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1 Introduction

In this note, we review three topics of the secretary problem that attracted

attention of the researchers. These include

1. Robbins� problem
2. Ferguson secretary problem
3. PPS (Petruccelli‐Porosinski‐Samuels) paradox

As preparation for describing these topics, we briefly review the basic frame‐

work of the secretary problem.

1.1 Two informational models

In the no‐information model, a known number n of objects appear one at

a time in random order with all n! permutations equally likely, and one of

them must be chosen. If we could observe them all, we could rank them

absolutely with no ties from best (rank 1) to worst (rank n) according to

our own preference order. However, when an object appears, we can only
observe the rank relative to its predecessors. Thus the decision to accept

(select) or reject the object must be based on the relative ranks of all the

objects observed so far. In contrast to the no‐information model, the full‐

information model is the problem in which the observations are the true

values of n objects X_{1}, X_{2} , . . . , X_{n} , assumed to be i.i. \mathrm{d} . random variables

from a known continuous distribution F . We can assume without loss of

generality that X_{1}, X_{2} ,
. . .

, X_{n} are uniformly distributed on the interval (0,
1) for our study.

1.2 Two typical criteria of optimality

Two typical problems are the best‐choice problem and the rank minimization

problem. The objective of the best‐choice problem is to find a stopping rule

that maximizes the probability of selecting the best of all n objects and the

corresponding probability of success. The objective of the rank minimization

problem is to find a stopping rule that minimizes the expected (absolute)
rank of the chosen object and the corresponding expected rank.
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1.3 Best‐choice problem

We call an object candidate, if it is relatively best. In the no‐information

model, there exists a positive integer r_{n} , defined as

r_{n}=\displaystyle \min\{r\geq 1 : \frac{1}{r}+\frac{1}{r+1}+\cdots+\frac{1}{n-1}\leq 1\},
for n\geq 2 , such that the optimal rule is to reject the first r_{n}-1 objects and

then select the first candidate if any. The optimal probability is given by

v_{n}= (\displaystyle \frac{r_{n}-1}{n})\sum_{j=r_{n}}^{n}\frac{1}{j-1} (1)

for r_{n}\geq 1 . Asymptotically we have

\displaystyle \lim_{n\rightarrow\infty} \underline{r_{n}}= \lim v_{n}=e^{-1}, n n\rightarrow\infty

implying that, when  n is large, a good approximation for r_{n} is e^{-1}n\approx 0.368n,
so the optimal rule lets the fraction e^{-1} of all objects go by and then selects

the first candidate. The optimal probability is then approximately e^{-1} \approx

0.368. In the full‐model, Let  L_{k} =\displaystyle \max (Xl, . . .

,  X_{k} ), 1 \leq  k \leq  n
,

and call

the kth object (or X_{k} ) candidate if it is a relative maximum, i.e. X_{k}=L_{k}.
Consider a class of stopping rules of the form

$\tau$_{n}=$\tau$_{n}(\displaystyle \mathrm{a})=\min\{k\geq 1 : X_{k}\geq a_{k}, X_{k}=L_{k}\},

where a = ( a_{1}, a2, . . .

, a_{n} ) is a given sequence of thresholds satisfying the

monotone condition 1 \geq  a_{1} \geq  a_{2} \geq. . . \geq  a_{n} \geq  0 . This rule is sometimes

referred to as a monotone rule (with thresholds a). Gilbert and Mosteller

(1966) showed that the probability of choosing the best under a monotone

rule $\tau$_{n}(\mathrm{a}) is calculated as

v_{n}(\displaystyle \mathrm{a})=\frac{1-a_{1}^{n}}{n}+\sum_{j=1}^{n-1} [\displaystyle \sum_{k=1}^{j}\frac{a_{k}^{j}}{j(n-j)}-\sum_{k=1}^{j}\frac{a_{k}^{n}}{n(n-j)}-\frac{a_{j+1}^{n}}{n}]
and that the optimal stopping rule is within the class of monotone rules and

the particular thresholds \mathrm{a}^{*}=(a_{1}^{*}, a_{2}^{*}, \ldots, a_{n}^{*}) specifys the optimal stopping
rule if a_{n}^{*}=0 and a_{k}^{*}, k<n , is a unique root  x\in (0,1) of the equation

