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ABSTRACT. We present a survey of results concerning the singu‐
larities of the scattering kernel s(t,  $\theta,\ \omega$) which is the Fourier trans‐

form of the scattering amplitude a( $\lambda$,  $\theta,\ \omega$) . These singularities are

easy to be measured and they are related to the sojourn times

of the ( $\omega$,  $\theta$)‐rays incoming with direction  $\omega$\in \mathrm{S}^{n-1} and outgoing
with direction  $\theta$\in \mathrm{S}^{n-1} . The rays with back‐scattering directions

 $\theta$ =
�

- $\omega$ are used in all radar applications and this lead to a re‐

construction of the convex hull of the obstacle. The problem is to

show that if we know the sojourn times of ( $\omega$,  $\theta$) ‐rays for almost

an directions ( $\omega$,  $\theta$)\in \mathrm{S}^{n-1}\times \mathrm{S}^{n-1} we can determine uniquely the

obstacle. We present several results leading to a solution of this

problem for a class of obstacles.

1. SCATTERING KERNEL

Let K\subset \mathbb{R}^{n}, n\geq 2 , be a bounded domain with C^{\infty} boundary \partial K

and connected complement  $\Omega$=\mathbb{R}^{n}\backslash K . Such K is called an obstacle

in \mathbb{R}^{n} . We consider the Dirichlet problem for the Laplacian but similar

considerations can be applied to other boundary value problems as

Neumann and Robin ones. Let ( $\theta,\ \omega$) \in \mathrm{S}^{n-1} \times \mathrm{S}^{n-1} . Consider the

outgoing solution v_{s}=v_{s}(x,  $\omega$,  $\lambda$) of the problem

\left\{\begin{array}{l}
( $\Delta$+$\lambda$^{2})v_{s}=0 \mathrm{i}\mathrm{n}  $\Omega$\circ,\\
v_{s}+e^{-\mathrm{i} $\lambda$\langle X,W\rangle}=0 \mathrm{o}\mathrm{n} \partial K
\end{array}\right.
satisfying the so called (\mathrm{i} $\lambda$)- outgoing Sommerfeld radiation condition.

This means that as |x|=r\rightarrow\infty we have

 v_{s}(r $\theta,\ \omega$,  $\lambda$)=\displaystyle \frac{e^{-\mathrm{i} $\lambda$ r}}{r^{(n-1)/2}}(a( $\lambda$,  $\theta,\ \omega$)+\mathcal{O}(\frac{1}{r})) , x=r $\theta$.
The scattering amplitude has the representation (see [5],[10])

a( $\lambda$,  $\theta$,  $\omega$) = \displaystyle \frac{(\mathrm{i} $\lambda$)^{(n-3)/2}}{2(2 $\pi$)^{(n-1)/2}}\int_{\partial K}(\mathrm{i} $\lambda$<  $\nu$(x)_{)} $\theta$>e^{\mathrm{i} $\lambda$<x, $\theta$- $\omega$>}+e^{\mathrm{i} $\lambda$<x, $\theta$>}\frac{\partial v_{s}}{\partial $\nu$}(x,  $\lambda$))dS_{x},
(1.1)
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where <. ,
. > denotes the scalar product in \mathbb{R}^{n}.

We assume for simplicity n odd but similar results are true for n

even. Let  $\theta$\neq $\omega$ and consider the scattering kèrnel  s(t,  $\theta$,  $\omega$) defined as

the Fourier transform of the scattering amplitude:

s(t,  $\theta,\ \omega$)=\displaystyle \mathcal{F}_{ $\lambda$\rightarrow t}((\frac{ $\lambda$}{2 $\pi$ \mathrm{i}})^{(n-1)/2}\overline{a( $\lambda,\ \theta,\ \omega$)}) ,

where (\mathcal{F}_{ $\lambda$\rightarrow t} $\varphi$)(t) = (2 $\pi$)^{-1}\displaystyle \int e^{\mathrm{i}t $\lambda$} $\varphi$( $\lambda$)d $\lambda$ for functions  $\varphi$\in S(\mathbb{R}) . Let

V(t, x; $\omega$) be the solution of the problem

\left\{\begin{array}{l}
(\partial_{t}^{2}-$\Delta$_{x})V=0 \mathrm{i}\mathrm{n} \mathbb{R}\times $\Omega$\circ,\\
V+ $\delta$(t-\langle x,  $\omega$\rangle)=0\mathrm{o}\mathrm{n}\mathbb{R}\times\partial K,\\
V|_{t<-t_{0}}=0.
\end{array}\right.
Then we have

s( $\sigma$,  $\theta,\ \omega$)=(-1)^{(n+1)/2}2^{-n}$\pi$^{1-n}\displaystyle \int_{\partial K}\partial_{t}^{n-2}\partial_{ $\nu$}V(\{x,  $\theta$\rangle- $\sigma$, x; $\omega$)dS_{x},
where the integral is interpreted in the sense of distributions. Our aim

will be to examine the singularities of s(t,  $\theta$,  $\omega$) with respect to t.

