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1 Introduction

This is a survey article of the forthcoming paper [8]. We consider the problem

—Au=u?, u>0, zeQ, t>0,
(1.1) Owu+ d0,u =0, zed, t>0,
w(z,0) = p(z) >0,  z€dN,

where N > 2, Q C R, A is the N-dimensional Laplacian (in z), v is the exterior normal
vector on 0%, 8, := 3/0t, 8, := 8/dv, p > 1, and ¢ is a nonnegative measurable function
on 0N. For the half space, namely, 2 = Rf , Fila, Ishige and the author of this paper
studied in [5, 6, 7] the existence and nonexistence of solutions to (1.1). They introduced
a definition of a solution by the use of an integral identity and obtained the following:

Ifl<p<(N+1)/(N—-1), N>1and ¢ # 0, then problem (1.1) possesses no
local-in-time solutions.

(ii) Letp > (N+1)/(N—1), N > 1 and let () = p(1+|z|)~%® on ORY with y > 0.
If u is sufficiently large, then problem (1.1) possesses no local-in-time solutions. On
the other hand, if y is sufficiently small, then a solution of (1.1) exists globally in
time.

(iii) The following statements are equivalent:

(a) Problem (1.1) has a local-in-time solution;

(b) Problem (1.1) has a global-in-time solution;



(¢) Problem
(1.2) ~Av=1", v>0 in RY, w(z)=¢(z) on ORY,
has a solution.

Fﬁrthermore, if u = u(z,t) and v = v(z) are minimal solutions of (1.1) and (1.2),
respectively, then

(1.3) u(@,zy,t) = v(z',zn + 1)
for almost all 2’ € R¥~! and all zy > 0 and ¢ > 0.

Unfortunately, the arguments in [5, 6, 7] are available only if the domain is a half-space
and are not applicable to other domains. Indeed, the definition of a solution in [5, 6, 7] is
useful only for RY and we cannot expect property (1.3) for other domains.

In this paper we focus on the exterior domain

Q:={ceR":|z| >1}, N>2

and study the existence and nonexistence of solutions of (1.1). We introduce a definition
of a solution of (1.1) using an integral equation and obtain results of a similar type as in
(i), (i) and (iii). However, there are some significant differences. The critical exponent
(N+1)/(N —1)in (i), (ii) is replaced by N/(N - 2) for problem (1.1) and the algebraic
decay rate t~=1 of small solutions of (1.1) with @ = RY (see [5]) is replaced by the
exponential rate e~(¥=2* for problem (1.1). These rates are the decay rates of the Poisson
kernels on the respective domains.

As far as we know, the only unbounded domain treated before is the half-space RY
([1, 4, 5, 6, 7, 10, 11]). 'The main motivation of this paper is to study the effects of a
change of geometry. '

We begin with introducing a definition of solutions of the following elliptic problem

—Au=F(t,u), u©v>0, rzeN, t>0,
(1.4) Ou+ d,u =0, e, t>0,
u(z,0) = p(z) >0, z € 09,

where F is nonnegative continuous function in (0, 00) x [0, 00). We introduce some nota-
tion first. Let P = P(x,y) be the Poisson kernel on B = B(0,1) := {z € RV : |z| < 1},
that is

1—|z|?

lz -y’

P(z,y) :=cn r € B, ye€oiB,

where cy is a constant to be chosen such that || P(z,-)||z1(95) = 1 for z € B (see (2.28) in
[9]). Then P = P(z,y) satisfies as a function of z

(1.5) —A,P=0 in B, P(z,y)=46, on OB,



where §, is the Dirac function on 9B = 00 at y. We denote by K = K(z,y) the Kelvin
transform of P as a function of z with respect to B, that is

T

K(z,y) == |z["¥2P (W,y) , z€Q, yeon.

Set
(1.6) K(z,y,t) :== K(e'z,y), z€Q, ye€aQ, t>0.
Then it follows from (1.5) that X = K(z,y,t) as a function of z and ¢ satisfies

-AK=0 in Q x (0,00),
8K +08,K=0 on 89 x (0,00),
K(,y,0)=6, on 0Q.

