbb{R}^{l} with respect

to the tangent space T_{u}\mathcal{N} at each u \in \mathcal{N} . The corresponding orthonormal basis is

(e_{1}(u), \ldots, e_{n}(u)) of the tangent space T_{u}\mathcal{N} and (e_{n+1}(u), \ldots , e_{l}(u)) of its orthogonal
complement (T_{u}\mathcal{N})^{\perp} . Then the sencond fundamental form can be written as

A(u) (Du , Du)=\displaystyle \sum_{j=n+1}^{l}\sum_{i=1}^{l}(Du\cdot Du^{i}\frac{\partial e_{j}}{\partial u^{i}}(u))e_{j}(u)
and thus, A(u)(Du ,

Du) \in (T_{u}\mathcal{N})^{\perp} for each u \in \mathcal{N} . On the other hand, \partial_{t}u \in  T_{u}\mathcal{N}
and D_{ $\alpha$}u\in T_{u}\mathcal{N},  $\alpha$= 1

,
. . .

,
m , because the image of maps u=u(t, x) restricted on the

manifold \mathcal{N} . Thus, making the Euclidean inner product in \mathbb{R}^{l} with the equation (1.1)
gives

|\partial_{t}u|^{2}-$\Delta$_{p}u\cdot\partial_{t}u=0, \partial_{t}u\cdot D_{ $\alpha$}u-$\Delta$_{p}u\cdot D_{ $\alpha$}u=0,

and the crucial formulas for local energy estimates, respectively,

|\displaystyle \partial_{t}u|^{2}-\mathrm{d}\mathrm{i}\mathrm{v}(|Du|^{p-2}Du\cdot\partial_{t}u)+\partial_{t}\frac{1}{p}|Du|^{p}=0,
\displaystyle \partial_{t}u\cdot D_{ $\alpha$}u-\mathrm{d}\mathrm{i}\mathrm{v}(|Du|^{p-2}Du\cdot D_{ $\alpha$}u)+D_{ $\alpha$}\frac{1}{p}|Du|^{p}=0,  $\alpha$=1

,
. . .

, m.

In particular, the first formula is integrated on space and yields, through integration by
parts,

\displaystyle \frac{d}{dt}E(u(t))=-\Vert\partial_{t}u(t)\Vert_{2}^{2}
and thus, the p‐energy E(u(t)) is decreasing along the solution u(t) of the p‐harmonic

flow. A global in time solution to (1.1) for any initial data may converge to the critical

 $\dagger$  C^{\infty}( $\Omega$, \mathcal{N}) is a Banach manifold
 $\ddagger$ \{\nabla E(u), \} is a bounded linear functional on a tangent space \displaystyle \bigcup_{u\in \mathrm{X}}C^{\infty}( $\Omega$, T_{u}(\mathcal{N})) of a Banach manifold

\mathcal{X}:=C^{\infty}( $\Omega$, \mathcal{N}) .
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points of the p‐energy, the p‐harmonic maps, as time tending to \infty . This heat flow
method is originally realized by J. Eells and J. H. Sampson in the harmonic flow case

 p=2 ([7]). Their fundamental result also holds similarly for the p‐harmonic flow under

the condition on target that the sectional curvature of \mathcal{N} is non‐positive (see [15, 8

Without any curvature restriction on the target manifold, there is a blowing up solution

at a finite time (see [2] in the case p = m = 3 ). Thus, a weak solution is naturally
considered. A weak solution which is locally continuous on time‐space together with its

gradient is called a regular solution.

Theorem 1 Ĩl2J Let p = m \geq  2 and let the initial data be in the set of Sobolev maps

W^{1,p}(\mathcal{M},\mathcal{N}) between two smooth, compact Riemannian manifolds \mathcal{M} and \mathcal{N} without

boundaries. Then, there exists a global in time weak solution of Cauchy problem for the

m ‐harmonic flow. The solution is regular, except for at most finitely many time slices.

In the two‐dimensional harmonic flow case p=m=2 , the solution is smooth except for at

most finitely many points [20]. In the case p=m , a nice Sobolev type inequality on time‐

space, referred as Ladyzhenskaya or Nash inequality in p= m = 2
, plays an important

role in regularity estimate.

The global in time existence of partial regular weak solution to the harmonic flow in

the case p=2 has been established by M. Struwe et al. in [21, 4] The crucial ingredient
for the result is the so‐called small energy regularity estimate as follows : Let T>0 and

X\in \mathbb{R}^{m} , and let the backward in time heat kernel with pole at (T, X) be

G(t, x)=\displaystyle \frac{1}{(4 $\pi$(T-t))^{m/2}}\exp(\frac{|x-X|^{2}}{4(T-t)}) , t<T.
The scaled energy is defined as

I(T, X;r)=r^{2}\displaystyle \int_{\{t=T-r^{2}\}}\frac{1}{2}|Du(t, x)|^{2}G(t, x)dx, 0<r\leq T^{1/2}.
The following monotonicity estimate holds true (see [21, Lemma 3.2, pp. 489‐490]).