First we define the so called reflecting ( $\omega$,  $\theta$)‐rays. Given two direc‐

tions ( $\theta$,  $\omega$)\in \mathrm{S}^{n-1}\times \mathrm{S}^{n-1} , consider a curve  $\gamma$\in $\Omega$ having the form

 $\gamma$=\displaystyle \bigcup_{i=0}^{m}l_{i}, m\geq 1,
where l_{i} = [x_{i}, x_{i+1}] are finite segments for i= 1, m-1, x_{i} \in \partial K,
and l_{0} (resp. l_{m} ) is the infinite segment starting at x_{1} (resp. at x_{m} )
and having direction - $\omega$ (resp.  $\theta$). The curve  $\gamma$ is called a reflecting
( $\omega$,  $\theta$)‐ray in  $\Omega$ if for  i=0 , 1, m-1 the segments l_{i} and l_{i+1} satisfy
the law of reflection at x_{i+1} with respect to \partial K . The points x_{1}, x_{m}

are called reflection points of  $\gamma$ and this ray is called ordinary reflecting
(or simply reflecting) if  $\gamma$ has no segments tangent to \partial K.

Next, we define two notions related to ( $\omega$,  $\theta$) ‐rays (also called scatter‐

ing rays). Fix an arbitrary open ball U_{0} with radius a>0 containing
K . For  $\xi$ \in \mathrm{S}^{n-1} introduce the hyperplane Z_{ $\xi$} orthogonal to  $\xi$ and

such that  $\xi$ is pointing into the interior of the open half space  H_{ $\xi$} with

boundary Z_{ $\xi$} containing U_{0} (see Figure). Let $\pi$_{ $\xi$} : \mathbb{R}^{n} \rightarrow  Z_{ $\xi$} be the

orthogonal projection. For a reflecting ( $\omega$,  $\theta$) ‐ray  $\gamma$ in  $\Omega$ with successive

reflecting points  x_{1}, x_{m} the sojourn time T_{ $\gamma$} of  $\gamma$ is defined by

 T_{ $\gamma$}=\displaystyle \Vert$\pi$_{ $\omega$}(x_{1})-x_{1}\Vert+\sum_{i=1}^{ $\gamma$ n-1}\Vert x_{i}-x_{i+1}\Vert+\Vert x_{m}-$\pi$_{- $\theta$}(x_{m})\Vert-2a.
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Obviously, T_{ $\gamma$}+2a coincides with the length of this part of  $\gamma$ which

lies in  H_{ $\omega$}\cap H_{- $\theta$} . In fact, the sojourn time T_{ $\gamma$} does not depend on the

choice of the ball U_{0} since it follows easily that

\Vert$\pi$_{ $\omega$}(x_{1}) - x1 \Vert = a+ \{x_{1},  $\omega$\rangle, \Vert x_{m} - $\pi$_{- $\theta$}(x_{m})\Vert = a- \langle x_{m},  $\theta$) ,

therefore

T_{ $\gamma$}=\displaystyle \langle x_{1)} $\omega$)+\sum_{i=1}^{m-1}\Vert x_{i}-x_{i+1}\Vert-\langle x_{m},  $\theta$) .

Given an ordinary reflecting ( $\omega$,  $\theta$)‐ray  $\gamma$ set  u_{ $\gamma$} = $\pi$_{ $\omega$}(x_{1}) . There

exists a small neighborhood W_{ $\gamma$} of u_{ $\gamma$} in Z_{ $\omega$} such that for every u\in W_{ $\gamma$}
there is an unique direction  $\theta$(u) \in \mathrm{S}^{n-1} and points x_{1}(u) , x_{m}(u)
which are the successive reflection points of a reflecting (u,  $\theta$(u))‐ray in

 $\Omega$ with  $\pi$_{ $\omega$}(x_{1}(u))=u . This defines a smooth map

J_{ $\gamma$}:W_{ $\gamma$}\ni u\rightarrow $\theta$(u)\in \mathrm{S}^{n-1}

and dJ_{ $\gamma$}(u_{ $\gamma$}) is called a differential cross section related to  $\gamma$ . We say
that  $\gamma$ is non‐degenerate if

\det dJ_{ $\gamma$}(u_{ $\gamma$})\neq 0.

The notion of sojourn time as well as that of differential cross section

are well known in the physical literature. The definitions given above

are due to Guillemin [2].
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For strictly convex obstacles all (non‐trivial) reflecting rays have only
one reflection point x^{+} in the illuminated region and the corresponding
sojourn time is equal to $\tau$_{+}=<x^{+},  $\omega$- $\theta$> For  $\theta$\neq $\omega$ , A. Majda [4]
proved that  a( $\lambda$, \mathrm{w},  $\theta$) has a complete asymptotic expansion

a( $\lambda$,  $\omega$,  $\theta$)=e^{\mathrm{i} $\lambda$\langle x^{+}, $\omega$- $\theta$\rangle}\displaystyle \sum_{j=0}^{N}c_{j}$\lambda$^{-j}+\mathcal{O}(| $\lambda$|^{-N-1}) , \forall N\in \mathbb{N},
and for t close to -T_{+} we have

s(t,  $\theta$,  $\omega$)= (\displaystyle \frac{-1}{2 $\pi$})^{(n-1)/2}|dJ_{ $\gamma$+}(u_{ $\gamma$+})|^{-1/2}$\delta$^{(n-1)/2}(t+T_{+})
+lower order singularities. (1.2)

which gives
sing \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}_{t}s(t,  $\theta,\ \omega$)=\{-$\tau$_{+}\}.