For any nonnegative measurable function ¢ on 9 and ¢ > 0, we define
SOA@ = [ K@nopwdn,= [ Koo, ol

Let G be the Green function for the Laplace equation on 2 with the homogeneous Dirichlet
boundary condition, that is

(1'7) G(xs y) = ch 2 (Ix - yl—(N—.Z) - llxl(y - w*)'_(N_2))

for z, y € Q with z # y, where z, := z/|z|? for z € Q.
Now we formulate our definition of a solution of (1.4).

Definition 1.1 Let ¢ be a nonnegative measurable function on 0 and 0 < T < co.
(i) Let u and u® be nonnegative measurable functions in Q x (0,T) and 8Q x (0,T),
respectively. Then we say that U = (u,u®) is a solution of (1.4) in Q x (0,T) if
u(@) = [ Kl t)et) o, + [ Gla) Pt utw ) dy
t
+f / K(z,y,t — s){ / K(z,y)F(s,u(z, s))dz} doyds < o0
o Jon Q

for almost all x € Q and t € (0,T) and

(1.8)

w2, t) = /an K(',y,t)p(y) doy
1.9 t -
() +/0 - K(z',y,t — s){ /Q K(z,y)F(s,u(z,s)) dz} doyds < oo



for almost all ' € 0Q and t € (0,T). If u and u® satisfy (1.8) and (1.9) with = replaced
by >, then we say that U = (u,u?) is a supersolution of (1.4).
(i) Let U = (u,u®) be a solution of (1.4) in Q x (0,T). Then we say that U is a minimal
solution of (1.4) in Q x (0,T) if
u(z,t) <w(z,t)  for almost allz € Q and t € (0,T),
wb(z',t) < wb(a',t) for almost all 2’ € 8N and t € (0,T),

for any solution W = (w, w®) of (1.4) in Q x (0, T).

Definition 1.1 is motivated by the definition of a solution of (1.1) for the case @ = RY,
which was introduced in [5]. However, the derivation of integral equations (1.8) and (1.9)
depends on Q2 and it is different from the one in RY.

Remark 1.1 Let us remark that if F = 0 and ¢ = ¢, where ¢ > 0, then the solution given

by Definition 1.1 is

(1.10) ug(x, t) == c(et|z|)~ N2, r€eQ, t>0,

(see (2.1)), while the constant function c also satisfies (1.4) in the classical sense.
Similarly to Definition 1.1, we define a solution of the elliptic problem

(1.11) f —~Av=f(v), v>0 in Q, v(z)=¢(x) on O,

where f is a nonnegative continuous function in [0, co).

Definition 1.2 Let ¢ be a nonnegative measurable function on 0f2.
(i) Let v be a nonnegative measurable function in Q. Then we say that v is a solution of
(1.11) in Q if

(1L12) v(z) = /3 K@) do, + /Q Gz, ) f(v(y)) dy < oo

for almost all z € Q. If v satisfies (1.12) with = replaced by >, then we say that v is a
supersolution of (1.11).
(ii) Let v be a solution of (1.1) in Q. We say that v is a minimal solution of (1.11) in Q
if

v(z) < w(z) for almost all x € Q,
for any solution w of (1.11) in Q.

(iii) Let v € C*(Q) and v > 0 in Q. We say that v is a classical supersolution of (1.11) if
v satisfies

—Av > f(v) in Q,
Jim min {v(e"z) - [S(t)pil(z)} 20 for any k >0,

where ¢ := min{p, k}.



~ Obviously, minimal solutions of (1.4) and (1.11) are uniquely determined, respectively.

Now we state the main results of this paper for problem (1.1). We first give a sufficient
condition for the solution of (1.1) to exist globally in time. '

Theorem 1.1 Assume that

P> Py = m
Then there exists 6 > 0 such that, if p € L*(09) and ||¢||r=(a0) < 0, then problem (1.1)
possesses a global-in-time minimal solution U = (u,ub) satisfying

(1.13) ess sup [e(N_2)t|lub(',t)"Loo(aQ) + e =2t esgsup 2|V 2 |u(z, t)|| < 0.
t>0 z€EQ

The solution u, given by (1.10) shows that the decay rates in (1.13) are optimal because
then all integrals in (1.8) are nonnegative and the first one is bigger than or equal to u,
ifo>ec .