Lemma 2 (monotonicity formula) Let p=2 and let u be a smooth solution of the har‐

monic flow (1.1) on \mathbb{R}_{\mathcal{I}}^{m}=(0, T)\times \mathbb{R}^{m} for T>0 . For any positive r< $\rho$\leq T^{1/2} it holds

that

I (T, X ; r) \leq I(T, X ;  $\rho$) .

From the monotonicity estimate of scaled enegy and the gradient L^{\infty} ‐estimate on small

region for harmonic flow, the following regularity estimate is obtained (see [21, Proposition
4.1, p. 490 ; Theorem 5.1, its proof, pp. 491‐493 ; Theorem 5.3, p. 494] and also [22,
Proof of Theorem, pp. 171‐172]).

Theorem 3 (small energy regularity) Let p = 2 and let u be a smooth solution of the

harmonic flow (1.1) on \mathbb{R}_{ $\tau$}^{m}=(0, T) \times \mathbb{R}^{m} . Then there exist positive constants $\epsilon$_{0} and C

depending only on m and \mathcal{N} such that the following holds true : If I(T, X;R) \leq $\epsilon$_{0} for
some X\in \mathbb{R}^{m} and some positive R\leq T^{1/2} , then it holds that

\displaystyle \sup |Du| \leq CR^{-1}
(T-(R/4)^{2},T)\times B(R/4,X)

124



There also exist blowing up solutions at a finite time (see [1, 3, 5, 10

Based on the a‐priori estimate for smooth solutions in Theorem 3 with an appropriate
approximation method, it is shown in [4] that, for the Cauchy problem for harmonic flow

in the case p=2 , there exists a global in time weak solution which is partial regular in

the sense of regularity outside exceptional closed set. The local regularity estimate has

recently been established for the p‐harmonic flow in the superqudratic case p > 2 (see
[16, 17 which corresponds to the small energy regularity result as in Theorem 3 for the

p‐harmonic flow.

Now we will present our main result, the small energy regularity estmate for the

p‐harmonic flow.

Theorem 4 Let $\lambda$_{0}, B_{0} and a_{0} be positive numbers satisfying the conditions : In the

superquadratic case p>2,

(1.5) \displaystyle \frac{4(p-1)}{p}<$\lambda$_{0}=B_{0}<p
and, in the subquadratic case \displaystyle \frac{2m}{m+2} <p<2,

; \displaystyle \frac{$\lambda$_{0}-2}{p-2}<a_{0}\leq 1

(1.6) p<$\lambda$_{0}=B_{0}<\displaystyle \min\{\frac{4}{4-p}, 3-\frac{2}{p}\} ; \displaystyle \frac{2-$\lambda$_{0}}{2-p}<a_{0}\leq 1.
Let u be a regular solution of (1.1) on \mathbb{R}_{T}^{m} for a positive T < \infty , satisfying the energy

bound

 p\displaystyle \Vert\partial_{t}u\Vert_{L^{2}(\mathbb{R}_{T}^{m})}^{2}+\sup_{0<t<T}\Vert Du(t)\Vert_{L^{p}(\mathbb{R}^{m})}^{p} \leq C
for a positive number C depending only on m, p and \mathcal{N} . Then, there exists a small positive
numeber R_{0} < 1

, depending only on m, p, B_{0} and a_{0} , and the following holds true : If,
for some small positive R<\displaystyle \min\{R_{0}, $\tau$^{1/$\lambda$_{0}}\} and some X\in \mathbb{R}^{m},

(1.7) \displaystyle \lim_{r\searrow 0}\sup r^{$\gamma$_{0}-m}\int_{\{t=T-R^{$\lambda$_{0}}\}\times B(r,X)}|Du(t, x)|^{p}dx\leq 1, $\gamma$_{0}=\frac{p(B_{0}-2)}{p-2},
then, the inequality holds

(1.8) \displaystyle \sup |Du|\leq CR^{-a0},
(T-(R/4)^{$\lambda$_{0}},T)\times B(R/4,X)

where the positive constant C depends only on $\lambda$_{0}, B_{0}, a_{0}, m,p and \mathcal{N}.