A simple geometric argument implies that

|\det dJ_{ $\gamma$+}(u_{ $\gamma$+})|=4| $\theta$- $\omega$|^{(n-3)}\mathcal{K}(x_{+}) ,

where \mathcal{K}(y) is the Gauss curvature at y\in\partial K.
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Here x^{+} denotes the point in the illuminated region (see Figure 1)

\partial K_{+}( $\omega$)=\{y\in\partial K:<\mathrm{v}(y),  $\omega$><0\}
related to  $\omega$ , and we have used the convention that the obstacle lies in

the half‐space

\{x\in \mathbb{R}^{n}:<x,  $\theta$- $\omega$><0\}.

FIGURE 1. Strictly convex obstacle

2. GENERALIZED ( $\omega$,  $\theta$) ‐RAYS

It is much more complicated to get similar results in the case of

non‐convex obstacles. Now the information obtained by means of rays

having only one reflection is no longer sufficient. One needs to con‐

sider multiple reflecting ( $\omega$,  $\theta$) ‐rays leading to isolated singularities of

s(t,  $\theta,\ \omega$) . Roughly speaking, the singularities of the scattering kernel

are amongst the sojourn times of ( $\omega$,  $\theta$) ‐rays, however now one has

to consider not only simply reflecting ( $\omega$,  $\theta$) ‐rays Uut \mathrm{a}\mathrm{U} generalized
geodesics incoming with direction  $\omega$ and outgoing with direction  $\theta$.

These rays are simply called ( $\omega$,  $\theta$) ‐rays. In general, there exist ( $\omega$,  $\theta$)-
rays with grazing or gliding segments (see Figure 2).

The precise definition of an ( $\omega$,  $\theta$) ‐ray is based on the notion of a

generalized bicharacteristic of the operator \square =\partial_{t}^{2}-$\Delta$_{x} given as tra‐

jectories of the generalized Hamilton flow \mathcal{F}_{t} in  $\Omega$ generated by the

symbol \displaystyle \sum_{i=1}^{n}$\xi$_{i}^{2}-$\tau$^{2} of \square (see [7], Chapter 1, [10]). In general, \mathcal{F}_{t} is

not smooth and in some cases there may exist two different integral
curves issued from the same point in the phase space as it was shown

by an example of M. Taylor [14]. To avoid this situation we assume
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FIGURE 2. Generalized ( $\omega$,  $\theta$) ‐ray with gliding segments

that the following generic condition is satisfied.

( \mathcal{G} ) If for (x,  $\xi$)\in T^{*}(\partial K) the normal curvature of \partial K vanishes

of infinite order in direction  $\xi$ , then \partial K is convex at x in direction  $\xi$.

More generally, working with the restriction of the principal symbol
of \square to a level surface  $\tau$=$\tau$_{0}\neq 0 ,

one defines generalized bicharacetris‐

tics on the set \dot{T}^{*}( $\Omega$) of all (x,  $\xi$) \in  T^{*}( $\Omega$) such that  $\xi$ \neq  0 . Given

 $\sigma$= (x,  $\xi$) \in\dot{T}^{*}( $\Omega$) , there exists a unique generalized bicharacteristic

(x(t), $\xi$(t)) \in\dot{T}^{*}( $\Omega$) such that x(0) =x and  $\xi$(0) = $\xi$ . Set \mathcal{F}_{t}(x,. $\xi$) =

(x(t), $\xi$(t)) for all t \in \mathbb{R} . This defines a flow \mathcal{F}_{t} : T^{*}( $\Omega$) \rightarrow  T^{*}( $\Omega$)
which is called the generalized geodesic flow on \dot{T}^{*}( $\Omega$) (see [7], [10]).
Obviously, it leaves the cosphere bundle S^{*}( $\Omega$) invariant.

At points of transversal reflection at \dot{T}_{\partial K}^{*}( $\Omega$) the flow \mathcal{F}_{t} is discon‐

tinuous. To make it continuous, consider the quotient space T_{b}^{*}( $\Omega$) =

\dot{T}^{*}( $\Omega$)/\sim \mathrm{o}\mathrm{f}\dot{T}^{*}( $\Omega$) with respect to the following equivalence relation:

 $\rho$\sim $\sigma$ if and only if  $\rho$= $\sigma$ or  $\rho$,  $\sigma$\in T_{\partial K}^{*}( $\Omega$) and either \mathrm{h}\mathrm{m}_{t\nearrow 0}\mathcal{F}_{t}( $\rho$)= $\sigma$
or \mathrm{h}\mathrm{m}_{t\searrow 0}\mathcal{F}_{t}( $\rho$) = $\sigma$ . Let  S_{b}^{*}( $\Omega$) be the image of S^{*}( $\Omega$) in \dot{T}^{*}( $\Omega$)/ \sim.