In the second theorem we show that local solvability of problem (1.1) is equivalent to
global solvability of problem (1.1). See also Theorem 4.1 and Corollary 4.1.

Theorem 1.2 Assume that p > 1. Let ¢ be a nonnegative measurable function on O0f2.
Then the following are equivalent:

e Problem (1.1) possesses a local-in-time solution;
e Problem (1.1) possesses a global-in-time solution.
Furthermore, if there exists a solution v of the elliptic problem
(1.14) —Av=1", v>0 1n Q, v=¢ on 09,
then problem (1.1) possesses a global-in-time solution U = (u,u®) such that

u(z,t) <wv(etz)  for almost all z € U and t € (0,00),
w(2/,t) < v(e'z’) for almost all 2’ € 3Q and t € (0, ).

Next we state our results on the nonexistence of local-in-time solutions of (1.1).

Theorem 1.3 Assume that 1 < p < p.. Let ¢ be a nonnegative measurable function on
O such that ¢ # 0 in Q. Then problem (1.1) possesses no local-in-time supersolutions.

Theorem 1.4 Assume that p > p.. Let ¢ be a nonnegative measurable function on 052
such that ¢ # 0 in . Then there exists a constant p, > 0 such that, if p > p. and
@ = ud on 99, then problem (1.1) possesses no local-in-time supersolutions.

As a corollary of our theorems, we have:



Corollary 1.1 Assume that p > 1. Let ¢ be a nonnegative measurable function on 0Q
such that o # 0 in (2.

(i) If there exists a classical supersolution of (1.14), then problem (1.14) possesses a
solution.

(ii) If 1 < p < p«, then problem (1.14) possesses no supersolutions and no classical
supersolutions.

For similar results as in Corollary 1.1 (ii), see [2, 3], for example. In particular, for N = 2,
there are no solutions of (1.14) for any ¢ and p > 1 (see [2]).

The rest of this paper is organized as follows. In Section 2 we give some estimates of
integrals related to the integral kernels K and G. Furthermore, we show some lemmas on
minimal solutions. In Section 3 we prove Theorem 1.1 by using the results in Section 2. In
Section 4 we study the solvability of problem (1.11), and prove Theorem 1.2. In Section 5
we study the nonexistence of solutions of (1.1), and prove Theorem 1.3, Theorem 1.4 and
Corollary 1.1.-

2 Preliminaries

In this section we obtain some estimates of the integrals related to the kernels K and
G. Furthermore, we prove some fundamental properties of minimal solutions. In what
follows, for any r € [1, 00|, we write | - |, = || - ||z~@0) and || - ||, = || - ||zr(@) for simplicity.

2.1 Integral kernels K and G

By using some properties of the Poisson kernel P, we first obtain the following.
Lemma 2.1.Let N > 2 and K be as in (1.6). Then
(21) [ (o9, doy = (a2,

an

/ K(z,y,s) K(y, 2,t) doy, = K(z, z,t + s),
80

forzeQ, z€ 0 and s, t > 0.
By Lemma 2.1 and the regularity theorems for elliptic equations we have:

Lemma 2.2 Let N > 2. Let ¢ be a nonnegative measurable function on Q such that
@ € L>(09). Then

(2.2) S € C(Q x (0,00)) NC=(Q x [0, 00)),
—AS(t)p=0 in Q foranyt >0,
(2.3) S@t)[S(s)g]® = S(t+s)p fors, t>0,

(2.4) [S®¢](@)] < &Nz~ Vgl in 2 x [0, 00).



Here [S(t)y]® is the restriction of S(t)p to OQ. Furthermore, for any 6 € (0,1), there
‘ezists a constant C' such that

”S(t)(p”CZ"’(Q) < Ct—2—0|(p1007 t> Oa
I1S®¢llcre@ < Cliellcro@a)y, t=0.

Next we define two integral operators,
Wil = [ Ko, ceon,
(a0 M@ = [ vy, zeo,
where 7 is a nonnegative measurable function in 2. Then we have the following lemma.
Lemma 2.3 Let N > 2. Let ¢ be a nonnegative measurable function in Q such that
Y(z) < cylz|™N7, l z € Q,
‘for some ¢y > 0 and o > 0. Then there exists a constant C; such that
Furthermore, there exists a constant Cy such that

[(=Ap))(z) < Cocylz| V2, zeQ.