The condition (1.7) is the local regularity criterion for regular solutions with energy

boundedness of the p‐harmonic flow to be the uniformly locally bounded of gradients
as in (1.8) and thus, uniformly locally continuously differentiable (see [6, 13, 14 The

scale order in condition in (1.7) is almost optimal, comparing with the corresponding
uniform regularity criterion for regular solutions of stationary p‐harmonic maps because

the exponent  $\gamma$ 0 can be chosen as close to p as possible, by the condtion of B_{0} in (1.5) or

(1.6).
The main ingredients of Theorem 4 are the monotonicity estimates of scaled energy

and the L^{\infty} ‐estimate of gradients (see [6, 13, 14 well‐comUined under a time‐space
scaling. The technical novelty here is a new monotonicity type estimate of a localized

scaled p‐energy, which may be of its own interest. Let us define our localized scaled
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p‐energy in the following way: Let T \geq  0 and X \in \mathbb{R}^{m} be given, and (t_{0}, x_{0}) in the

parabolic like envelope

\{(t, x)\in(0, \infty)\times \mathbb{R}^{m} : t-T\geq |x-X|^{$\lambda$_{0}}\} ; $\lambda$_{0}>2.

The localized scaled energy is defined as

(1.9) E_{\pm}(r)=\displaystyle \frac{1}{$\Lambda$^{p}}\int_{\{t=t_{0}\pm$\Lambda$^{2-p}r^{2}\}\times \mathbb{R}^{m}}\frac{1}{p} |Du(t, x)|^{p}\mathcal{B}_{\pm}(t_{0}, x_{0};t, x)C^{q}(t, x)dx,
where  $\Lambda$= $\Lambda$(r) is a function of a scale radius r

,
defined as

$\Delta$^{B\underline{-2}}
(1.10)  $\Lambda$= $\Lambda$(r)=r^{2-p} ; $\lambda$_{0}=B_{0} is as in (1.5) or (1.6).

The forward or backward in time Barenblatt like function denoted by \mathcal{B}+ and \mathcal{B}_{-} , respec‐

tively, are defined as

(1.11) \displaystyle \mathcal{B}_{\pm}(t_{0}, x_{0};t, x)=\frac{1}{(\mp t_{0}\pm t)^{\frac{m}{B_{0}}}} (1- (\frac{|x-x_{0}|}{(\mp t_{0}\pm t)^{\frac{1}{B_{0}}}})^{a})_{+}^{b} \mp t<\mp t_{0} ;

a, b>1 ; determined later.

The localized function C is defined and used as

(1.12) C(t, x) := ((t-T)^{1/$\lambda$_{0}}-|x-X|)_{+} ; q>2.

We call E_{+}(r) and E_{-}(r) the forward and backward localized scaled p‐energy, respec‐

tively.

The followings are our monotonicity type estimate of scaled energy.

Lemma 5 (backward monotonicity estimate) Suppose that  t_{0}-T\leq  2 . For any regular
solution to the p‐harmonic flow the following estimate holds for all positive numbers r,  $\rho$,

r^{B_{0}}= $\Lambda$(r)^{2-p}r^{2}<$\rho$^{B_{0}}= $\Lambda$( $\rho$)^{2-p}$\rho$^{2}\displaystyle \leq\min\{1, (t_{0}-T)/2\}

(1.13) E_{-}(r) \leq E_{-}( $\rho$)+ C($\rho$^{ $\mu$}-r^{ $\mu$})

+C\displaystyle \int_{t_{0}-$\rho$^{B_{0}}}^{t_{0}-r^{B_{0}}}\Vert C^{\overline{q}}(t)|Du(t)|^{\hat{p}}\Vert_{L^{\infty}(B((t_{0}-t)^{1/B_{0}},x\mathrm{o}))}dt,
where \hat{p}= \displaystyle \max\{2(p-1), 2\} and, \displaystyle \tilde{q}=\min\{q-2, q(p-1)/p\}, B_{0} as in (1.10), and the

positive exponent  $\mu$ depends only on \mathcal{N}, m, p and B_{0} , and the positive constant C depends
only on the same ones as  $\mu$ and  q.

Lemma 6 (forward monotonicity estimate) Suppose that t_{0} -T \leq  1 . For any regular
solution to the p‐harmonic flow the following estimate holds for all positive numbers r,  $\rho$,

r^{B_{0}}= $\Lambda$(r)^{2-p}r^{2}<$\rho$^{B_{0}}= $\Lambda$( $\rho$)^{2-p}$\rho$^{2}\leq 1

(1.14) E_{+}( $\rho$) \leq E_{+}(r)+ C($\rho$^{ $\mu$}-r^{ $\mu$})

+C\displaystyle \int_{t_{0}+r^{B_{0}}}^{t_{0}+$\rho$^{B_{0}}}\Vert C^{\tilde{q}}(t)|Du(t)|^{\hat{p}}\Vert_{L^{\infty}(B((t-t_{0})^{1/B_{0}},x\mathrm{o}))}dt,
where \hat{p}= \displaystyle \max\{2(p-1), 2\} and, \displaystyle \tilde{q}=\min\{q-2, q(p-1)/p\}, B_{0} as in (1.10), and the

positive constants  $\mu$ and  C have the same dependence as those in Lemma 5.
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From Theorem 4, a compactness for regular p‐harmonic flows with uniform bound‐

edness of p‐energy is obtained (see [21, Theorem 6.1 ; its proof, pp. 494‐497] for the

harmonic flow). The compactness result will be the key ingredient for the global in time

existence of p‐harmonic flow, which will be studied in the near future work (refer to [4]
for the harmonic flow case).

