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ABSTRACT. This work is a summary and expansion on a talk given by the

author in December, 2016 at the conference �Spectral and Scattering Theory
and Related Topics� at R MS Kyoto. The work in this expository note was

done with collaborators J. Wunsch and J. Metcalfe.

1. INTRODUCTION

Our motivation for the results in this paper is to better understand properties
of solutions to dispersive equations in different geometric settings. Our techniques
are to study the underlying stationary problem and try to gain information about

how the local and global geometry affects resolvent estimates, resonances, and (in
compact settings) eigenfunctions and eigenvalues. These questions all fall into the

category of spectral geometry, which is, as it sounds, the study of spectral theory
in different geometric situations.

In these notes, we focus on the �positive commutator� methods developed and

refined by many authors, beginning with Morawetz [17]. We will first focus on the

situation of the Schrödinger equation on a warped product manifold, where it is

most easy to understand trapped sets. An easy way to begin seeing these effects

is to study the local smoothing effect. This is in Section 2. First we discuss a

little history of the use of commutator arguments in the study of partial differential

equations.

1.1. History. It has been known for a long time that if one writes the Laplacian
on \mathbb{R}^{n} in polar coordinates (r, $\omega$) , the commutator with the radial vector field

reproduces the Laplacian:
[- $\Delta$, r\partial_{r}]=-2 $\Delta$.

As the symbol | $\xi$|^{2*} of the Laplacian generates the straight line geodesic flow on \mathbb{R}^{n},
this identity expresses that the radial vector �increases� along straight lines going
to spatial infinity. We refer to this commutator as the �grand‐daddy� commutator.

As mentioned above, Morawetz used this identity in [17] to study localized energy

decay for the wave equation. These are estimates that express that if one looks at

energy locally in space, then it �escapes� to infinity, or decays in time. Due to the

logarithmic singularity in the resolvent expansion in even dimensions, the explicit
time dependence of this decay is complicated, but it turns out for applications to

nonlinear wave equations, an energy which is intergrated in time is actually more

useful anyway. In other words, under suitable assumptions, the energy of solutions

to the wave equation measured in compact regions is integrable in time (as opposed
to constant in time for the energy measured in all of \mathbb{R}^{n}. )

�Here  $\xi$ denotes the Fourier dual variable of the spatial variable  x.
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One of the next major uses of the positive commutator idea was in Hörmander�s

results on propagation of singularities for hnear PDEs [13]. Here, this idea is

generalized to reasonable self‐adjoint operators whose associated classical flow is

non‐trapping. It says that a singularity of a solution to a PDE that initiates at

a particular place in phase space actually propagates to be singular on the entire

bicharacteristic ray through that point. This was primarily a result about stationary
elliptic equations, but can be applied in many different geometric situations as well

(for example, it can be used to reproduce the flow of wave packets for the wave

equation). The proof is in simmilar spirt to some of the proofs in this paper, using that

one can cook up quantities that increase along the Hamiltonian flow of a real‐valued

symbol, at least away from places where the flow is stationary. In the vocabulary of

this note, stationary or periodic invariant sets are parts of a �trapped� set, which

is a classical invariant set which does not escape to infinity under the classical flow.

In the 1980' \mathrm{s} , the use of commutators in dispersive equations to understand

solutions to non‐linear but integrable equations [16], more general linear dispersive
equations [10, 19].

2. LOCAL SMOOTHING EFFECT

We begin with a simple proof of the local smoothing property for solutions to

the Schrödinger equation in \mathbb{R}^{2} . This is a good starting point for this discussion,
as the approach of the author and J. Wunsch in [9] begins with this on a manifold

to detect where defects in local smoothing occur.

2.1. The smoothing estimate on Euclidean space. In this section we write

out the standard positive commutator proof of local smoothing for the Schrödinger
equation in polar coordinates. We then try to mimic the proof in the case of

degenerate hyperbolic orbits in the next subsection to see where the proof fails.

In polar coordinates, the homogeneous Schrödinger equation on \mathbb{R}_{t}\times \mathbb{R}^{2} is

\left\{\begin{array}{l}
(D_{t}-\partial_{r}^{2}-r^{-1}\partial_{r}-r^{-2}\partial_{ $\theta$}^{2})u=0,\\
u|_{t=0}=u_{0};
\end{array}\right.
we will of course write

 $\Delta$=\partial_{r}^{2}+r^{-1}\partial_{r}+r^{-2}\partial_{ $\theta$}^{2}.

We recall that in polar coordinates the radial, or scaling, vector field is x\cdot\partial_{x}=r\partial_{r}.
By scaling, we immediately compute

[r\partial_{r},  $\Delta$]=2 $\Delta$ ;

however, as  r\partial_{r} is not a bounded�map between Sobolev spaces, we change the

weight and employ the commutant B=r\{r\}^{-1}\partial_{r} . The function a(r)=r\langle r\}^{-1} is

non‐negative and bounded, and satisfies a'(r)=\langle r\}^{-3} Thus, we compute

(2.1) [B,  $\Delta$]=2a'\partial_{r}^{2}+(a''+a'r^{-1}+ar^{-2})\partial_{r}+2ar^{-3}\partial_{ $\theta$}^{2}
=2\langle r\}^{-3}\partial_{r}^{2}+2\{r\}^{-1}r^{-2}\partial_{ $\theta$}^{2}+O(r^{-1}\{r\rangle^{-1})\partial_{ $\Gamma$}.
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Using the Schrödinger equation, we write

0=2i{\rm Im}\displaystyle \int_{0}^{T}\langle B(D_{t}- $\Delta$)u,u\rangle dt
=\displaystyle \int_{0}^{T}\langle B(D_{t}-\partial_{r}^{2}-r^{-1}\partial_{r}-r^{-2}\partial_{ $\theta$}^{2})u, u\rangle

-\langle u, B(D_{t}-\partial_{r}^{2}-r^{-1}\partial_{r}-r^{-2}\partial_{ $\theta$}^{2})u\rangle dt

=\displaystyle \int_{0}^{T}\langle[B, (-\partial_{r}^{2}-r^{-1}\partial_{r}-r^{-2}\partial_{ $\theta$}^{2})]u, u\rangle dt+i \langle Bu , u\rangle|_{0}^{T}
The last term is bounded using energy estimates by

|\{Bu, u)|_{0}^{T}|\leq\Vert u_{0}\Vert_{H^{1/2}}^{2}.
Rearranging, we thus obtain