2.2 Minimal solutions

In this section we assume that
(2.56) F = F(t,u) is continuous on (0, c0) x [0,00) and increasing with respect to u,

and construct minimal solutions of (1.4). Let u(z,t) =0 in Q x (0,00) and u}(z,t) = 0
on 90 x (0,00). For n = 1,2;..., by induction we define

(2'6) Un-)-l(xa t) = [S(t)go](x) + fn(xa t) + wn(xa t)
for almost all z € Q and ¢t > 0 and
(2.7) W@ 1) = SOl + ua( )

for almost all ' € 9Q and ¢ > 0, where
Fa(z,t) = F(t,un(z,t)), fa(@,t) == [(=Ap) ' Fu(-, 1)) (2),

Wo(z,t) := W[F,(, ))(z), wa(z,t):= /Ot[S(t — )Wo(-, s)](z) ds.



Since K = K(z,y,t) and G = G(z,y) are nonnegative, we can prove inductively that

0 < up_q(z,t) < up(x,t) for almost all z € Q and ¢ > 0,
0<ul_,(/,t) <ub(z',t) for almost all ' € HQ and ¢ > 0,
where n = 2,3,.... Then we can define
ue(x, 1) == li_)m un(z,t) € [0,00] for almost all z € Q and ¢ > 0,
n—oo

2.8
28) ul(z',t) ;= lim ul(z',t) € [0,00] for almost all z’ € dQ and ¢ > 0.
n—o0

We first obtain the following.

Lemma 2.4 Assume (2.5). If there exists a supersolution U = (u,u®) of (1.4) in 2% (0,T)
for some T > 0, then U, = (u,,ud) is the minimal solution of (1.4) in Q x (0,T).

Next we assume that
(2.9) f is continuous and increasing on [0, 00),

and construct a minimal solution of (1.11). Let vi(z) = 0in Q. For n = 1,2,..., by
induction we define

taa(a,) = [SO)e) + [ Gl o) dy
for almost all € Q. Then it follows that
ﬁ < Up-1(z) S vp(z) for almost all z € Q,
where n = 2,3,..., and we can define
v(z) = Jim vn(z) € [0,00] for almost all z € Q.
Similarly to Lemma 2.4, we have:

Lemma 2.5 Assume (2.9). If there ezists a supersolution v of (1.11) in €, then v, is a
minimal solution of (1.1) in Q.

3 Proof of Theorem 1.1

We prove Theorem 1.1. In this section we use the same notation as in Section 2.2.
Applying Lemmas 2.2 and 2.3 to approximate solutions (2.6), we have the following.



Lemma 3.1 Assume the same conditions as in Theorem 1.1. Furthermore, assume that
D,, := esssup [e(N_mtluf,(-, )|oo + €V Dt ess sup. |z |V 2 |ug (z, t)|:| < 00
- t>0 ' zeQ

for some n € {1,2,...}. Then there exists a constant C., independent bf n, such that
Dpi1 < 2{|p|eo + Cu(kD2 + AD2)}.

Now we are ready to prove Theorem 1.1.
Proof of Theorem 1.1. Let § be a sufficiently small positive constant such that

(3.1) K(C, + 1)P6P + A(C, +1)7671 < 1/2,
where C, is the constant as in Lemma 3.1. Assume |¢|o, < §/2. Since ug(-,t) = S(t)p
and uS(-, t) = [S(t)p]°, by (2.4) we see that :
(3.2) €ss sup [e(l\'_z)t|ug(-,t)|oo + e(N_z)tesssup|x|N_2|uQ(1:,t){] < 2|¢)oe < 6.
t>0 zeQ

Taking a sufficiently small § if necessary, by Lemma 3.1, (3.1) and (3.2) we have

esssup [e(N—Z)ﬂug(-, t)|oo + €N "D esssup ||V 2 |us(z, t)|]
t>0 z€Q
< 2{|¢loo + Cu(K8” + 237} < 6 + ..