Theorem 7 (compactness of regular p‐harmonic flows) Suppose that a family \{u_{k}\} of
regular p‐harmonic flows on \mathbb{R}_{\infty}^{m}=(0, \infty)\times \mathbb{R}^{m} satisfies the p‐energy boundedness with

uniform positive constant C

(1.15) p\displaystyle \Vert\partial_{t}u_{k}\Vert_{L^{2}(\mathbb{R}_{\infty}^{m})}^{2}+\sup_{0<t<\infty}\Vert Du_{k}(t)\Vert_{L^{p}(\mathbb{R}^{m})}^{p} \leq C
and converges to a limit map u in the sense

(1.16) u_{k}\rightarrow u weakly * in L^{\infty}(0, T; W^{1,p}(\mathbb{R}_{\infty}^{m}, \mathbb{R}^{l})) ,

(1.17) Du_{k}\rightarrow Du weakly in L^{p}(\mathbb{R}_{\infty}^{m}, \mathbb{R}^{ml}) ,

(1.18) \partial_{t}u_{k}\rightarrow\partial_{t}u weakly in L^{2}(\mathbb{R}_{\infty}^{m}, \mathbb{R}^{l}) .

Then, the limit map u is a global weak solution on \mathbb{R}_{\infty}^{m} of the p‐harmonic map heat

flow such that u\in \mathcal{N} almost everywhere in \mathbb{R}_{\infty}^{m} , and the p‐energy boundedness is valid,
replacing u_{k} by u in (1.15). Moreover, the limit map u is partial regular in the sense: Let

R_{0}<1 be a positive number, defined in Theorem 4 and a subset \mathcal{S}\subset \mathbb{R}_{\infty}^{m} be defined as

S :=\{( $\tau$, x_{0})\in \mathbb{R}_{\infty}^{m} : for all positive R<\displaystyle \min\{R_{0}, $\tau$^{1/$\lambda$_{0}}\},

(1.19) \displaystyle \lim_{k\rightarrow}\sup_{\infty}(\lim_{r\searrow}\sup_{0}r^{ $\gamma$ 0-m}\int_{\{t= $\tau$-R^{$\lambda$_{0}}\}\times B(r,x\mathrm{o})} |Du_{k}(t, x)|^{p}dx) \geq 1\}.
Then, S is closed in \mathbb{R}_{\infty}^{m} and u and its gradient Du are locally in time‐space continuous

in the complement \mathbb{R}_{\infty}^{m}\backslash S . The size of S is also estimated by the Hausdorff measure :

Let $\gamma$_{0}, $\lambda$_{0}, B_{0} and a_{0} be the same positive numbers as in (1.5) and (1.7) in Theorem 4.
The set S is of at most locally zero m‐dimensional Hausdorff measure with respect to the

time‐space metric |t|^{1/ $\gamma$ 0}+|x|, \mathcal{H}^{m}(S\cap K) = 0 for any open subset K compactly con‐

tained in \mathbb{R}_{\infty}^{m} , and, furthermore, for any positive time  $\tau$<\infty , the (m-$\gamma$_{0}) ‐dimensional

Hausdorff measure of \{ $\tau$\} \times S with respect to the usual Euclidean metric is locally zero,

\mathcal{H}^{m- $\gamma$ 0} (\{ $\tau$\} \times S\cap K)=0 for any open subset K compactly contained in \mathbb{R}^{m}.

2 Monotonicity estimate

We demonstrate the monotonicity estimates in the superquadratic case p > 2 . For

brevity, we reset as C\equiv 1.

Let z_{0}=(t_{0}, x_{0}) \in(0, T] \times \mathbb{R}^{m} . As before, we put

 $\Lambda$=r^{\frac{B_{0}-2}{2-p}}, B_{0}>\displaystyle \frac{4(p-1)}{p}
and let r any positive number in the range 0<r\displaystyle \leq\min\{1, (t_{0})^{1/B_{0}}\} . We make a scaling
transformation intrinsic to the evolutionary p‐Laplace operator (refer to [6, 13, 14])

(2.1) t=t_{0}+$\Lambda$^{2-p}r^{2}s ; x=x_{0}+ry ; v(s, y)=\displaystyle \frac{u(t_{0}+$\Lambda$^{2-p}r^{2}s,x_{0}+ry)}{ $\Lambda$ r}
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and, under the scaling transformation

t=t_{0}-$\Lambda$^{2-p}r^{2} \Leftrightarrow s=-1.