Melrose and Sjöstrand [7] proved that the natural projection of f_{t} on

T_{b}^{*}( $\Omega$) is continuous.

After these definitions, a curve  $\gamma$=\{x(t) \in $\Omega$ : t\in \mathbb{R}\} is called an

( $\omega$,  $\theta$) ‐ray if there exist real numbers t_{1}<t_{2} so that

\tilde{ $\gamma$}(t)=(x(t),  $\xi$(t))\in S_{b}^{*}( $\Omega$)

is a generalized bicharacteristic of \square and

 $\xi$(t)= $\omega$ for  t\leq t_{1},  $\xi$(t)= $\theta$ for  t\geq t_{2},
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provided that the time t increases when we move along \tilde{ $\gamma$} . Denote by
\mathcal{L}_{ $\omega,\ \theta$}( $\Omega$) the set of all ( $\omega$,  $\theta$) ‐rays in  $\Omega$ . The sojourn time  T_{ $\delta$} of  $\delta$ \in

\mathcal{L}_{ $\omega,\ \theta$}( $\Omega$) is defined as the length of the part of  $\delta$ lying in  H_{ $\omega$}\cap H_{- $\theta$}.

3. SINGULARITY OF AN ISOLATED ( $\omega$,  $\theta$)-\mathrm{R}\mathrm{E} $\Gamma$LECTING RAY

Turning to the problem of the behavior of  s(t,  $\theta$,  $\omega$) near singularities,
assume that  $\gamma$ is a fixed non‐degenerate ordinary reflecting ( $\omega$,  $\theta$) ‐ray

such that

T_{ $\gamma$}\neq T_{ $\delta$} for every  $\delta$\in \mathcal{L}_{ $\omega,\ \theta$}( $\Omega$)\backslash \{ $\gamma$\} . (3.1)
By using the continuity of the generalized Hamilton flow, it is easy to

show that

(-T_{ $\gamma$}-c, -T_{ $\gamma$}+ $\epsilon$)\cap sing \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}_{t}s(t,  $\theta,\ \omega$)=\{-T_{ $\gamma$}\}
for  $\epsilon$>0 sufficiently small. The singularity of s(t,  $\theta$,  $\omega$) at t=-T_{ $\gamma$} can

be investigated by using a global construction of a parametrix of the

problem

\left\{\begin{array}{l}
(\partial_{t}^{2}- $\Delta$)V=F(t, x) \mathrm{i}\mathrm{n} \mathbb{R}\times $\Omega$\circ,\\
V+ $\delta$(t-\{x, $\omega$\rangle)=g(t, x) \mathrm{o}\mathrm{n} \mathbb{R}\times\partial K,\\
V|_{t<-t_{0}}=0
\end{array}\right.
with smooth F(t, x) , g(t, x) , where V is given by a sum of global Fourier

integral operator, related to the composition of Fourier integral operi
ators determined by the successful reflexions of  $\gamma$ (see Chapter 4 in

[10]).
Theorem 3.1 ([9], [10]). Under the assumption (3.1) we have

-T_{ $\gamma$}\in sing \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}_{t}s(t,  $\theta,\ \omega$) (3.2)
and for t close to-T_{ $\gamma$} the scattering kernel has the form

s(t,  $\theta$,  $\omega$)= (\displaystyle \frac{1}{2 $\pi$ i})^{(n-1)/2}(-1)^{m_{ $\gamma$}-1}\exp(\mathrm{i}\frac{ $\pi$}{2}$\beta$_{ $\gamma$}) (3.3)

\times|\det dJ_{ $\gamma$}(u_{ $\gamma$})|^{-1/2}$\delta$^{(n-1)/2}(t+T_{ $\gamma$})+ lower order singularities.

Here m_{ $\gamma$} ?\dot{S} the number of reflections of  $\gamma$ , and  $\beta$_{ $\gamma$} \in \mathbb{Z} is related to

Maslov index and to a signature of a matrix.

Remark 3.2. For strictly convex obstacles the Maslov index is zero,

we have m_{ $\gamma$}=1, \displaystyle \sqrt{} $\gamma$=-\frac{n-1}{2} and we obtain the result (1.2) of Majda.

To apply the above result, we need the condition (3.1) and it is

desirable to prove that there exists a subset S\subset \mathrm{S}^{n-1}\times \mathrm{S}^{n-1} with zero

Lebesgue measure such that for all directions ( $\omega$,  $\theta$)\in \mathrm{S}^{n-1}\times \mathrm{S}^{n-1}\backslash S the

corresponding ( $\omega$,  $\theta$)- rays satisfy (3.1). Here one has to deal with all
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(generalized) ( $\omega$,  $\theta$) ‐rays and this makes the problem rather difficult.