Apblying Lemma 3.1 again, by (3.1) and (3.2) we obtain

esssup [e(N'Z)‘luf’,(~, t)]oo + €MD esssup ||V 2 |uy(z, t)|]
t>0 z€Q
< 2{[@loo + CulK((Cy + 1)) + A((Cy +1)8)1]} < 6 + C.4.

Repeating this argument, we deduce that

esssup eV "Dt|ul (- )]0 + eN "D esssup |2V 2 un (, t)|] <6+C6
t>0 L z€N

for all n = 2,3,.... This together with (2.8) implies that

esssup | e b (-, )]0 + NP esssup |2V 2|u.(z, t)|] <é+C4.
t>0 L z€Q

Then, by (2.7) we see that U, = (u.,u?) is a solution of (1.1) in 2 x (0, 00). Furthermore,
we deduce from Lemma 2.4 that U, = (u,,u?) is a minimal solution of (1.1). Thus
Theorem 1.1 follows. O



4 Nonlinear elliptic equations

In this section we consider problem (1.11) and prove the following theorem.

Theorem 4.1 Let ¢ be a nonnegative measurable function on 9. Assume that
(4.1) f is Holder continuous and increasing on [0, 00).

Then the following statements are equivalent:
(a) Problem (1.11) possesses a solution;
(b) Problem
—Au=e*f(u), u>0 in Qx(0,00),
(4.2) ou+o,u=0 on 00 x (0,00),
u(z,0) = () on 0Q,
possesses a local-in-time solution;
(c) Problem (4.2) possesses a global-in-time solution.

Furthermore, if v = v(z) and U = (u,u®) are minimal solutions of (1.11) and (4.2),
respectively, then

v(etz) = u(z,t) for almost all z € Q and t > 0,
v(elr) = ub(x,t) for almost all z € 8Q and t > 0.

We prepare the following Phragmén-Lindelof theorem for the Laplace equation in 2. The
proof is a modification of the proof of [7, Theorem 3.1].

Lemma 4.1 Let o > 0 and let u = u(z,t) satisfy
u(-,t) € CHQ)NCYQ) for any t e (0,0],
ue CQx(0,0]), Bue C(Bx(0,0]),

and
—Au>0 in Qx(0,0], Su+0,u>0 on 9002 x(0,0].

Assume that

liminf inf u(z,t) >0,

t—+0 zed) ’
limsup  inf  wu(z,t) > 0.
Rosoo lel=Rite(00]

Then u > 0 in Q x (0, o].

10



By Lemma 4.1 and the regularity theorems for elliptic equations we have:

Lemma 4.2 Let ¥ be a nonnegative continuous function on 0% (0, 00) such that 9(-, s) €
CY(0R) for all s >0 with0 < 6 < 1 and

sup |'l9(,$)|°° < 00, sup "19('13)“01-9(39) < 00,
s€(0,T) s€[1,T)

forany 0 < 7 < T < 00. Then

w(z,t) = /t/ K(z,y,t — s)3(y, s) do,, E/t/ K (e °z,y)0(y, s) doy
o Jan o Jan
is the unique function on Q x (0, 00) with the following properties:
(a) w e C*Q x (0,00)) NCHQ x (0,00));
(b) w satisfies
—Aw=0 in Qx(0,00), w+d,w =79 on 90 x (0,00);

(c) tE‘i‘oi‘ég lw(z,t)] = 0;
(@) lim Sup. llw(:,t)ll=(0B(0.8) = O for any o > 0.

We construct approximate solutions of (1.11) and (4.2). Let ¢ be a nonnegative
measurable function on 0Q. Let ¢ be a smooth function in R¥ such that

0<¢<1 in RY (=1 in B(0,1), ¢=0 outside B(0,2).
For any k =1,2,..., we set
or(z) := min{p(z),k} on 09, G(z) :=¢(k™'z) on Q.

Deﬁné a sequence {vi,} inductively by

, v (2) = / K(z,y)px(y) doy,
(4.3) o0
(@) = [ Ko, 9)ouw)doy + [ G, 0)(01n())Ge(4)

where n = 1,2,.... By (2.2) and (2.4) we see that

i1 € C2(Q) N L®().