\displaystyle \int_{0}^{T}\langle[B,  $\Delta$]u, u)dt\leq C_{T}\Vert u_{0}\Vert_{H^{1/2}}^{2}.
Employing (2.1) and integrating by parts thus yields

\displaystyle \int_{0}^{T}\Vert\langle r\rangle^{-3/2}\partial_{r}u\Vert^{2}+\Vert\langle r\rangle^{-1/2}r^{-1}\partial_{ $\theta$}u\Vert^{2}dt\leq C_{T}\Vert u_{0}\Vert_{H^{1/2}}^{2}.
where we have absorbed on the right the term involving \displaystyle \int_{0}^{T}\{\partial_{r}u, u\rangle dt as well as

the similar error terms from commuting \partial_{r} with a multiplier. This is the local

smoothing estimate on the manifold \mathbb{R}^{2}.

2.2. Geometry with Trapping. If we consider a semi‐classical pseudodifferential
operator P(x, hD) with symbol p(x,  $\xi$) , the propagation of singularities result of

Hörmander [13] shows that singularities of solutions to the equation P(x, hD)u=0
travel along the Hamiltonian flow of the symbol p :

\left\{\begin{array}{l}
\dot{x}=p_{ $\xi$},\\
\dot{ $\xi$}=-p_{x}.
\end{array}\right.
If there are points (x_{0}, $\xi$_{0}) in phase space (here x_{0} is the intial point and $\xi$_{0} is the

initial (co)direction of flow) such that the flow line emanating from (x_{0}, $\xi$_{0}) remains

in a trapped set, we call these flow lines trapped.
A celebrated theorem of Doi [12] tells us that if one considers solutions to the

Schrödinger equation on an asymptotically Euclidean manifold, then a perfect 1/2
derivative local smoothing effect (such as in \mathbb{R}^{n} ) holds if and only if the manifold

is non‐trapping. This tells us that interesting losses in regularity occur only in

trapping situations. Hence understanding how local smoothing changes in different

trapping situations becomes very interesting.
If the trapping is sufficiently unstable (non‐degenerate hyperbolic trapping),

there is a �trivial� loss of  $\epsilon$ > 0 derivatives from the 1/2 derivative smoothing
effect. This holds for boundary value problems [1,5], sufficiently �thin� hyperbolic
trapped sets [1, 3, 4, 11], and situations where there are some stable directions of

the trapping [5]. In fact, with some care in definitions, the loss is only logarithmic.
These examples include Ikawa�s examples [1, 14, 15], a single periodic hyperbolic
geodesic (with or without boundary reflections) [4], very general fractal trapped
sets without boundary [3, 11, 18], and normally hyperbolic trapped sets [22]. That
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is, in all of these cases, the authors prove that for any  $\epsilon$>0 , there exists a constant

C>0 such that

\displaystyle \int_{0}^{T}\Vert\{x\rangle^{-1/2- $\epsilon$}e^{it $\Delta$}u_{0}\Vert_{H^{1/2- $\epsilon$}}^{2}dt\leq C\Vert u_{0}\Vert_{L^{2}}^{2}.
In this case, we call the loss due to trapping �trivial�.

To contrast, if a manifold admits an elliptic trapped set (meaning stable un‐

der small perturbations of the initial point of the classical flow), the existence of

resonances converging rapidly to the real axis and the existence of infinite order

quasimodes prevents polynomial gain in regularity.
Along with J. Wunsch [9], the author studies a class of manifolds with only one

periodic geodesic which is weakly hyperbolic, and prove \mathrm{a} (sharp) local smoothing
effect with loss that lies somewhere between the complete loss of an elliptic trapped
set and the trivial loss of a strictly hyperbolic trapped set.

We consider the manifold X=\mathbb{R}_{x}\times \mathbb{R}_{ $\theta$}/2 $\pi$ \mathbb{Z} , equipped with a metric of the form

ds^{2}=dx^{2}+A^{2}(x)d$\theta$^{2},
where A \in  C^{\infty} is a smooth function, A \geq  $\epsilon$ > 0 . From this metric, we get the

volume form

dVol =A(x)dxd $\theta$,
and the Laplace‐Ueltrami operator acting on ‐forms

 $\Delta$ f=(\partial_{x}^{2}+A^{-2}\partial_{ $\theta$}^{2}+A^{-1}A'\partial_{x})f.
We observe that we can conjugate  $\Delta$ by an isometry of metric spaces and separate
variables so that spectral analysis of \triangle is equivalent to a one‐variable semiclassical

problem with potential. That is, let  T:L^{2}(X, dV\mathrm{o}1)\rightarrow L^{2}(X, dxd $\theta$) be the isometry
given by

Tu (x,  $\theta$)=A^{1/2}(x)u(x,  $\theta$) .

Then \tilde{ $\Delta$}=TAT^{-1} is essentially self‐adjoint on L^{2}(X, dxd $\theta$) with mild assumptions
on A (for example in this paper X has two ends which are short range perturbations
of \mathbb{R}^{2}) . A simple calculation gives

-\tilde{ $\Delta$}f=(-\partial_{x}^{2}-A^{-2}(x)\partial_{ $\theta$}^{2}+V_{1}(x))f,
where the potential

V_{1}(x)=\displaystyle \frac{1}{2}A''A^{-1}-\frac{1}{4}(A')^{2}A^{-2}.
If we now separate variables and write  $\psi$(x,  $\theta$)=\displaystyle \sum_{k}$\varphi$_{k}(x)e^{ik $\theta$} , we see that

(-\displaystyle \overline{ $\Delta$}-$\lambda$^{2}) $\psi$=\sum_{k}e^{ik $\theta$}(F_{k}-$\lambda$^{2})$\varphi$_{k}(x) ,

where

(P_{k}-$\lambda$^{2})$\varphi$_{k}(x)=(-\displaystyle \frac{d^{2}}{dx^{2}}+k^{2}A^{-2}(x)+V_{1}(x)-$\lambda$^{2})$\varphi$_{k}(x) .