\displaystyle \sum_{j=1}^{n-k}\frac{1}{j}(x^{-j}-1) =1.
If we introduce the exponential‐integral functions

I(c)=\displaystyle \int_{1}^{\infty}\frac{e^{-cx}}{x}dx, J(c)=\int_{0}^{1}\frac{e^{cx}-1}{x}dx=\sum_{j=1}^{\infty}\frac{c^{j}}{j!j}
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and define c^{*} (\approx 0.80435) as a solution c to the equation J(c) = 1
, the

limiting optimal probability was given by Samuels (1982) as

v^{*}=\displaystyle \lim_{n\rightarrow\infty}v_{n}^{*}=e^{-c^{*}}+(e^{c^{*}}-c^{*}-1)I(c^{*})\approx 0.580164 . (2)

Define, as a function of c(>0) ,

vGM(c)=P(A_{1}<c<A_{2}) (3)

with

A_{1}=E_{1}(1-U_{1}) , A_{2}= (E_{1}+\displaystyle \frac{E_{2}}{U_{1}}) (1-U_{1}U_{2}) ,

where E_{1}, E_{2}, U_{1} and U_{2} are independent random variables with E_{1} and E_{2}
each exponentially distributed with parameter one and U_{1} and U_{2} each uni‐

formly distributed on the interval (0,1) (see Section 4.5 for this argument).
Then it can be shown that, after straightforward calculation,

vGM(c)=(e^{c}-1-cJ(c))I(c)+e^{-c}J(c) (4)

and

v^{*}=v_{GM}(c^{*}) . (5)

1.4 Rank minimization problem

In the no‐information model, there exists a non‐decreasing sequence of thresh‐

olds \{s_{k}, 1\leq k\leq n\} such that the optimal rule is described as

$\tau$_{n}=\displaystyle \min\{k\geq 1 : R_{k}\leq s_{k}\},

where R_{k} denotes the relative rank of the kth object. Equivalently, $\tau$_{n}

can be characterized by the non‐decreasing cut‐off points \{t_{k}, 1 \leq k \leq n\}
where t_{k} = \displaystyle \min\{r\geq 1 : s_{r}\leq k\} , because $\tau$_{n} stops with the rth object if

R_{r} \leq  k and r \geq  t_{k} , provided that $\tau$_{n} have not stopped before t_{k} . Such

a rule is sometimes referred to as a cut‐off point rule. The optimal rule

asymptotically gives surprisingly good performance

\displaystyle \prod_{j=1}^{\infty}(\frac{j+2}{j})^{\frac{1}{J+1}}\approx 3.8695.
2 Robbins� problem

The full‐information version of the rank minimization problem is called Rob‐

bins� problem. Let A_{k}, 1 \leq k\leq n , be the (absolute) rank of the kth obser‐

vation X_{k} . Then we have

A_{k}=\displaystyle \sum_{j=1}^{n}I(X_{j}\leq X_{k}) , (6)
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where we denote the indicator function of the event E by I(E) ,
and define

the smaller observations to be the better ones for convenience (no generality
is lost by doing so). The objective is to find a stopping rule $\tau$^{*} that minimizes

the expected rank

E[A_{$\tau$^{*}}]=\displaystyle \inf_{ $\tau$}E[A_{ $\tau$}]=V_{n}.
To examine V_{n} and V = \displaystyle \lim_{n\rightarrow\infty}V_{n} is of interest. Robbins� problem is

considered to be hard and not solved completely. What makes it hard is

that the optimal stopping rule depends on the whole history of observations

in the sense that the decision of either to stop or not at stage k depends on

X_{1} ,
. . .