11



12

This together with (1.7) and (4.1) implies that
V2 € C%(Q) N L=(9), 11m sup |vk2(z)| =0,

le]=R

lim sup v 2(x) — /mK(x,Z/)‘Pk(y)de =0

R—+1 |z|=R

Repeating this argument, we have

ven € CHQNLE(Q),  lim sup Juga(2)] =0,
 fal=R
(4.4)
A, SUp |Vka(@) = /8 K@ y)eily) doy =0,

for n =1,2,.... Furthermore, it follows that
45) ~Avkp = f(Ohn-1)G 0 Q.

In addition, by the definition of v, and the monotonicity of f we see that

(4.6) Vkn(Z) S Vrnt1(Z),  Okn(@) < Vkan(T),
forallz € Qand k, n=1,2,....

Set '
(4.7) U (T, 1) = Vi n(€'T), reQ, t>0.

Then we deduce from (4.4) that

U € C2(Q x (0,00)) N L¥(Q x (0, 00)),

lim sup |Ugn(z)] =0 for any o >0,
(4.8) BR300 |7|=R,te(0,0]

unaet) = [ Ko, u)ou(s) doy| = .

lim sup
=40 290

Furthermore, by (4.5) and (4.6) we see that

(4 9) —Aukm =.€2tf(uk’n_1)€k in Qx (0, OO),

’ Opukn + Oy =0 on 99 x (0,00),
and
(410) uk,n(x; t) S uk,‘n-l—l (.’E, t)1 uk,n(xv t) S ka+1,n($7 t)7

for all (z,t) € & x (0,00) and k, n =1,2,....
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On the other hand, we set

| Gin(e,1) 1= / G ) f (s mer (0, ) Ci('y) s,
(4.11) @

P ,1) = en(5,8) = [ K (52, 9)0(0) o = g,
By (2.2), (4.8) and (4.9) we see that

Gkn> hk,n € 02‘0(§ X (0, OO))
for some 6 € (0,1) and

—Ahyn =0 in Qx(0,00),
8thk,n + auhk,n = —OuGk,n on Of}x (07 00),

Jim, sup k()| = 0.
Therefore, it follows from Lemma 4.2 that
t
hn(z,t) = — / / K(e"*z,y)8,gkn doy ds
0 Jaq
t
= —/ 623/ K(e"*z, y)(/(a,,G)(y, 2) f(tkn-1(2, $))Ck(€°2) dz) doy ds
0 £ Q
t
=/ ezs/ K(e"*z, y)(/ K(z,y) f(ukn-1(2, 5))Ck(€°2) dz) do, ds.
0 a0 Q ’
This together with (4.11) implies that
wn@t) = [ K2 0)ns) oy + ¢ [ Glan) s )il dy
) Q

(4.12) . /Otezs fm K et—-sx,,y)( ]g K(2,9)f (ukn-1(2, 5))Gs(e°2) dz) doyds

for allz € Q and t > 0.
Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Assume that problem (1.11) has a solution v. Since G is positive
in Q% Q, by (1.12) we see that v € L} _(Q). Then it follows from the Fubini theorem that

(4.13) v(z) < oo for almost all z € 9B(0, R) and R > 1.
On the other hand, similarly to the proof of Lemma 2.5, it follows that

(4.14)  vkp(z) <v(z) < oo for almost all z € €,
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where k, n = 1,2,.... Furthermore, similarly to (4.13), we have
(4.15) Vgn(z) L v(z) < 0o for almost all z € B(0, R) and R > 1.
By (4.7), (4.14) and (4.15) we see that

Uk (2, 1) = vpa(e'z) < v(e'z) < oo for almost all z € R and ¢ > 0,
Uk (@, 1) = vgn(efz’) < v(efz’) < oo for almost all 2/ € dQ and t > 0,

where k, n=1,2,.... Then, by (4.10) we see that
u.(z,t) = klim nli_)m ugn(z,t) < v(e'z) < oo for almost all z € Q and t > 0,
— 00 00 .
ul(x',t) == klim lim (7', ) < v(e'z’) < oo for almost all z’ € 8 and ¢ > 0.
—00 N—00 .
Furthermore, we deduce from (4.12) that U, := (u., u®) is a solution of (4.2) in Q x (0, co).