Setting h=k^{-1} , we have the semiclassical operator

P(z, h) $\varphi$(x)=(-h^{2}\displaystyle \frac{d^{2}}{dx^{2}}+V(x)-z) $\varphi$(x) ,

where the potential is

V(x)=A^{-2}(x)+h^{2}V_{1}(x)
and the spectral parameter is z=h^{2}$\lambda$^{2}.
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In [9], we are primarily interested in the case A(x)=(1+x^{2rn})^{1/2m}, m\in \mathbb{Z}_{+} . If

m\geq 2 , then X is asymptotically Euclidean (with two ends), and the subpotential
h^{2}V_{1}(x) is seen to be lower order in both the semiclassical and the scattering sense.

If m = 1
, a trivial modification must be made to make the metric a short‐range

perturbation, but we completely ignore this issue here. The point is that for m\geq 2,
the principal part of the potential V(x) is A^{-2}(x) which has a degenerate maximum

at x=0 . The corresponding periodic geodesic  $\gamma$\subset X is weakly hyperbolic in the

sense that it is unstable and isolated, but degenerate.
The. main result in [9] is the following theorem, which says that for every m\geq 2,

there is still some local smoothing, but with a polynomial loss depending on m.

Theorem 1 (Local Smoothing). Suppose X is as above for m\geq 2 , and assume u

solves

\left\{\begin{array}{l}
(D_{t}- $\Delta$)u=0 in \mathbb{R}\times X,\\
u|_{t=0}=u_{0}\in H^{s}
\end{array}\right.
for some s\geq m/(m+1) . Then for any  T<\infty ,

there exists a constant  C>0 such

that

\displaystyle \int_{0}^{T}\Vert\langle x)^{-3/2}u\Vert_{H^{1}(X)}^{2}dt\leq C \langle D_{ $\theta$}\rangle^{m/(m+1)}u_{0}\Vert_{L^{2}}^{2}+\Vert\langle D_{x})^{1/2}u_{0}\Vert_{L^{2}}^{2}) .

Remark 2.1. Observe that there is no polynomial local smoothing effect in the

limit m \rightarrow \infty . In [9] it is shown that Theorem 1 is sharp, and that in fact the

estimate is saturated on a weak semiclassical time scale.

We are also able to prove, using the same techniques, a polynomial bound on

the resolvent of the Laplacian in the same geometric setting.

Acknowledgements. The author would like to thank RIMS for the hospitality
while visiting in Japan. He would also like to thank Shu Nakamura for the kind

invitation and hospitality in Tokyo. This paper contains passages from the author�s

works with Wunsch [9] and with Metcalfe [8]; the author would like to thank his

collaborators as well.

2.3. Degenerate hyperbolic trapping. In this section, we sketch the proof our

main local smoothing estimate from [9].
2.4. Returning to the commutator argument. Let us begin by reproducing
the positive commutator computation above for the degenerate case. Let  A(x)=
(1+x^{2m})^{1/2m} , the metric ds^{2}=dx^{2}+A^{2}d$\theta$^{2} as before, and conjugate the Laplacian
to Euclidean space:

-\tilde{ $\Delta$}f=(-\partial_{x}^{2}-A^{-2}(x)\partial_{ $\theta$}^{2}+V_{1}(x))f,
where the potential

V_{1}(x)=\displaystyle \frac{1}{2}A''A^{-1}-\frac{1}{4}(A')^{2}A^{-2}.
The following proposition is the statement of local smoothing for the conjugated

equation, and evidently implies Theorem 1 by conjugating back.

Proposition 2.2. Suppose m\geq 2 and u solves

(2.2) \left\{\begin{array}{l}
(D_{t}-\overline{ $\Delta$})u=0,\\
u(0, x,  $\theta$)=u_{0}.
\end{array}\right.
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Then for any  T<\infty there exists a constant  C>0 such that

\displaystyle \int_{0}^{T} \langle x\rangle^{-1}\partial_{x}u\Vert_{L^{2}}^{2}+\Vert\langle x\}^{-3/2}\partial_{ $\theta$}u\Vert_{L^{2}}^{2})dt
\leq C \langle D_{ $\theta$}\rangle^{m/(m+1)}u_{0}\Vert_{L^{2}}^{2}+\Vert\{D_{x}\}^{1/2}u_{0}\Vert_{L^{2}}^{2}) .

2.5. Proof of Proposition 2.2. Let us summarize briefly the strategy of the proof.
Using a positive commutator argument similar to the previous section, we prove

local smoothing except at the periodic orbit  $\gamma$=\{x=0\} . Moreover, solutions to

(2.2) exhibit perfect local smoothing in the x direction and only lose smoothing in

the directions tangential to  $\gamma$ (that is, only in the  $\theta$ direction). Thus it suffices to

prove local smoothing with a loss for  $\theta$ derivatives, in a neighbourhood of  x=0.

We separate variables in the  $\theta$ direction (Fourier series decomposition) and prove
estimates uniform in each Fourier mode. To do this, we further decompose, say, the

kth Fourier mode into a low‐frequency part where |k|\leq|D_{x}| and a high‐frequency
part where |D_{x}| \leq |k| . The low frequency part is estimated using the positive
commutator technique modulo a term which is localized to high‐frequencies, so it

suffices to estimate a solution cut off to high frequencies. For this, we introduce a

semiclassical rescaling, and reduce the estimate to a cutoff semiclassical resolvent

estimate, which implies local smoothing via [3, Theorem 1].
Let us first reproduce the commutator argument we used on \mathbb{R}^{2} . If B =

\arctan(x)\partial. , we have

[\overline{ $\Delta$}, B]=2\langle x\}^{-2}\partial_{x}^{2}-2x\langle x)^{-4}\partial_{x}+2A'A^{-3}\arctan(x)\partial_{ $\theta$}^{2}+V_{1}' axctan(x) .

Now

iB-(iB)^{*}=i[\mathrm{a}x\mathrm{c}\tan(x), \partial_{x}]
is L^{2} bounded, so

0=\displaystyle \int_{0}^{T}\int u\overline{(\mathrm{a}x\mathrm{c}\tan(x)D_{x}(D_{t}-\overline{ $\Delta$})u)}dxd $\theta$ dt
=\displaystyle \int_{0}^{T}\int\arctan(x)D_{x}u\overline{((D_{t}-\overline{ $\Delta$})u)}dxd $\theta$ dt

+\displaystyle \int_{0}^{T}\int(iB-(iB)^{*})u\overline{((D_{ $\iota$-\triangle)u)d_{X}d $\theta$ dt}^{-}}
=i\displaystyle \langle \mathrm{a}x\mathrm{c}\tan(x)D_{x}u, u\rangle|_{0}^{T}+\int_{0}^{T}\langle(D_{t}-\overline{ $\Delta$})i^{-1}Bu, u\rangle dt.