, X_{k} . Bruss and Ferguson(1993) considered the class of memoryless
stopping rules

N=N(\displaystyle \mathrm{a})=\min\{k\geq 1 : X_{k}\leq a_{k}\},

where \mathrm{a}= ( a_{1}, a2, . . .

, a_{n} ) is a given sequence of thresholds with 0\leq a_{k}\leq 1
for k<n and a_{n}=1 , and gave the corresponding expected rank

E[A_{N(\mathrm{a})}]=1+\displaystyle \frac{1}{2}\sum_{k=1}^{n}(\prod_{i=1}^{k-1}(1-a_{i})) [(n-k)a_{k}^{2}+\displaystyle \sum_{j=1}^{k-1}\frac{((a_{k}-a_{j})^{+})^{2}}{1-a_{j}}]
The sequence of thresholds that deserves special attention, suggested by
the similarity to Moser�s problem of minimizing the expectation of X_{N} , is

a_{k}=2/(n-k+2) for which Bruss and Ferguson showed V_{n}\leq E[A_{N(\mathrm{a})}] \leq
 1 +4(n- 1)/3(n+ 1) \leq  7/3 for all n and hence V \leq  7/3 . To obtain

a better upper bound for V , Assaf and Samuel‐Cahn(1996) extended the

above sequence to the class of sequences a_{k} = a_{k}(c) = c/(n-k+c) for

c > 1 and found that c =  1.9469\ldots attains the minimal expected rank

2.3318. . . among this class, i.e.  V\leq 2.3318.
Let W be the limiting minimal expected rank among the class of memo‐

ryless rules. Assaf and Samuel‐Cahn(1996) showed that 2.295<W<2.3267

by elaborate analysis (note that the value 2.3267. . . is obtained from the

explicit fairure rate function that approximates the discrete thresholds a_{k} ).
Bruss and Ferguson(1993) gave an estimate W = 2.32659 by solving the

system of equations \partial E[A_{N(\mathrm{a})}]/\partial a_{k} = 0, 1 \leq  k < n , numerically. Though
V \leq  W , the essential question of either V < W or V = W is still unan‐

swered.

To obtain a lower bound for V , Bruss and Ferguson(1993) modified the

problem by changing the loss function (6) to

A_{k}^{(m)}=1+\displaystyle \min\{m, \sum_{j=1}^{k-1}I(X_{j}<X_{k})\}+(n-k)X_{k}
for m= 1

, 2, . . .. The modified problem is in favour of the decision‐maker,
because the present loss (relative rank of X_{k} ) is truncated by m i.e. rank
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1 to m are counted as their value and any higher rank as m+1 , and the

future loss is replaced by its expectation (n-k)X_{k} given X_{1} ,
. . .

, X_{k} without

loss of generality. Let V_{n}^{(m)} be the minimal expected loss for the A_{k}^{(m)}.
Then V_{n}^{(m)} , which can be shown to be non‐decreasing in m and also in n,

become lower bounds for V_{n} and hence for V . Let V^{(m)} = \displaystyle \lim_{n\rightarrow\infty}V_{n}^{(m)}.
This truncation gives a considerable simplification for computation, yielding
V^{(1)} =1.462 ,

. . .

, V^{(5)} =1.908 . Thus the best lower bound for V is known

to be 1.908.

The interested reader is referred to Bruss(2005) for what is known about

Robbins� problem.

3 Ferguson secretary problem

Martin Gardner�s February 1960 column in Scientific American, described

below as the game of googol, is considered to be the first appearance in print
of a secretary problem.

(Googol) Ask someone to take as many slips of paper as he pleases, and

on each slip write a different positive number. The numbers may range from
small fractions of one to a number the size of googol (1 followed by a hundred

0' s) or even larger. These slips are turned face down and shuffled over the

top of a table. One at a time you turn the slips face up. The aim is to stop

turning when you come to the number that you guess to be the largest of the

series. You cannot go back and pick up a previously turned slip. If you turn

over all slips, then of course you must pick the last one turned.