Then the scaled solution v is a solution of the scaled equation on \{s=-1\}\times \mathbb{R}^{m}

(2.2) \partial_{s}v-\mathrm{d}\mathrm{i}\mathrm{v}(|Dv|^{p-2} Dv) =- $\Lambda$ r|Dv|^{p-2}A(r $\Lambda$ v)(Dv ,
Dv )

and the scaled p‐energy is rewritten as

(2.3) E(r)=\displaystyle \int_{\{s=-1\}\times \mathbb{R}^{m}} \displaystyle \frac{1}{p}|Dv(s, y)|^{p}\mathcal{B}(s, y)dy ; \mathcal{B}(s, y)=(1- |y|^{a})_{+}^{b}
by simply computing as

Dv(s, y)=\displaystyle \frac{1}{ $\Lambda$}D_{x}u(t, x) ;  $\Lambda$=r^{\mathrm{n}_{2^{\frac{-2}{-p}}}^{B}} \Leftrightarrow$\Lambda$^{L-}B^{\frac{2}{0}}r^{\frac{B_{\cap}-2}{B_{0}}} =1 ;

\mathcal{B}(s, y)dy=\mathcal{B}(t_{0}, x_{0} ; t, x) dx.

Our main task in monotonicity estimate is to derive appropriate values of parameters

(2.4) B_{0}>\displaystyle \frac{4(p-1)}{p} ;

(2.5) 0< $\delta$\displaystyle \leq\frac{B_{0}(p-2)}{B_{0}-2}(-1+\frac{2(p-1)(B_{0}-2)}{B_{0}(p-2)}) .

Step 1: differentiation of E(r) on r . Now we compute differentiation of E(r) on r.

By the equation (2.2) and integration by parts,

\displaystyle \frac{d}{dr}E(r)=\int_{\{s=-1\}\times \mathbb{R}^{m}} |Dv|^{p-2}Dv\cdot\frac{d}{dr}Dv\mathcal{B}(s, y)dy
=\displaystyle \int_{\{s=-1\}\times \mathbb{R}^{m}} \frac{dv}{dr}. (-$\Delta$_{p}v\mathcal{B}(s, y)-|Dv|^{p-2}Dv\cdot D\mathcal{B}(s, y)) dy
=r^{-1}\displaystyle \int_{\{s=-1\}\times \mathbb{R}^{m}} (-s) ((2-p)r$\Lambda$^{-1}$\Lambda$'+2) |\partial_{s}v|^{2}\mathcal{B}(s, y)dy
-r^{-1}\displaystyle \int_{\{s=-1\}\times \mathbb{R}^{m}} (y\cdot Dv)\cdot\partial_{s}v\mathcal{B}(s, y)dy
+r^{-1}\displaystyle \int_{\{s=-1\}\times \mathbb{R}^{m}} (1+r$\Lambda$^{-1}$\Lambda$') v\cdot\partial_{s}v\mathcal{B}(s, y)dy

(2.6) +\displaystyle \int_{\{s=-1\}\times \mathbb{R}^{m}}  $\Lambda$ (1+r$\Lambda$^{-1}$\Lambda$') |Dv|^{p-2}v\cdot A(r $\Lambda$ v) (Dv, Dv) \mathcal{B}(s, y)dy

+abr^{-1}\displaystyle \int_{\{s=-1\}\times \mathbb{R}^{m}} \{|Dv|^{p-2} |y\cdot Dv|^{2}
+ ((2-p)r$\Lambda$^{-1}$\Lambda$'+2) |Dv|^{p-2}(y\cdot Dv)\cdot(s\partial_{s}v)

‐ (1+r$\Lambda$^{-1}$\Lambda$') |Dv|^{p-2}(y\cdot Dv)\cdot v\} \times

\times|y|^{a-2} (1- |y|^{a})_{+}^{b-1} dy,
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where, noting that  $\Lambda$=r^{(B_{0}-2)/(2-p)}
,

the generator of dilation is computed as

\displaystyle \frac{dv}{dr} = r^{-1} (-(1+r$\Lambda$^{-1}$\Lambda$') v+((2-p)r$\Lambda$^{-1}$\Lambda$'+2) s\partial_{s}v+y. Dv)
Now each term in (2.6) is separately estimated.