Hence, using the notation P=D_{t}-\tilde{ $\Delta$},

0=2i{\rm Im}\displaystyle \int_{0}^{T}\langle i^{-1}BPu, u\rangle dt
=\displaystyle \int_{0}^{T}\langle i^{-1} BPu, u\displaystyle \rangle dt-\int_{0}^{T}\langle u, i^{-1} BPu) dt

=\displaystyle \int_{0}^{T}\langle[i^{-1}B, P]u,  u\rangle dt—i {axctan (x)D_{x}u, u} |_{0}^{T},
or

\displaystyle \int_{0}^{T}\langle[B, -\tilde{ $\Delta$}]u, u\rangle dt=-\langle \mathrm{a}x\mathrm{c}\tan(x)D_{x}u, u\rangle|_{0}^{T},
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since B does not depend on t . By writing \partial_{x} = \langle D_{x}\rangle^{1/2}\{D_{x}\rangle^{-1/2}\partial_{x} , and using
energy estimates, we can control the right hand side by \Vert u_{0}\Vert_{H^{1/2}}^{2} . The left hand

side is computed as above:

\displaystyle \int_{0}^{T}\langle[B, -\overline{ $\Delta$}]u, u\rangle dt
=\displaystyle \int_{0}^{T}\{(2\langle x\rangle^{-2}\partial_{x}^{2}-2x\{x\}^{-4}\partial_{x}+2A'A^{-3}\mathrm{s}x\mathrm{c}\tan(x)\partial_{ $\theta$}^{2}

+V_{1}'\arctan(x))u, u\rangle dt.
Using the energy estimates,

|\displaystyle \int_{0}^{T}\langle ( -2x\{x)^{-4}\partial_{x}+V_{1}�axctan (x) ) u, u\rangle dt| \displaystyle \leq CT\sup_{0\leq t\leq T}\Vert u(t)\Vert_{H^{1/2}}^{2}
(2.3) \leq C_{T}\Vert u_{0}\Vert_{H^{1/2}}^{2}.

Integrating by parts in x and  $\theta$ and adding the lower order terms into the right
hand side as in (2.3) yields the estimate

\displaystyle \int_{0}^{T} \{x\}^{-1}\partial_{x}u\Vert_{L^{2}}^{2}+\Vert\sqrt{A'A^{-3}\mathrm{a}x\mathrm{c}\tan(x)}\partial_{ $\theta$}u\Vert_{L^{2}}^{2})dt\leq C||u_{0}\Vert_{H^{1/2}}^{2}.
We observe that

A
�A^{-3}\arctan(x)=\arctan(x)x^{2m-1}(1+x^{2m})^{-1/m-1}

is even, non‐negative, bounded below by C|x|^{2m} for |x|\leq 1 and C'|x|^{-3} for |x| \geq 1.
Hence

|x|^{2m}\langle x\rangle^{-2m-3}\leq CA'A^{-3}\mathrm{a}r\mathrm{c}\tan(x) ,

and hence,

\langle|x|^{2m}\langle x\}^{-2m-3}\partial_{ $\theta$}u, \partial_{ $\theta$}u\rangle\leq C\langle A'A^{-3}\mathrm{a}x\mathrm{c}\tan(x)\partial_{ $\theta$}u, \partial_{ $\theta$}u\rangle
plus terms which can be absorbed into the energy, so up to lower order terms,

\Vert|x|^{m}\langle x\rangle^{-m-3/2}\partial_{ $\theta$}u\Vert\leq C\Vert\sqrt{A'A^{-3}\mathrm{a}x\mathrm{c}\mathrm{t}\mathrm{s}\mathrm{n}(x)}\partial_{ $\theta$}u\Vert.
Hence we have the estimate

(2.4) \displaystyle \int_{0}^{T} \{x\rangle^{-1}\partial_{x}u\Vert_{L^{2}}^{2}+\Vert|x|^{m}\langle x\}^{-m-3/2}\partial_{ $\theta$}u\Vert_{L^{2}}^{2})dt\leq C\Vert u_{0}\Vert_{H^{1/2}}^{2}.
2.6. Frequency decomposition and the estimate near x=0 . We split u into

u = u_{\mathrm{h}\mathrm{i}}+u_{10} , where u_{10} has frequencies where the angular derivatives are con‐

trolled by the transversal \partial_{x} derivatives. The commutator method implies perfect
local smoothing, even for u_{\mathrm{h}\mathrm{i}} away from x=0 . In the interest of space, we have

suppressed the details of this frequency decomposition. Let us now try to estimate

u_{\mathrm{h}\mathrm{i}} near x=0 ,
or more generally a solution to (D. +P_{k})u=0 microlocalized near

(0,0) . For some 0\leq r\leq 1/2 to be determined, let F(t) be defined by

F(t)g= $\chi$(x) $\psi$(D_{x}/k)k^{r}e^{-itP_{k}}g,
where e^{-itP_{k}} is the Schrödinger propagator. Our goal is to determine for what

values of r we have a mapping F:L_{x}^{2}\rightarrow L^{2}([0,T])L_{x}^{2} , since then

(2.5) \Vert k^{1-r}F(t)u_{0}\Vert_{L^{2}([0,T]);L^{2}} \leq C\Vert k^{1-r}u_{0}\Vert_{L^{2}}
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is the desired local smoothing estimate. We have such a mapping if and only if

FF^{*} : L^{2}L^{2}\rightarrow L^{2}L^{2} . We compute

FF^{*}f(x, t)= $\psi$(D_{x}/k) $\chi$(x)k^{2r}\displaystyle \int_{0}^{T}e^{i(t-s)P_{k}} $\chi$(x) $\psi$(D_{x}/k)f(x, s)ds,
and it suffices to estimate \Vert FF^{*}f\Vert_{L^{2}L^{2}} \leq  C\Vert f\Vert_{L^{2}L^{2}} . We write FF^{*}f(x, t) =