We start with a result concerning the ordinary reflecting ( $\omega$,  $\theta$) ‐rays

only.

Theorem 3.3 ([10]). For every  $\omega$\in \mathrm{S}^{n-1} there exists a set S( $\omega$)\subseteq \mathrm{S}^{n-1}
the complement of which is a countable union of compact subsets of \mathrm{S}^{n-1}

of measure zero such that if  $\theta$\in S( $\omega$) , then any two different ordinary
reflecting ( $\omega$,  $\theta$) ‐rays in  $\Omega$ have distinct sojourn times.

To deal with reflecting rays with tangent segments, we introduce a

more general type of trajectories. A curve  $\gamma$ in \mathbb{R}^{n} is called an ( $\omega$,  $\theta$)-
trajectory for  $\Omega$ if it has the form  $\gamma$=\displaystyle \bigcup_{i=0}^{s}l_{i} , where l_{i}=[x_{i}, x_{i+1}], i=

1
,

. . .

,
s- 1, x_{i} \in \partial K for all i = 1

,
. . .

,
s

,
while l_{0} (resp. l) is the

infinite ray starting at x_{1} (resp. x_{s} ) with direction - $\omega$ (resp.  $\theta$ ) and

for every  i = 0 , 1, . . .

, s-1, l_{i} and l_{i+1} satisfy the law of reflection

at x_{i} with respect to \partial K . It is clear that every reflecting ( $\omega$,  $\theta$) ‐ray is

an ( $\omega$,  $\theta$) ‐trajectory, but the converse is not true in general since some

( $\omega$,  $\theta$)‐trajectory may intersect transversally \partial K . On the other hand,
every ( $\omega$,  $\theta$) ‐reflecting ray with tangent segment is an ( $\omega$,  $\theta$) ‐trajectory.
We have the following.

Theorem 3.4 ([10]). There exists  T\subset \mathrm{S}^{n-1} \times \mathrm{S}^{n-1} the complement
of which is a countable union of compact subsets of measure zero in

\mathrm{S}^{n-1} \times \mathrm{S}^{n-1} such that for ( $\omega$,  $\theta$) \in  T all ( $\omega$,  $\theta$) ‐trajectories for  $\Omega$ are

ordinary.

The analysis of the generalized ( $\omega$,  $\theta$) ‐rays leads to many difficulties.

However it is quite natural to expect that for almost \mathrm{a}\mathrm{U}( $\omega$,  $\theta$) in \mathrm{S}^{n-1}\times
\mathrm{S}^{n-1} there are no generalized ( $\omega$,  $\theta$) ‐rays different from reflecting ones.

This will be discussed in the next section.

4. POISSON RELATION FOR THE SCATTERING KERNEL

To study the singularities of the scattering kernel introduce following
generic condition

(u_{ $\omega,\ \theta$}) Each ( $\omega$,  $\theta$)‐ray in  $\Omega$ is the projection of a uniquely extendible

generalized bicharacteristics  $\gamma$ of O.

This condition is satisfied for all directions ( $\omega$,  $\theta$) lying outside a set

with zero measure in \mathrm{S}^{n-1}\times \mathrm{S}^{n-1} (see Theorem 4.2 below).

Let  $\pi$ :  T^{*}(\mathbb{R}\times $\Omega$) \rightarrow $\Omega$ be the natural projection. The following
result shows that for  $\omega$\neq $\theta$ all singularities in  t of s(t,  $\theta$,  $\omega$) are given
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by the (negative) sojourn times.

Theorem 4.1 ([1]). Let  $\omega$\neq $\theta$ and assume (u_{ $\omega,\ \theta$}) satisfied. Then we

have

sing \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}_{t}s(t,  $\theta,\ \omega$)\subset\{-T_{ $\gamma$} :  $\gamma$\in \mathcal{L}_{ $\omega,\ \theta$}( $\Omega$)\} . (4.1)
In analogy with the well‐known Poisson relation for the Laplacian

on Riemannian manifolds, (4.1) is called the Poisson relation for the

scattering kernel, while the set of all T_{ $\gamma$} , where  $\gamma$ \in \mathcal{L}_{ $\omega,\ \theta$}( $\Omega$) , ( $\omega$,  $\theta$) \in

\mathrm{S}^{n-1} \times \mathrm{S}^{n-1} , is called the scattering length spectrum(SLS) of K . The

proof of the above result is based on the results of propagation of sin‐

gularities of Melrose‐Sjöstrand [7] and the properties of the generalized
flow \mathcal{F}_{t} (see Chapter 5, [10] for a detailed proof).

While in general the relation (4.1) is not an equality, it turns out

that there exists a set \mathcal{R} of full measure in \mathrm{S}^{n-1} \times \mathrm{S}^{n-1} such that for

( $\omega$,  $\theta$)\in \mathcal{R} the Poisson relation becomes an equality. This is important
for some inverse scattering problems.