1st term of (2.6). In the first term of (2.6) the coefficient is positive, because, by
definition of  $\Lambda$ and  s=-1

(-s) ((2-p)r$\Lambda$^{-1}$\Lambda$'+2) =B_{0}>0\Leftrightarrow $\Lambda$=r^{(B_{0}-2)/(2-p)}.
2nd term of (2.6). By Cauchy�s inequality with small c>0 the second term of (2.6)

is estimated below by

-\displaystyle \frac{c}{2}r^{-1}\int_{\{s=-1\}\times \mathbb{R}^{m}} |\partial_{s}v|^{2}\mathcal{B}dy-\frac{1}{2c}r^{-1}\int_{\{s=-1\}\times \mathbb{R}^{m}} |y|^{2}|Dv|^{2}\mathcal{B}dy.
The time‐derivative term is absorbed into the first term and, by the support of the Baren‐

blatt like weight \mathcal{B}, \{y\in \mathbb{R}^{m} ||y| \leq 1\} , and by Young�s inequality with  $\delta$>0 , the spatial
gradient term is estimated below by

(2.7) -Cr^{-1}$\Lambda$^{ $\delta$}\displaystyle \int_{\{s=-1\}\times \mathbb{R}^{m}} |Dv|^{2(p-1)}\mathcal{B}dy- Cr^{-1}$\Lambda$^{-\frac{ $\delta$}{p-2}\int_{\{s=-1\}\times \mathbb{R}^{m}}} \mathcal{B}dy.
3rd term of (2.6). For estimation of the third term of (2.6) we use the Poincaré type

inequality with weight of Barenblatt like function § [18, Theorem 5.3.4, p. 134].

Lemma 8

(2.8) \displaystyle \int_{\{s=-1\}\times \mathbb{R}^{m}} |v|^{2}\mathcal{B}dy\leq C\int_{\{s=-1\}\times \mathbb{R}^{m}} |Dv|^{2}\mathcal{B}dy.
By Cauchy�s inequality with small c>0 the third term is estimated below by

(2.9) -\displaystyle \frac{c}{2}r^{-1}\int_{\{s=-1\}\times \mathbb{R}^{m}} |\partial_{s}v|^{2}\mathcal{B}dy-\frac{1}{2c}r^{-1}\int_{\{s=-1\}\times \mathbb{R}^{m}} |v|^{2}\mathcal{B}dy,
where, by definition of  $\Lambda$, 1+r$\Lambda$^{-1}$\Lambda$'=(p-B_{0})/(p-2) . The first time‐derivative term is

absorbed into that of (2.6). By the support of \mathcal{B}
, again, the Poincaré inequality, Lemma 8,

and Young�s inequality, the second term is bounded below by (2.7).

4th term of (2.6). By the definition of  $\Lambda$
, the fourth term of (2.6) is estimated below

as

(2.10)‐ \displaystyle \frac{|p-B_{0}|}{p-2}C'(\mathcal{N}) $\Lambda$\int_{\{s=-1\}\times \mathbb{R}^{m}} |v||Dv|^{p}\displaystyle \mathcal{B}dy\geq-Cr^{-1}\int_{\{s=-1\}\times \mathbb{R}^{m}} |Dv|^{p}\mathcal{B}dy,

where the second fundamental form A is bounded by the compactness of target \mathcal{N} and,
by scaling back and the compactness of target \mathcal{N},

 $\Lambda$|v| = $\Lambda$\displaystyle \frac{1}{ $\Lambda$ r}|u| \leq \frac{1}{r} \Vert u\Vert_{L^{\infty}(\mathbb{R}^{m})} \leq r^{-1}C(\mathcal{N}) .

§ Our estimations here remained unchanged, even if v is replaced by v-\overline{v} with weighted integral mean

\displaystyle \overline{v}=\int_{\{\mathrm{s}=-1\}\times 1\mathrm{R}^{m}}v\mathcal{B}dy/\int_{\{s=-1\}\times \mathrm{J}\mathrm{R}^{m}}\mathcal{B}dy.
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By Young�s inequality, (2.10) is bounded below for  $\delta$>0 by

(2.11) -Cr^{-1}$\Lambda$^{ $\delta$}\displaystyle \int_{\{s=-1\}\times \mathbb{R}^{m}} |Dv|^{2(p-1)}\mathcal{B}dy- Cr^{-1} $\Lambda$-\frac{ $\delta$ p}{p-2}\int_{\{s=-1\}\times \mathbb{R}^{m}} \mathcal{B}dy.
5th term of (2.6). The fifth term of (2.6) is clearly nonnegative.