 $\psi \chi$(v_{1}+v_{2}) , where

v_{1}=k^{2r}\displaystyle \int_{0}^{t}e^{i(t-s)P_{k}} $\chi$(x) $\psi$(D_{x}/k)f(x, s)ds,
and

v_{2}=k^{2r}\displaystyle \int_{t}^{T}e^{i(t-s)P_{k}} $\chi$(x) $\psi$(D_{x}/k)f(x, s)ds,
so that

(D_{\mathrm{t}}+P_{k})v_{j}=\pm ik^{2r} $\chi \psi$ f,
and it suffices to estimate

\Vert $\psi \chi$ v_{j}\Vert_{L^{2}L^{2}}\leq C\Vert f\Vert_{L^{2}L^{2}}.
Since the Fourier transform in time is an L^{2} isometry, it suffices to estimate

\Vert $\psi \chi$\hat{v}_{j}\Vert_{L^{2}L^{2}} \leq C\Vert\hat{f}\Vert_{L^{2}L^{2}},
but this is the same as estimating

\Vert $\psi \chi$ k^{2r}( $\tau$\pm i0+P_{k})^{-1} $\chi \psi$\Vert_{L_{x}^{2}\rightarrow L_{x}^{2}} \leq C.
Let us factor out the k^{2} in P_{k} to get the operator

k^{-2r}( $\tau$\pm i0+P_{k})=k^{2(1-r)}(-z\pm i0+k^{-2}D_{x}^{2}+A^{-2}(x)+k^{-2}V_{1}(x))
for -z= $\tau$ k^{-2} , and if we let h=k^{-1} , we are left with the task of finding r so that

\Vert $\psi$(hD_{x}) $\chi$(x)(-z\pm i0+(hD_{x})^{2}+V)^{-1} $\chi$(x) $\psi$(hD_{x})\Vert_{L^{2}\rightarrow L^{2}}\leq Ch^{-2(1-r)},
where V=A^{-2}(x)+h^{2}V_{1}(x) . Let

\overline{Q}=(hD_{x})^{2}+V-z.
We observe that the cutoff  $\psi$(hD_{x}) $\chi$(x) shows we only need to estimate this for z

in a bounded interval near z=1 . Indeed,  $\psi \chi$ cuts off to a neighbourhood of (0,0) ,

and V(0)=1,- so for |z-1| sufficiently large, we have elliptic regularity. The cutoff

estimate on Q is the content of the following Proposition, which is proved in the

next subsection.

Proposition 2.3. Let  $\varphi$\in$\Phi$^{0} have wavefront set sufficiently close to (0,0) . Then

for each  $\epsilon$>0 sufficiently small, there exists a constant C>0 such that

\Vert $\varphi$(\tilde{Q}\pm i0)^{-1} $\varphi$\Vert_{L^{2}\rightarrow L^{2}}\leq Ch^{-2m/m+1}, z\in[1- $\epsilon$, 1+ $\epsilon$].
With Proposition 2.3 in hand, we observe

\Vert $\psi \chi$ k^{2r}( $\tau$\pm i0+P_{k})^{-1} $\chi \psi$\Vert_{L_{x}^{2}\rightarrow L_{x}^{2}} \leq C
holds if

k^{2(r-1)}=k^{-2 $\tau$ n/(rn+1)},
or

r=\displaystyle \frac{1}{m+1}.
From (2.5), this implies Proposition 2.2 (see also [3, Theorem 1
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2.7. Proof of Proposition 2.3. The technique of proof is to prove an invertibility
estimate microlocally near (0,0) in Lemma 2.4 below. The proof of the microlocal

invertibility estimate proceeds through several steps. First, we rescale the principal
symbol of Q to introduce a calculus of two parameters. We then quantize in the

second parameter which eventually will be fixed as a constant in the problem. This

technique has been used in [2, 5, 20, 21].
The main estimate that glues the rest of the estimates together is a microlocal

invertibility estimate for the operator \tilde{Q}.
Lemma 2.4. For  $\epsilon$> 0 sufficiently small, let  $\varphi$\in \mathcal{S}(T^{*}\mathbb{R}) have compact support
in \{|(x, $\xi$)|\leq $\epsilon$\} . Then there exists C_{ $\epsilon$}>0 such that

(2.6) \Vert\tilde{Q}$\varphi$^{w}u\Vert\geq C_{ $\epsilon$}h^{2m/(m+1)}\Vert$\varphi$^{w}u\Vert, z\in[1- $\epsilon$, 1+ $\epsilon$].
2.8. Proof of Lemma 2.4. By virtue of the cutoff $\varphi$^{w} , to begin we are working
microlocally in \{|(x,  $\xi$)| \leq  $\epsilon$\} . We observe that since 2m/(m+1) < 2 , if we can

show the estimate (2.6) for Q_{1}=\tilde{Q}-h^{2}V_{1} ,
the estimate follows also for \overline{Q} . Let

q_{1}=$\xi$^{2}+A^{-2}-z
be the principal symbol of Q_{1} . The function A^{-2}=(1+x^{2m})^{-1/m} is analytic near

x=0 , and since |x| \leq $\epsilon$ is small, we expand  A^{-2} in a Taylor series about x=0

and write

q_{1}=$\xi$^{2}-\displaystyle \frac{1}{m}x^{2m}(1+a(x))-z_{1},
where z_{1}=z-1\in[- $\epsilon$,  $\epsilon$] , and a(x)=O(x^{2m}) .

The Hamilton vector field \mathrm{H} associated to the symbol q_{1} is given by

\mathrm{H}=2 $\xi$\partial_{x}+(2x^{2m-1}+\mathcal{O}(x^{4m-1}))\partial_{ $\xi$}.
We will consider a commutant localizing in this region and singular at the origin in

a controlled way: we introduce new variables

=\displaystyle \frac{ $\xi$}{(h/\tilde{h})^{m $\alpha$}}, X=\frac{x}{(h/\tilde{h})^{ $\alpha$}},
with

 $\alpha$=\displaystyle \frac{1}{m+1}.
(When we wish to be more precise below, we will explicitly use the map (x,  $\xi$) =

\mathcal{B} (X ,
in this coordinate change; for the moment, we simply abuse notation.)