It was proved by Stoyanov [12] that for each T > 0, S^{*}( $\Omega$) can

be represented as a countable union of Borel subsets S_{i} such that on

each S_{i} , \{\mathcal{F}_{t}\}_{0\leq t\leq T} coincides with the restriction of an one‐parameter

family \mathcal{G}_{t}^{(i)} of Lipschitz maps defined in a neighborhood of S_{i} in \dot{T}^{*}( $\Omega$) ,

taking values in T^{*}(\mathbb{R}^{n}) and such that for all but finitely many t, \mathcal{G}_{t}^{(i)}
is smooth and its restriction to smooth local cross‐sections is a contact

transformation. As a consequence of this regularity property, one gets
the following.
Theorem 4.2 ([12]). The generalized geodesic flow \mathcal{F}_{t} preserves the

Hausdorff dimension of Borel subsets of S^{*}( $\Omega$) . There exists a subset

\mathcal{R} offull Lebesgue measure in \mathrm{S}^{n-1}\times \mathrm{S}^{n-1} such that for each ( $\omega$,  $\theta$)\in \mathcal{R}
the only ( $\omega$,  $\theta$) ‐rays in  $\Omega$ are reflecting ( $\omega$,  $\theta$) ‐rays and

sing \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}_{t}s(t,  $\theta$,  $\omega$)=\{-T_{ $\gamma$} :  $\gamma$\in \mathcal{L}_{ $\omega,\ \theta$}( $\Omega$)\}
The proof is based on Theorems 3.1, 3.3, 3.4, 4.1 above combined

with geometric and dynamical systems arguments.
The fact concerning the dimension of Borel sets would be a trivial

one if the maps \mathcal{F}_{\mathrm{t}} were Lipschitz. However, it is well‐known and easy

to see that this not the case. Locally near a point  $\rho$\in S^{*}( $\Omega$) ,
the map

\mathcal{F}_{t} is Lipschitz on a neighborhood of p for small |t| when  $\rho$\not\in S_{\partial K}^{*}( $\Omega$) or

 $\rho$ is a transversal reflection point. Whenever  $\rho$\in G, (G is the glancing
set) the map \mathcal{F}_{t} is not Lipschitz. For example, in the simplest case of a

diffractif tangent point  $\rho$\in G_{d} , the map \mathcal{F}_{t} has a singularity of�square
root type�� at  $\rho$ , so it is clearly not Lipschitz.
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5. INVERSE SCATTERING PROBLEMS RELATED TO SLS

The scattering length spectrum (SLS) of  K is by definition the family
of sets of real numbers SL_{K}=\{SL_{K}( $\omega$,  $\theta$)\}_{( $\omega,\ \theta$)} where ( $\omega$,  $\theta$) runs over

\mathrm{S}^{n-1}\mathrm{x}\mathrm{S}^{n-1} and \mathcal{S}L_{K}( $\omega$,  $\theta$) is the set of sojourn times T_{ $\gamma$} of all ( $\omega$,  $\theta$) ‐rays

 $\gamma$ in  $\Omega$_{K} . Thus, SL_{K} is a map which assigns to each pair of directions

( $\omega$,  $\theta$) a set SL_{K}( $\omega$,  $\theta$) of real numbers.

In this section we discuss the problem of recovering information

about the geometry of the obstacle K from its SLS. Two obstacles

K and L in \mathbb{R}^{n} are said to have almost the same SLS if there ex‐

ists a subset \mathcal{R} of full Lebesgue measure in \mathrm{S}^{n-1} \times \mathrm{S}^{n-1} such that

\mathcal{S}L_{K}( $\omega$,  $\theta$)=SL_{L}( $\omega$,  $\theta$) for all ( $\omega$,  $\theta$)\in \mathcal{R}.
It follows from results of A. Majda [5] and P. Lax and R. Phillips

[3] that the convex hull of K can be recovered from the sojourn times

of back‐scattering ( $\omega$, - $\omega$)‐rays Consequently, in the class of convex

obstacles and also in the class of connected obstacles with real analytic
boundaries, K is completely determined by its SLS.

The following example of M. Livshits (see Figure 3 taken from [6])
shows that in general SL_{K} does not determine K uniquely. Here the

part E is half of an ellipse with foci F_{1} and F_{2} . The ellipse has the

property that any ray intersecting the segment connecting the foci,
after reflection at the boundary, intersects the same segment again. It

is now clear that no scattering ray in the exterior of the obstacle K

has a common point with the parts between A and F_{1} and between F_{2}
and B

, so these two �pockets� cannot be recovered from the SLS of

the obstacle.

Figure 3. Example of Livshits

It should be mentioned that this example is in \mathbb{R}^{2} but recently Noakes

and Stoyanov [8] constructed examples for arbitrary dimensions. Stoy‐
anov proved that if two obstacles K and L have almost the same SLS,
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then their generalized geodesic flows are conjugate with a time preserv‐

ing conjugacy on the non‐trapping parts of their phase spaces.
Let Trap ($\Omega$_{K}) be the set of points which are not accessible by scatter‐

ing rays. Using the existence of the conjugacy  $\Phi$ and the fact that it is

measure‐preserving with respect to the canonical measures on  S_{b}^{*}($\Omega$_{K})
and S_{b}^{*}($\Omega$_{L}) , one derives the following.