6th term of (2.6). The sixth term of (2.6) appears from the nonhomogeneity of

evolutionary p‐Laplace operator and is estimated below by Cauchy�s inequality as

-\displaystyle \frac{c}{2}r^{-1}\int_{\{s=-1\}\times \mathbb{R}^{m}} |\partial_{s}v|^{2}\mathcal{B}dy
(2.12) −

\displaystyle \frac{C}{2c}r^{-1}\int_{\{s=-1\}\times \mathbb{R}^{m}} |Dv|^{2(p-1)}|y|^{2(a-1)} (1- |y|^{a})_{+}^{b-2}dy,
where, by definition of  $\Lambda$, (2-p)r$\Lambda$^{-1}$\Lambda$'+2=B_{0} ,

as before. The first term of (2.12) is

absorbed into that of (2.6). The second term of (2.12) is estimated below by

(2.13) − \displaystyle \frac{C}{2 $\delta$}r^{-1}\frac{1}{$\Lambda$^{2(p-1)}} \Vert Du( $\tau$)\Vert_{L^{\infty}(\sup \mathrm{p}\mathcal{B}( $\tau$))}^{2(p-1)}|_{ $\tau$=t_{0}-$\Lambda$^{2-p}r^{2}},
where, by a scaling back,

\displaystyle \int_{\mathbb{R}^{m}} |y|^{2(a-1)} (1- |y|^{a})_{+}^{b-2}dy<\infty,
1+\displaystyle \frac{m-2}{a}>-1\Leftarrow a>0 ; b-2>-1\Leftrightarrow b> 1.

7th term of (2.6). As in (2.12), the seventh term of (2.6) is bounded below by

-Cr^{-1}\displaystyle \int_{\{s=-1\}\times \mathbb{R}^{m}} |v|^{2}\mathcal{B}dy- Cr^{-1}\displaystyle \int_{\{s=-1\}\times \mathbb{R}^{m}} |Dv|^{2(p-1)}|y|^{2(a-1)} (1- |y|^{a})_{+}^{b-2}dy,
where the first one is the same as the second term in (2.9) and bounded below for  $\delta$>0

by (2.7) and, the second one is the same as in (2.12), together with the first ones of (2.7)
and (2.11), estimated below by

(2.14) -Cr^{-1} ($\Lambda$^{ $\delta$}+1) \displaystyle \frac{1}{$\Lambda$^{2(p-1)}} \Vert Du( $\tau$)\Vert_{L^{\infty}(\sup \mathrm{p}\mathcal{B}( $\tau$))}^{2(\mathrm{p}-1)}|_{ $\tau$=t_{0}-$\Lambda$^{2-p}r^{2}}
Resulting estimation of (2.6). Combining all of the estimations above we have

\displaystyle \frac{d}{dr}E(r) \geq I- Cr^{-1} ($\Lambda$^{-\frac{ $\delta$ p}{p-2}}+$\Lambda$^{-\frac{ $\delta$}{p-2}})
(2.15) -Cr^{-1}\displaystyle \frac{1}{$\Lambda$^{2(p-1)}} ($\Lambda$^{ $\delta$}+1) \Vert Du( $\tau$)\Vert_{L\infty(\sup \mathrm{p}\mathcal{B}( $\tau$))}^{2(p-1)}|_{ $\tau$=t_{0}-$\Lambda$^{2-p}r^{2}} ,

where  $\Lambda$=r^{(B_{0}-2)/(2-p)} , and we put

I = \displaystyle \frac{1}{2}B_{0}r^{-1}\int_{\{s=-1\}\times \mathbb{R}^{m}} (-s)|\partial_{s}v|^{2}\mathcal{B}(s, y)dy
+abr^{-1}\displaystyle \int_{\{s=-1\}\times 1\mathrm{R}^{m}} |Dv|^{p-2} |y\cdot Dv|^{2} |y|^{a-2} (1- |y|^{a})_{+}^{b-1} dy.
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The terms I is clearly nonnegative. From (2.15) integrated on (r,  $\rho$)

E( $\rho$)-E(r)

\displaystyle \geq-c\int_{r}^{ $\rho$}r^{-1} ( $\Lambda$-\frac{ $\delta$ p}{\mathrm{p}-2}+ $\Lambda$-\frac{ $\delta$}{p-2}) dr
(2.16) -C\displaystyle \int_{r}^{ $\rho$}r^{-1}\frac{1}{$\Lambda$^{2(p-1)}} ($\Lambda$^{ $\delta$}+1) \Vert Du( $\tau$)\Vert_{L^{\infty}(\sup \mathrm{p}\mathcal{B}( $\tau$))}^{2(p-1)}|_{ $\tau$=t_{0}-$\Lambda$^{2-p}r^{2}} dr.

Step 2 : a uniform bound. We will make a bound of each term in the right hand

side of (2.16).
2nd line of (2.16). The first term in the second line of (2.16) is computed as

\displaystyle \int_{r}^{ $\rho$}r^{-1}$\Lambda$^{-\frac{ $\delta$ p}{p-2}}dr = \int_{r}^{$\rho$_{r^{-1-\frac{p $\delta$(B_{0}'-2)}{(p-2)^{2}}}}}dr
= \displaystyle \frac{(p-2)^{2}}{p $\delta$(B_{0}-2)} ( $\rho$\frac{p $\delta$(B_{0}-2)}{(p-2)^{2}}\frac{p $\delta$(B_{0}-2)}{(p-2)^{2}}-r) ,

where

 $\Lambda$=r^{2-p} ,

\underline{B_{0}-2}

\displaystyle \frac{p $\delta$(B_{0}-2)}{(p-2)^{2}}>0 \Leftrightarrow  $\delta$>0 ; B_{0}>2.