As  ma+ $\alpha$ = 1
, we note that quantizations of symbolic functions of X , he in

the pseudodifferential calculus, hence the symbol of the composition of two such

operators depends globally on the symbols of the two operators. It is in order to

cope with this issue that we employ the two parameter calculus.

We remark that in the new �blown‐up� coordinates ---,X,

(2.7) \mathrm{H}=(h/\tilde{h})^{\frac{m-1}{m+1}}(---\partial_{X}+X^{2m-1}\partial\underline{\overline{-}}+\mathcal{O}((h/\tilde{h})^{2m $\alpha$}X^{2m})\&_{-})
Now fix a small $\epsilon$_{0}>0 and set

 $\Lambda$(s)=\displaystyle \int_{0}^{s}\langle s'\rangle^{-1-$\epsilon$_{0}}ds' ;

 $\Lambda$ is of course a symbol of order  0 , with  $\Lambda$(s)\sim s near s=0.

We introduce the singular symbol

a(x,  $\xi$;h)= $\Lambda$(---) $\Lambda$(X) $\chi$(x) $\chi$( $\xi$)= $\Lambda$( $\xi$/(h/\tilde{h})^{m $\alpha$}) $\Lambda$(x/(h/\tilde{h})^{ $\alpha$}) $\chi$(x) $\chi$( $\xi$) ,
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where  $\chi$(s) is a cutoff function equal to 1 for |s|<$\delta$_{1} and 0 for s>2$\delta$_{1} ($\delta$_{1} will be

chosen shortly). Then a is bounded, and a 0 symbol in X ,
:

|\partial_{X}^{ $\alpha$}\partial_{\underline{=}}^{ $\beta$}a| \leq C_{ $\alpha,\ \beta$}.
(Recall that x=(h/\tilde{h})^{ $\alpha$}X and  $\xi$=(h/\tilde{h})^{m$\alpha$_{-}^{-}}-\cdot ) Using (2.7), it is simple to compute

(2.8)

\mathrm{H}(a)=(h/\tilde{h})^{\frac{m-1}{m+1}} $\chi$(x) $\chi$( $\xi$)( $\Lambda$(---)\{X\rangle_{-}^{-1-$\epsilon$_{0-}}-
+X^{2m-1}\langle---\}^{-1-$\epsilon$_{0}} $\Lambda$(X)(1+\mathcal{O}(x^{2m})))+r

=(h/\tilde{h})^{\frac{m-1}{m+1}} $\chi$(x) $\chi$( $\xi$)((h/\tilde{h})^{-m $\alpha$} $\xi \Lambda$( $\xi$/(h/\overline{h})^{m $\alpha$})\langle x/(h/\tilde{h})^{ $\alpha$}\rangle^{-1-$\epsilon$_{0}}
+(h/\tilde{h})^{-(2m+1) $\alpha$}x^{2m-1} $\Lambda$(x/(h/\tilde{h})^{ $\alpha$})\langle $\xi$/(h/\tilde{h})^{m $\alpha$}\rangle^{-1-$\epsilon$_{0}}(1+\mathcal{O}(x^{2m})))+r

\equiv(h/\tilde{h})^{\frac{m-1}{m+1}}g+r
with

supp r \subset\{|x|>$\delta$_{1}\}\cup\{| $\xi$|>$\delta$_{1}\}
(r comes from terms involving derivatives of  $\chi$(x) $\chi$( $\xi$) ). Note that near X= =0,
since  $\Lambda$(s)\sim s for s\sim 0 , the term

(2.9) g=$\Lambda$_{-}(--)\langle X\rangle-1-$\epsilon$_{0-}--+\{---\rangle^{-1-$\epsilon$_{0}} $\Lambda$(X)X^{2m-1}(1+\mathcal{O}(x^{2m}))
in \mathrm{H}(a) is bounded below by a multiple of ---2+X^{2m} . Provided $\delta$_{1} is chosen small

enough (so we can absorb the \mathcal{O}(x^{2m}) error term), g is in fact strictly positive away

from X = = 0 , while in the region |(X, \geq  1
, we find that since \mathrm{s}\mathrm{g}\mathrm{n} $\Lambda$(s) =

sgn (s) , when \displaystyle \geq\max(|X|^{1+$\epsilon$_{0}},1) then

g\geq $\Lambda$(---)\{X)-1-$\epsilon$_{0-}-->\sim \geq C>0,

while for |X|^{1+ $\epsilon$ 0}\displaystyle \geq\max 1), we have (providing $\delta$_{1}\ll 1 )

g\geq(1/2)\langle_{-}^{-}-\rangle^{-1-$\epsilon$_{0}} $\Lambda$(X)X^{2m-1_{\sim}}>|X|^{-2(1+$\epsilon$_{0})}|X|^{2m-1}\geq C>0,
provided 2(1+$\epsilon$_{0})<2m-1 . Thus, since the larger of and |X|^{1+$\epsilon$_{0}} is assuredly
greater than 1 in the region of interest, we have in fact shown that

g\geq C>0 in \{--+X^{2}>1\}.
Thus, we find

\mathrm{H}(a)=(h/\tilde{h})^{\frac{m-1}{\infty+\mathrm{z}}}g+r
with

r=\mathcal{O}_{S_{ $\alpha,\ \beta$}}((h/\tilde{h})^{(m-1)/(m+1)}((h/\tilde{h})^{ $\alpha$}|_{-}^{-}-|+(h/\tilde{h})^{ $\beta$}|X^{2m-1}|)
supported as above and

g (X, h)=\left\{\begin{array}{ll}
c(\leftrightarrow--2+X^{2m})(1+r_{2}) , & ---2+X^{2}\leq 1\\
b, & ---2+X^{2}\geq 1,
\end{array}\right.
where c>0 is a constant, r_{2}=\mathcal{O}_{\mathcal{S}_{ $\alpha \beta$}}($\delta$_{1}) , and b>0 is elliptic.

We will require a positivity resuit dealing with operators satisfying estimates of

this type.
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Lemma 2.5. Let a real‐valued symbol \tilde{g}(x,  $\xi$;h) satisfy

\tilde{g}(x, $\xi$;h)=\left\{\begin{array}{ll}
c($\xi$^{2}+x^{2m})(1+r_{2}) , & $\xi$^{2}+x^{2}\leq 1\\
b, & $\xi$^{2}+x^{2}\geq 1,
\end{array}\right.
where c> 0 is constant, r_{2} = \mathcal{O}_{S_{ $\alpha,\ \beta$}}($\delta$_{1}) , and b > 0 is elliptic. Then there exists

c_{0}>0 such that

\langle \mathrm{O}\mathrm{p}_{h}^{w}(\tilde{g})u, u\}\geq c_{0}h^{2m/(m+1)}\Vert u\Vert^{2}
for h sufficiently small.