Proposition 5.1 ([13]). Let the obstacles K and L have almost the

same SLS. If the sets of trapped points of both K and L have Lebesgue
measure zero, then \mathrm{V}\mathrm{o}\mathrm{l}(K)=\mathrm{V}\mathrm{o}\mathrm{l}(L) .

It seems natural to conjecture that in the case of non‐trapping ob‐

stacles the SLS uniquely determines the obstacle. While this is still an

open problem, one can prove this conjecture at least for star‐shaped ob‐

stacles. Notice that star‐shaped obstacles are necessarily non‐trapping.

Theorem 5.2 ([13]). Let K and L have almost the same SLS and

let K be star‐shapei. Then \partial K \subset \partial L . If L is star‐sharped, we have

K=L.

The reader may consult Chapter 13 in [10] for other inverse scattering
results and for detailed proofs.

6. TRAPPING OBSTACLES AND SINGULARITIES OF s(t,  $\omega$,  $\theta$)
Given a generalized bicharacteristic  $\gamma$ in  S^{*}( $\Omega$) ,

its projection \tilde{ $\gamma$}=\sim
(  $\gamma$ ) in  S_{b}^{*}( $\Omega$) is called a compressed generalized bicharacteristic. Let

U_{0} be an open ball containing K and let C be its boundary sphere.
For an arbitrary point z = (x, $\xi$) \in \mathcal{S}_{b}^{*}( $\Omega$) , consider the compressed
generalized bicharacteristic

$\gamma$_{z}(t)=(x(t),  $\xi$(t))\in S_{b}^{*}( $\Omega$)

parameterized by the time t and passing through z for t=0 . Denote by
 T(z)\in \mathbb{R}^{+}\cup\infty the maximal  T>0 such that x(t)\in u_{0} for 0\leq t\leq T(z) .

The so called trapping set is defined by

$\Sigma$_{\infty}=\{(x,  $\xi$)\in S_{b}^{*}( $\Omega$) : x\in C, T(z)=\infty\}
The trapping set $\Sigma$_{\infty} is closed in S_{b}^{*}( $\Omega$) . For simplicity, in the following
the compressed generalized bicharacteristics will be called simply gen‐
eralized ones. The obstacle K is called trapping if $\Sigma$_{\infty}\neq\emptyset , i.e. when

there exists at least one point (\hat{x},\hat{ $\xi$}) \in  C\times \mathrm{S}^{n-1} such that the gener‐

alized trajectory $\delta$_{ $\mu$}(t) issued from  $\mu$=(\hat{x},\hat{ $\xi$}) stays in U_{0} for all t\geq 0.
This provides some information about the behavior of the rays issued

from the points (y,  $\eta$) sufficiently close to (\hat{x}, $\xi$ however in general it

does not yield any information about the geometry of ( $\omega$,  $\theta$) ‐rays.
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Now for every trapping obstacle we have the following

Theorem 6.1 ([11]). Let the obstacle K be trapping and satisfy the

condition ( \mathcal{G} ) . Then there exists a sequence of ordinary reflecting ($\omega$_{m}, $\theta$_{m})-
rays $\gamma$_{m} with sojourn times T_{$\gamma$_{m}}\rightarrow\infty.

To prove this we use the following

Proposition 6.2. The set of points (x,  $\xi$)\in S_{C}^{*}( $\Omega$)=\{(x,  $\xi$)\in T^{*}( $\Omega$) :

x\in C, | $\xi$|=1\} such that the trajectory \{\mathcal{F}_{t}(x,  $\xi$) : t\geq 0\} issued from
(x,  $\xi$) is bounded has Lebesgue measure zero in S_{c}^{*}( $\Omega$) .

Let \mathcal{O}(W) be the set of all pairs of directions ( $\omega$,  $\theta$) \in \mathrm{S}^{n-1} \times \mathrm{S}^{n-1}
such that there exists an ordinary reflecting ( $\omega$,  $\theta$) ‐ray issued from

(x, $\omega$) \in  W with outgoing direction  $\theta$ \in \mathrm{S}^{n-1} To obtain convenient

approximations with ( $\omega$,  $\theta$) ‐rays issued from W ,
it is desirable to know

that \mathcal{O}(W) has a positive measure in \mathrm{S}^{n-1}\times \mathrm{S}^{n-1} for all sufficiently small

neighborhoods W\subset C\times \mathrm{S}^{n-1} of (z_{0},$\omega$_{0}) . Roughly speaking this means

that a trapping generalized bicharacteristic $\delta$_{ $\mu$}(t) is non‐degenerate in

some sense. More precisely, we introduce the following

Definition 1. The generalized bicharacteristic  $\gamma$ issued from (y,  $\eta$) \in

 C\times \mathrm{S}^{n-1} is called weakly non‐degenerate iffor every neighborhood  W\subset

 C\times \mathrm{S}^{n-1} of (y,  $\eta$) the set \mathcal{O}(W) has a positive measure in \mathrm{S}^{n-1}\times \mathrm{S}^{n-1}

The above definition generalizes that of a non‐degenerate ordinary
reflecting ray  $\gamma$ given in section 1.