After reviewing various secretary problems studied so far, Ferguson (1989)
returned again to googol and asked a question

� Who solved the secretary

problem?� His answer was
�

Nobody.� Ferguson pointed out that googol is

not the no‐information best‐choice problem, because the actual values of the

numbers are revealed to the decision‐maker (not only their relative ranks)
and that googol is a two person zero sum game, because there is

� someone�

who may behave as an adversary, i.e. he may choose the numbers to make

your decision of selecting the largest as difficult as possible.
Ferguson raised two questions.

��

First, can you guarantee a higher prob‐
ability of selecting the largest number if you allow your decision rule to

depend on the actual values of the numbers?� �

Second, if you are told how

this �someone� is choosing the numbers to place on the slips, can you now

guarantee a higher probability of selecting the largest number?� Ferguson
also required that since the numbers are shuMed, they may as well be chosen

to be an exchangeable sequence. The heart of the above problem, referred to

as Ferguson Secretary Problem, was explicitly formulated by Samuels (1989)
as follows:
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Given n , either find an exchangeable sequence of continuous random

variables, X_{1}, X_{2} ,
. . .

, X_{n} , for which, among all stopping rules,  $\tau$ , based on

the  X' \mathrm{s}, \displaystyle \sup_{ $\tau$}P\{X_{ $\tau$}=\max (X_{1}, X2, . . . , X_{n})\} is achieved by a rule based

only on the relative ranks of the X�s‐or prove that no such sequence exists.

Note that \displaystyle \sup_{ $\tau$}P\{X_{ $\tau$}=\max (X_{1}, X2, . . . , X_{n})\} is just v_{n} in (1). Continuity
is assumed so that there will be no ties. Ferguson himself has come within

epsilon of solving this problem. He has given, for each n and  $\epsilon$ > 0 , ex‐

changeable sequences such that the best rule based only on relative ranks

has success probability within  $\epsilon$ of the supremum. However, the question of

whether this supremum can actually be attained still remained unsolved.

Samuels (1989) showed that the answer is negative for  n=2 by using
Cover�s argument. Silverman and Nadas(1992) showed that the answer is

positive for n = 3 . Gnedin (1994) finally solved the Ferguson secretary
problem. In fact, he gave an affirmative answer for all n>2 by showing that

such an exchangeable sequence exists and its probability density function is

given by

p(x_{1}, \ldots, x_{n})= \left\{\begin{array}{l}
\frac{ $\epsilon$}{2n}[\max(x_{1}, \ldots, x_{n})]^{-n+ $\epsilon$}, 0<\max(x_{1}, \ldots, x_{n})<1\\
\frac{ $\epsilon$}{2n}[\max(x_{1}, \ldots, x_{n})]^{-n- $\epsilon$}, \max(x_{1}, \ldots, x_{n})>1
\end{array}\right.
for sufficiently small  $\epsilon$.

Beyond the best‐choice problem, Gnedin and Krengel (1996) considered

more general problem of minimizing the expected loss. That is, when the

loss q(i) is incurred if we stop with the ith best of all n objects, they beged a

question of whether, for given \{q(i)\} , there exists an exchangeable sequence

of continuous random variables, X_{1}, X_{2} ,
. . .

, X_{n} , for which the observation

of the values of the X_{i} �s gives no advantage over the observation of just the

relative ranks of the variables.

4 PPS paradox

The coincidence of the asymptptic values of the quite different discrete time

optimal stopping problems is called PPS (Petruccelli‐Porosinski‐Samuels)
paradox according to Gnedin (2004). He gave a unified approach to give a

resolution to this paradox.

4.1 Petruccelli problem

Petruccelli (1980) considered a best‐choice problem in which the observa‐

tions are iid uniform on the unit interval ( $\theta$- \displaystyle \frac{1}{2},  $\theta$+\frac{1}{2}) with  $\theta$ unknown.
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The search for a minimax stopping rule (i.e. a best invariant rule) is equiv‐
alently reduced to the partial‐information problem in which we observe, at

each stage, the range as well as whether or not the current observation is a

relative maximum, given that the observations  X_{1} ,
. . .