We now employ this result to estimate Op hw(\mathrm{H}(a)) .

Lemma 2.6. For \tilde{h}>0 sufficiently small, there exists c>0 such that \mathrm{O}\mathrm{p}_{h}^{w}(g) >

ch^{2_{7}n/(m+1)} , uniformly as h\downarrow 0 , where g is given by (2.9).

Proof. Note that we have written g as a function of X
, so in changing variables to

x,  $\xi$ we are tacitly employing the blowdown map \mathcal{B} . In particular, we are interested

in estimating \mathrm{O}\mathrm{p}_{h}^{w}(g\circ \mathcal{B}^{-1}) from below. By conjugating by the rescaling operator

T_{h,\tilde{h}} , we have the change in calculus formula:

\mathrm{O}\mathrm{p}_{\tilde{h}}^{w}(g)T_{h,\overline{h}}u=T_{h,\overline{h}} Op hw(g\circ \mathcal{B}^{-1})u,
hence

\langle Op  hw(g\circ \mathcal{B}^{-1})u, u\rangle=\langle T_{h,\tilde{h}}\mathrm{O}\mathrm{p}_{\tilde{h}}^{w}(g)T_{h,\tilde{h}}u, u\rangle\geq c\tilde{h}^{2m/(m+1)}\Vert u\Vert^{2}
for \tilde{h} sufficiently small, by unitarity of T_{h,\overline{h}} and Lemma 2.5, with \tilde{h} replacing h.

This establishes the Lemma. \square 

The lower order terms from the proof of Lemma 2.4 are handled in [9], which we

leave out here in the interest of exposition.
We are now able to prove the resolvent estimate Lemma 2.4. Let v=$\varphi$^{W}u , with

 $\varphi$ chosen to have support inside the set where  $\chi$(x) $\chi$( $\xi$)=1 ; thus the terms r and

r3 above are supported away from the support of  $\varphi$ . Then Lemma 2.6 and some

careful analysis of the error terms yield

 i\langle[Q_{1}-z, a^{w}]v, v)=h\langle \mathrm{O}\mathrm{p}_{h}^{w}(\mathrm{H}(a))v, v\rangle+\langle \mathrm{O}\mathrm{p}_{h}^{w}(e_{2})u, u)

=h(h/\tilde{h})^{(m-1)/(m+1)}\{\mathrm{O}\mathrm{p}_{h}^{w}(g)v, v)+\langle \mathrm{O}\mathrm{p}_{h}^{w}(e_{2})u, u\}

=h^{2m/(m+1)}(\tilde{h}^{-(m-1)/(m+1)}+\mathcal{O}(\tilde{h}^{-(m-3)/(rn+1)}))\langle \mathrm{O}\mathrm{p}_{h}^{w}(g)v, v\rangle
\geq Ch^{2m/(m+1)}\tilde{h}\Vert v\Vert^{2},

for \tilde{h} sufficiently small. On the other hand, we certainly have

|\langle[Q_{1}-z, a^{w}]v, v\rangle| \leq C\Vert(Q_{1}-z)v\Vert\Vert v\Vert,
hence the desired bound follows once we fix \overline{h}>0. \square 

3. RESULTS FROM [8] AND [6]
The techniques in [9] are robust enough to apply in several different situations.

In [8], J. Metcalfe and the author study a new kind of trapping called �inflection‐

trmsmission� trapping. The basic idea is that, instead of a maximum of the effective

potential at x=0 , we allow an inflection point, say, at x=1 . The induced symbol
looks like $\xi$^{2}-(x-1)^{2m_{1}+1} for m_{1} \geq 1 a natural number.
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That is, in the notation above, we consider a surface of revolution with generating
curve given by the following construction. Let m_{1} and m_{2} be positive integers, and

set

A^{2}(x)=1+\displaystyle \int_{0}^{x}y^{2m_{1}-1}(y-1)^{2m_{2}}/(1+y^{2})^{m_{1}+m_{2}-1}dy.
As the integrand in the last term

x^{2m_{1}-1}(x-1)^{2m_{2}}/(1+x^{2})^{m_{1}+m_{2}-1}\sim\left\{\begin{array}{l}
x^{2m_{1}-1}, x\sim 0,\\
(x-1)^{2m_{2}}/2^{m_{1}+m_{2}-1} x\sim 1,\\
x, |x|\rightarrow\infty,
\end{array}\right.
we notice that

(3.1)  A^{2}(x)\sim \left\{\begin{array}{l}
1+x^{2m_{1}}, x\sim 0,\\
C_{1}+c_{2}(x-1)^{2m_{2}+1} x\sim 1,\\
x^{2}, |x|\rightarrow\infty.
\end{array}\right.
Here C_{1} > 1 and c_{2} < 1 are constants which are easily computed but inessential,
except for their relative sizes compared to 1. As will be clear in the sequel, the

specific structure of A is inessential and only the location and nature of the critical

points and behavior at infinity matter.

In [9], the main idea from the technical commutator argument near the critical

point works because

\{x $\xi,\ \xi$^{2}-x^{2rr $\iota$}\}\sim$\xi$^{2}+x^{2m}.
That is, differentiating x^{2m} produces an odd power of x near 0 , but the additional

x in  x $\xi$ multiplies to give an even power, which is non‐negative definite. Due

to the odd power in (x-1)^{2m_{2}+1} , differentiating makes an even power, so our

commutant must result in an elliptic multiple of this. It is very interesting that

this is accomplished by considering exactly the same commutant. That is, since x

is elliptic near x=1 , we observe

\{x $\xi,\ \xi$^{2}-(x-1)^{2m_{2}+1}\}\sim$\xi$^{2}+x(x-1)^{2m_{2}},
which is non‐negative near x=1.