Remark 6.3. In general a weakly non‐degenerate ordinary reflecting
ray does not need to be non‐degenerate. To see this, first notice that

the set of those (y,  $\eta$)\in C\times \mathrm{S}^{n-1} that generate weakly non‐degenerate
bicharacteristics is closed in C\times \mathrm{S}^{n-1} For example we can consider

the special case when K ?\dot{S} convex with vanishing Gauss curvature at

some point x_{0}\in\partial K and strictly positive Gauss curvature at any other

point of \partial K.

Now we have a stronger version of Theorem 6.1.

Theorem 6.4 ([10]). Let the obstacle K have at least one trapping
weakly non‐degenerate bicharacteristic  $\delta$ issued from (y,  $\eta$)\in C\times \mathrm{S}^{n-1}
and let K satisfy ( \mathcal{G} ) . Then there exists a sequence of ordinary reflecting
non‐degenerate ($\omega$_{m}, $\theta$_{m}) ‐rays $\gamma$_{m} with sojourn times T_{$\gamma$_{m}} \rightarrow\infty such

 that-T_{$\gamma$_{m}} is a singularity of s(t, $\theta$_{m},$\omega$_{m}) .

For simplicity below we assume that n is odd. Let  $\chi$\in C_{0}^{\infty}(\mathbb{R}^{n}) be a

cut‐off function such that  $\chi$(x)=1 on a neighborhood of K . It is well

known (see [3]) that the modified cut‐off resolvent

 R_{ $\chi$}( $\lambda$)= $\chi$(-$\Delta$_{D}-$\lambda$^{2})^{-1} $\chi$
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has a meromorphic continuation in \mathbb{C} with poles in \{z\in \mathbb{C} : {\rm Im} z>0\}
and the poles of R_{ $\chi$}( $\lambda$) are independent of the choice of  $\chi$ . These poles
are called resonances. On the other hand, the scattering amplitude
 a( $\lambda$,  $\theta$,  $\omega$) has a representation involving R_{ $\chi$}( $\lambda$) , hence a( $\lambda$,  $\theta$,  $\omega$) also

admits a meromorphic continuation in \mathbb{C} and the poles of this contin‐

uation are included in the set of resonances. An obstacle K is called

non‐trapping if the set $\Sigma$_{\infty} is empty. From the general results on prop‐

agation of singularities given by Melrose and Sjöstrand [7], it follows

that if K is non‐trapping, there exist  $\epsilon$>0 and d> 0 so that R_{ $\chi$}( $\lambda$)
has no poles in the domain

U_{ $\epsilon$,d}=\{ $\lambda$\in \mathbb{C} : 0\leq{\rm Im} $\lambda$\leq $\epsilon$\log(1+| $\lambda$|)-d\}.

Moreover, for non‐trapping obstacles we have the following estimate

(see [15])

\displaystyle \Vert R_{ $\chi$}( $\lambda$)\Vert_{L^{2}( $\Omega$)\rightarrow L^{2}( $\Omega$)}\leq\frac{C}{| $\lambda$|}e^{ $\alpha$|{\rm Im} $\lambda$|}, \forall $\lambda$\in U_{ $\epsilon$,d},  $\alpha$\geq 0 . (6.1)

We conjecture that the existence of singularities  t_{m}\rightarrow-\infty of the

scattering kernel  s(t, $\theta$_{m}, $\omega$_{m}) implies that for every  $\epsilon$ > 0 and every

d>0 we have resonances in U_{ $\epsilon$,d}.
By using Theorem 6.4, we prove a weaker result assuming an estimate

of the scattering amplitude weaker than (6.1)

Theorem 6.5 ([10]). Suppose that there exist m \in \mathrm{N},  $\alpha$ \geq  0,  $\epsilon$ >

0, d>0 and C>0 so that a( $\lambda$,  $\theta,\ \omega$) is analytic in U_{ $\epsilon$,d} for all  $\lambda$\in U_{ $\epsilon$,d}
we have

|a( $\lambda$,  $\theta$,  $\omega$)|\leq C(1+| $\lambda$|)^{m}e^{ $\alpha$|{\rm Im} $\lambda$|}, \forall( $\omega$,  $\theta$)\in \mathrm{S}^{n-1}\times \mathrm{S}^{n-1} (6.2)

Then if K satisfies ( \mathcal{G} ) , there are no trapping weakly non‐degenerate
( $\omega$,  $\theta$) rays in  $\Omega$.

It is an open problem to examine the optimal estimate of the scatter‐

ing amplitude, provided that a( $\lambda$,  $\theta,\ \omega$) is analytic in U_{ $\epsilon$,d} for all ( $\omega$,  $\theta$) .
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