, X_{n} are iid uniform

on (0,1) . Let R_{k} =\displaystyle \max(X_{1}, \ldots, X_{k})-\min(X_{1}, \ldots, X_{k}) be range at stage
k . Then the minimax rule is described as

$\tau$_{n}(\displaystyle \mathrm{a})=\min\{k\geq 1 : R_{k}\geq a_{k}, X_{k}=\max(X_{1}, \ldots, Xk)\},

where \mathrm{a}= ( a_{1}, a2, . . .

, a_{n} ) is a monotone sequence of thresholds with a_{k} for

k<n being a unique root  x\in [0 ,
1 ] of the equation

\displaystyle \sum_{i=1}^{n-k}\frac{1}{i}\left(\begin{array}{l}
n-k\\
i
\end{array}\right)\int_{x}^{1}v^{n-k-i}(1-v)^{i}dv=\int_{x}^{1}v^{n-k}dv.
The limiting probability, as  n\rightarrow \infty ,

of choosing the largest of  X_{1} ,
. . .

, X_{n}
denoted by v_{PET} is given by

v_{PET}=(e^{-c_{p}}-c_{p}I(c_{p}))J(c_{p})+(e^{c_{p}}-1)I(c_{p})\approx 0.4352 , (7)

where c_{p}\approx 2.1198 is a unique root c of the equation

1+J(-c)=e^{-c}(1-J(c)) . (8)

4.2 Porosinski problem

A natural extension of the basic problems is to allow the number of objects
to be random. Let N denote a random variable representing the number of

objects and assume N to be independent of the arrival order of the objects
and all else. The objective is to select the best of all N objects. When

N is uniform on \{ 1, 2, . . .

, n\} in the full‐information model, this problem is

referred to as Porosinski problem. The optimal rule of Porosinski problem
is described as

$\tau$_{n}(\displaystyle \mathrm{a})=\min\{k\geq 1 : X_{k}\geq a_{k}, X_{k}=\max(X_{1}, \ldots, Xk)\},

where \mathrm{a}= ( a_{1}, a2, . . .

, a_{n} ) is a monotone sequence of thresholds with a_{k} for

k<n being a unique root  x\in [0 ,
1 ] of the equation

n-k n-k-1 n-k-i

\displaystyle \sum_{i=0}X^{i} = \sum_{i=0} x^{i} \sum_{j=1} (1 -X^{j})/j.
The limiting probability, as  n\rightarrow\infty

,
of choosing the largest of  X_{1} ,

. . .

, X_{N}
denoted by v_{POR} is given by

v_{POR}=(e^{-c_{p}}-c_{p}I(c_{p}))J(c_{p})+(e^{c_{p}}-1)I(c_{p})\approx 0.4352 , (9)
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where c_{p} \approx  2.1198 is as defined by (8). This was derived by Porosinski

(2002) in a different but equivalent expression.

Comparing (9) to (7), Porosinski (2002) noticed an unexpected coin‐

cidence v_{POR} = v_{PET} between two quite different best‐choice problems.
However, Samuels (2004) pointed out that (9) is in effect correct but the

argument to derive it is not. Samuels also said that his mistake nevertheless

reveals a new way of proving v_{POR} =v_{PET} by showing that each is equal
to vGM(c_{p}) (see (3) for vGM(c) ). These coincidence will be confirmed using
PPP (planar Poisson process) model in Section 5.