In this case, the polynomial power in the loss in local smoothing is different. The

main result of [8] is the following theorem:

Theorem 2 (Local Smoothing). Suppose X is as above with m_{1}, m_{2} \geq  1 and

assume u solves

\left\{\begin{array}{l}
(D_{t}- $\Delta$)u=0 in \mathbb{R}\times X,\\
u|_{t=0}=u_{0}\in H^{s}
\end{array}\right.
for some s > 0 sufficiently large. Then for any T < \infty , there exists a constant

 C_{T}>0 such that

\displaystyle \int_{0}^{T}(\Vert\langle x\}^{-1}\partial_{x}u\Vert_{L^{2}(dVol)}^{2}+\Vert\{x)^{-3/2}\partial_{ $\theta$}u\Vert_{L^{2}(dv_{0}r)}^{2})dt
\leq C_{T} \langle D_{ $\theta$}\rangle^{ $\beta$(m_{1},m_{2})}u_{0}\Vert_{L^{2}(dVo\mathrm{f})}^{2}+\Vert\langle D_{x}\}^{1/2}u_{0}\Vert_{L^{2}(dVol)}^{2}) ,

where

(3.2)  $\beta$(m_{1}, m_{2})=\displaystyle \max(\frac{m_{1}}{m_{1}+1}, \frac{2m_{2}+1}{2m_{2}+3}) .
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Moreover this estimate is sharp, in the sense that no polynomial improvement in

regularity is true.

3.1. Further developments. After the papers [8, 9], the author continued his

study of degenerate trapping. Having handled the cases of finitely degenerate max‐

ima and inflection points, the next logical step is to consider infinitely degenerate
critical points, and indeed even segments of critical points. In these cases, wave

packets near the trapping are so slow to escape to infinity that no local smoothing
is expected. Indeed, Theorems 1 and 2 give no smoothing in the limit as m\rightarrow\infty.

Hence only a microlocal resolvent estimate is expected. In [6], the author develops
techniques to handle these infinitely degenerate cases. Essentially, a calculus is

developed around adding an h‐dependent finitely degenerate �bump� to the effec‐

tive potential. Then a similar argument to that in [8, 9] is employed to get a good
estimate on the perturbed operator. In comparing the perturbed operator to the

original operator, there is an unavoidable loss in h for the microlocal invertibility
estimate. In Lemma 2.4, the microlocal resolvent estimate has an upper bound on

the order of h^{-2m/(m+1)} . It is important to note that the exponent 2m/(m+1)<2
for all m . In the infinitely degenerate case, the upper bound is C_{ $\epsilon$}h^{-2- $\epsilon$} for each

 $\epsilon$>0 . In other words, there is a gap between the estimates for finitely degenerate
trapping and infinitely degenerate trapping.

4. RELATED RESULTS ON COMPACT DOMAINS

In this section, we give one last very simple application of the grand‐daddy
commutator to eigenfunctions in planar domains.

Let  $\Omega$\subseteq \mathbb{R}^{2} be a compact domain with piecewise smooth boundary. Consider

the Dirichlet eigenfunction problem:

\left\{\begin{array}{l}
-h^{2}\mathrm{A}u=u,\\
u|_{\partial $\Omega$}=0,
\end{array}\right.
and assume that \Vert u\Vert = 1 . Let X= (x+m)\partial_{x}+(y+n)\partial_{y} with m, n parameters
independent of (x, y) and h . Observe this is just a constant coefficient perturbation
of the radial vector field. Hence we still have [-h^{2} $\Delta$, X]=-2h^{2}\mathrm{A} . Hence we can

integrate by parts:

2=-2\displaystyle \int_{ $\Omega$}(h^{2} $\Delta$ u)\overline{u}dV
=\displaystyle \int_{ $\Omega$}([-h^{2} $\Delta$-1, X]u)\overline{u}dV
=\displaystyle \int_{ $\Omega$}((-h^{2} $\Delta$-1)Xu)\overline{u}dV
=\displaystyle \int_{\partial $\Omega$}(hXu)h\partial_{ $\nu$}\overline{u}dS.

The point is that this commutator method gives information about how iterior

behaviour of the eigenfunctions yields information about the Neumann data. One

can, of course, jazz up the vector field X with spatial cutoffs or microlocal cutoffs.

Along with J. Toth, the author is working to apply this method not just to the

boundary of  $\Omega$ , but also to interior hypersurfaces.

129



CHRISTIANSON

In order to discover ways to apply this to planar domains, the author considered

first partially rectangular domains, which is a rectangle with �wings� attached to

two opposite sides. In turn, the author considered simpler and simpler domains until

discovering a remarkable theorem [7]: The mass of the (semi‐classical) Neumann

data on each side of a triangle is equal to the length of the side divided by the area

of the triangle. This is not an asymptotic, but an exact formula.

Let us briefly summarize the proof, since it is so simple. Given a triangle  T

with sides of length a, b, c , if we compute the boundary terms, we find that the

contribution of the x\partial_{x} cancels with the contribution of y\partial_{y} on each side. Then

there are explicit constants A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}, C_{1}, C_{2} , C3 such that

2=\displaystyle \int_{\partial T}(hXu)h\partial_{ $\nu$}\overline{u}dS
=(A_{1}m+A_{2}n+A_{3})\displaystyle \int_{a}|h\partial_{ $\nu$}u|^{2}+(B_{1}m+B_{2}n+B_{3})\int_{b}|h\partial_{\mathrm{v}}u|^{2}

(4.1) +(C_{1}m+C_{2}n+C_{3})\displaystyle \int_{\mathrm{c}}|h\partial_{\mathrm{v}}u|^{2}.
Let

I_{a}=\displaystyle \int_{a}|h\partial_{v}u|^{2}dS
and similarly for I_{b} and I_{c}.

The constants in (4.1) are explicitly computed in terms of the side lengths a, b, c.

If we set m=n=0 , we get one linear equation for the I_{a}, I_{b}, I_{c} . Differentiating
(4.1) with respect to m and n yields two more independent linear equations for the

quantities I_{a}, I_{b} , and I_{c} . When we solve these equations, we get

I_{a}=\displaystyle \frac{a}{\mathrm{A}\mathrm{r}\mathrm{e}\mathrm{a}(T)}, 1_{b}=\frac{b}{\mathrm{A}\mathrm{r}\mathrm{e}\mathrm{a}(T)}, I_{c}=\frac{c}{\mathrm{A}\mathrm{r}\mathrm{e}\mathrm{a}(T)}.
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