Similarily as above, another term in the second line of (2.16) is

\displaystyle \int_{r}^{ $\rho$}r^{-1}$\Lambda$^{-\frac{ $\delta$}{p-2}}dr=\frac{(p-2)^{2}}{ $\delta$(B_{0}-2)} ( $\rho$\frac{ $\delta$(}{(p}-\mathrm{m}2)^{\frac{2)}{2}\frac{ $\delta$(B}{(p}\ovalbox{\tt\small REJECT}-2)}-r-2)^{2}) .

3rd line of (2.16). The term in the third line of (2.16) is bounded by

 $\Lambda$=r^{(B_{0}-2)/(2-p)} ;

\displaystyle \int_{r}^{ $\rho$}r^{-1} (-B_{0}$\Lambda$^{2-p}r)^{-1} \frac{1}{$\Lambda$^{2(p-1)}} \times$\Lambda$^{ $\delta$}\times \Vert Du( $\tau$)\Vert_{L^{\infty}(\sup \mathrm{p}\mathcal{B}( $\tau$))}^{2(p-1)} (-B_{0}$\Lambda$^{2-p}r) dr
(2.17) =\displaystyle \frac{1}{B_{0}}\int_{$\rho$^{2}t_{0}-( $\Lambda$( $\rho$))^{2-p}}^{r^{2}}t_{0}-( $\Lambda$(r))^{2-p}(t_{0}- $\tau$)^{-1+\frac{2(p-1)(B_{0}-2)}{B_{0}(\mathrm{p}-2)}-\frac{ $\delta$(B_{0}-2)}{B_{0}(p-2)}} \Vert Du( $\tau$)\Vert_{L^{\infty}(\sup \mathrm{p}B( $\tau$))}^{2(p-1)}d $\tau$,

where by definition of  $\Lambda$

 $\Lambda$=r^{(B_{0}-2)/(2-p)} \Leftrightarrow ( $\Lambda$(r))^{2-p}r^{2}=r^{B_{0}}

and, in the last term a changing of variable is performed

 $\tau$=t_{0}-$\Lambda$^{2-p}r^{2} \Leftrightarrow t_{0}- $\tau$=$\Lambda$^{2-p}r^{2}=r^{B_{0}} ;

 d $\tau$
=-B_{0}$\Lambda$^{2-p}r \Leftrightarrow  d $\tau$=-B_{0}$\Lambda$^{2-p}r dr.

\overline{dr}

Here the exponent of power of (t_{0}- $\tau$) in (2.17) is estimated as

-1+\displaystyle \frac{2(p-1)(B_{0}-2)}{B_{0}(p-2)}>0\Leftrightarrow B_{0}>\frac{4(p-1)}{p} ;

-1+\displaystyle \frac{2(p-1)(B_{0}-2)}{B_{0}(p-2)}-\frac{ $\delta$(B_{0}-2)}{B_{0}(p-2)}\geq 0
\displaystyle \Leftrightarrow 0< $\delta$\leq\frac{B_{0}(p-2)}{B_{0}-2}(-1+\frac{2(p-1)(B_{0}-2)}{B_{0}(p-2)})
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and then,

t_{0}-( $\Lambda$( $\rho$))^{2-p}$\rho$^{2}\leq $\tau$\leq t_{0}-( $\Lambda$(r))^{2-p}r^{2} \Leftrightarrow r^{B_{0}} \leq t_{0}- $\tau$\leq$\rho$^{B_{0}},

(t_{0}- $\tau$)^{-1+\frac{2(p-1)(B_{0}-2)}{B_{0}(p-2)}-\frac{ $\delta$(B_{0}-2)}{B_{0}(p-2)}} \displaystyle \leq$\rho$^{B_{0}}(-1+\frac{2(p-1)(B_{0}-2)}{B_{0}(p-2)}-\frac{ $\delta$(B_{0}-2)}{B_{0}(p-2)}) \leq 1
and thus, the right hand side of (2.17) is bounded above by

\displaystyle \frac{1}{B_{0}}\int_{$\rho$^{2}t_{0}-( $\Lambda$( $\rho$))^{2-p}}^{r^{2}}\Vert Du( $\tau$)\Vert_{L^{\infty}(\sup \mathrm{p}\mathcal{B}( $\tau$))}^{2(p-1)}d $\tau$ t_{0}-( $\Lambda$(r))^{2-\mathrm{p}}.
\square 
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