4.3 Duration problem

As a version of the secretary problem, Ferguson et al. (1992) considered

the duration problem, in which the objective is to maximize the time of

possession of a relatively best object (i.e. candidate). We only select a

candidate, receiving a payoff of 1 plus the number of future observations

before a new candidate appears or until the final stage n is reached. Define

T_{k} as the arrival time of the first candidate after time k if there is one, and

as n+1 if there is none. Then the payoff earned by possessing a candidate

selected at time k is (T_{k}-k)/n (division by n is for normarization).
The optimal rule of thef ull‐information model is described as

$\tau$_{n}(\displaystyle \mathrm{a})=\min\{k\geq 1 : X_{k}\geq a_{k}, X_{k}=\max(X_{1}, \ldots, Xk)\},

where \mathrm{a}= ( a_{1}, a2, . . .

, a_{n} ) is a monotone sequence of thresholds with a_{k} for

k<n being a unique root  x\in [0 ,
1 ] of the equation

\displaystyle \sum_{i=0}^{n-k}(h_{n-k-i}-h_{i}-1)x^{i}=0
where h_{k}=\displaystyle \sum_{j=1}^{k}1/j, k\geq 1 and h_{0}=0 . The optimal payoff is

v_{n}=\displaystyle \frac{1}{n} [h_{n}+\sum_{k=1}^{n}\sum_{j=k}^{n}\frac{1}{j}(h_{n-j}-h_{j-k}-1)a_{k}^{j}]
Moreover, the limiting value v_{DUR}=\displaystyle \lim_{n\rightarrow\infty}v_{n} is given by

v_{DUR}=(e^{-c_{p}}-c_{p}I(c_{p}))J(c_{p})+(e^{c_{p}}-1)I(c_{p})\approx 0.4352 , (10)

where c_{p}\approx 2.1198 is as defined by (8). See Samuels (2004), Gnedin (2004)
and Mazalov and Tamaki (2006) for (10). Look (10)! We have another

coincidence v_{POR}=v_{DUR}.
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4.4 Planar Poisson process model

The planar Poisson process (PPP) model is widely known to be an appro‐

priate setting in which we can define the infinite version of the correspond‐
ing finite problems. Gnedin (1996) used PPP to study the full‐information

best‐choice problem posed by Gilbert and Mosteller (1966). Further ap‐

plicability to other full‐information problems, e.g. Petruccelli problem in

Section 4.1, Porosinski problem in Section 4.2, or duration problem in Sec‐

tion 4.3 was demonstrated by Samuels (2004). We use the PPP developed
by Samuels (see Section 9, 2004) and show how to use this PPP to solve the

full‐information best‐choice problem of Gilbert and Mosteller (1966). The

semi‐infinite strip can be scanned from left to right by shifting a vertical

detector and the scanning can be stopped each time a point in the PPP,
referred to as atom, is detected. Let P(t, y) denote the probability of suc‐

cess if we choose the point (t, y) in the PPP, i.e., we stop at time t with a

relatively best atom having value y . Then, introducing Poisson probability
- $\lambda \lambda$^{k}Pois (k,  $\lambda$)=e \overline{k!} , we have P(t, y)=Pois(0, y(1-t On the other hand,

let Q(t, y) denote the probability of success if we do not choose the point
(t, y) , but instead choose the point related to the next relatively best atom,
if any, then Q(t, y)=\displaystyle \sum_{j=1}^{\infty}\frac{1}{j}Pois(j, y(1-t Solving for the locus of point

(t, y) at which P(t, y) =Q(t, y) yields y(1-t) =c^{*} for c^{*}\approx 0.80435 given
as a root c of J(c) = 1 in Section 1.3. Moreover, since P(t, y) \geq  Q(t, y)
implies that P(t', y') \geq  Q(t', y') for t' >t, y' < y , we are in the monotone

case of optimal stopping and can conclude that the optimal rule stops with

the first relatively best atom, if any, that lies below the threshold curve

y=c^{*}/(1-t) .

Let T be the arrival time of the first (leftmost) atom that lies below the

threshold curve y = c^{*}/(1-t) and S the time when the value of the best

(lowest) atom above threshold is now equal to the threshold. Then, T and

S are independent and their distributions are given by

P\{T>t\}=Pois (0, \displaystyle \int_{0}^{t}g(r)dr) , P\{S>s\}=Pois (0, \displaystyle \int_{0}^{s}(g(s)-g(r))dr) ,

where g(r)=c^{*}/(1-r) , 0<r< 1 . From the form of the optimal rule, the

optimal success probability can be calculated as

v^{*} = \displaystyle \int_{0}^{1}\int_{0}^{t}P(s, \frac{c^{*}}{1-s})f_{S}(s)f_{T}(t)dsdt
+\displaystyle \int_{0}^{1}\int_{0}^{s} [\frac{1-t}{c}*\int_{0}^{c^{*}/(1-t)}P(t, y)dy]f_{T}(t)f_{S}(s)dtds,

where f_{T}(t) and f_{S}(s) are the densities of T and S respectively. The straight‐
forward calculation yields (2).

Samuels (2004) called this derivation of v^{*} a forward‐looking argument.
In addition, he gave a backward‐looking argument introducing a threshold
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curve y= c/(1-t) for any c> 0 (c is taken as c^{*} in the forward‐looking
argument). Let U_{1} be the time of the best arrival and E_{1} be its value.

Then the arrival time and value of the best previous arrival are of the form

U_{1}U_{2} and E_{1}+E_{2}/U_{1} respectively from the PPP property, where E_{1}, E_{2}, U_{1}
and U_{2} are independent random variables with E_{1} and E_{2} each exponentially
distributed with parameter one and U_{1} and U_{2} each uniformly distributed on

the interval (0,1) . Since we can choose the best if the best arrival is below

the thereshold and the best previous arrival is above, the corresponding
probability is expressed as

P (E_{1}< \displaystyle \frac{c}{1-U_{1}} and E_{1}+\displaystyle \frac{E_{2}}{U_{1}}>\frac{c}{1-U_{1}U_{2}}),
which can be written as vGM(c) in (3), yielding (4) and (5).

4.5 Fourfold coincidence

Corresponding to Porosinski problem in Section 4.2 and Petruccelli problem
in Section 4.1, we can define two functions of c(>0) , analogous to (3),

v_{POR}(c) = P(B_{1} <c<B_{2}) ,

v_{PET}(c) = P(C_{1} <c<C_{2})

with

B_{1} = \displaystyle \frac{E_{1}}{U_{1}}(1-U_{1}U_{2}) , B_{2}= (\displaystyle \frac{E_{1}}{U_{1}}+\frac{E_{2}}{U_{1}U_{2}})(1-U_{1}U_{2}U_{3}) ,

C_{1} = (E_{1}+\displaystyle \frac{E_{2}}{U_{1}})(1-U_{1}) , C_{2}= (E_{1}+\displaystyle \frac{E_{2}}{U_{1}}+\frac{E_{3}}{U_{1}U_{2}})(1-U_{1}U_{2})
where E_{1}, E_{2}, E_{3}, U_{1}, U_{2} and U3 are independent random variables with

E_{1}, E_{2} and E3 each exponentially distributed with parameter one and U_{1}, U_{2}
and U3 each uniformly distributed on the interval (0,1) . Samuels (2004) then

showed that

v_{POR} = v_{POR}(c_{p}) ,

v_{PET} = v_{PET}(c_{p}) ,

where c_{p} is as defined by (8).
Remember the coincidence v_{POR}=v_{PET} discovered by Porosinski (2002)

in Section 4.2. Why his argument was incorrect is that he erroneously
took vGM(c_{p}) as v_{POR} . He should have computed v_{POR}(c_{p}) for v_{POR} in‐

stead. Samuels (2004) correctly proved this coincidence by showing that

v_{POR}(c_{p}) =vGM(c_{p}) and v_{PET}(c_{p}) =vGM(c_{p}) (i.e. vcM(c_{p}) plays a role of

mediator). Including v_{DUR} , we have fourfold coincidence v_{POR}=v_{PET} =

v_{DUR}=v_{GM} , where vGM=vGM (cp).
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