Next we assume that problem (4.2) has a solution U = (u,u’) in Q x (0,7T) for some
T > 0. Similarly to the proof of Lemma 2.4, by (4.12) we see that

Ukn(z,t) < u(z,t)

_fdr almost all z € 2 and t € (0,T), where k, n = 1,2,.... Then, for almost all ¢ € (0,T),
by (4.7) we obtain

0 < vgn() = upnle~tz, t) < uletz,t) < 0o

for almost all z € Q2 with e*z > 1. Therefore, for almost all ¢ € (0,T), by (4.6) we see
that

: T ¢
(4.16) () == kll)ngogggo e (z) < ulez,t) <

for almost all z €  with e7'z > 1. Then we deduce from (4.3) that v, is a solution of
(1.11). Thus Theorem 4.1 follows. O
We prove Theorem 1.2 by using Theorem 4.1

Proof of Theorem 1.2. Assume that problem (1.1) has a solution U = (u,u®) in
Q x (0,T) for some T > 0. Then we can find T, € (0,T) such that (1.8) and (1.9) with
F = v? hold for almost all z € 2 and 2’ € 0N at t = T, respectively. It follows that

W@, ) = [ K@ Tl o,
(4.17) + /OT* " Kz, y, T, — s){ /Q'K(z, y)u(z, s)? dz} doy ds.
= [S(T))() + /0 " [S(T.g —s){ /Q K(z, Yu(z, s)pdz}](z') ds < oo



for almost all 2’ € 9. This together with (1.8) and (2.3) implies that

u(e, T.) = /a Kl o) doy + / Gz, y)uly, T.P dy

+ /OT* /m K(z,y, T, — s){ /Q K(z,y)u(z, s)? dz} doy ds

= [S(T)¢)(@) + /Q Gz, y)uly, T.Y dy

+ /0 " [S(T,‘—s){ /ﬂ K(zJu(z, s)”dz}] (z)ds

— [ K@yu'w T do, + [ Glaput, Ty dy < oo
a0 Q

for almost all z € Q. This means that u(-,7.) is a solution of (1.14) with ¢ = u®(T.).
Then, by Lemma 2.4 and Theorem 4.1 we see that problem (1.1) possesses a global-in-time
solution U = (&, @°) with ¢ = u*(T%). Set

(1) u(z,t) for almost all z €  and ¢ € (0,7.),
w(z,t) =
’ i(z,t—T.) for almost all z € Q and ¢ € (T, 0).

Similarly, we set

') ub(a/,t) for almost all 2’ € 9Q and ¢ € (0,T.),
w2 t) =< .
* @b (x’',t — T.) for almost all ’ € 9Q and t € (T, 00).

Then we see that W = (w, w®) is a solution of (1.1) with A = 0 in Qx (0, 7}). Furthermore,
by (1.9) we have

w(z,t) = a(z,t — Ty)
= / K(z,y,t — T)(y, T.) doy, + / G(z,y)u(y,t — T.)" dy
a0 Q

+ /ot—tr,, /m K(z,y,t —Ti — 8){ /ﬂ K(z,y)i(z,s)? dz} ds do,
= [S(t — T (T))(z) + /Q Gz, y)w(y, t)? dy

" / t [S(t - s){ /Q K(zJw(z, s)? dz}] (z) ds

15



for almost all z € Q and ¢ € (T, 00). This together with (2.3) and (4.17) implies that
w(z,t) = a(z,t — T) |

— S®)¢l() + /0 " [S(t _ s){ /Q K (2, Yu(z T dz}] (z) ds
+ /Q Glo, y)w(y, i) dy + /T t [S(t—s){ /Q K(z, Ju(z, s)“’dz}] (z) ds

= / K(z,y,t)¢(y) doy, + / Gz, y)w(y, t)? dy
N Q

+/0t/mlc(a;,y,t—s){/ﬁK(z,y)w(z,s)”dz} dsdoy

for almost all z € @ and t € (T, 00). Similarly, we have
w(@',t) = /m K@y, ) (y) do,

.
“+ li/ K y,t— s){ / K(z,y)w(z, s)P dz} dsdoy
o Joo Q

for almost all ' € Q and t € (T}, 0). Therefore, we see that W = (w, w?) is a solution
of (1.1) with A = 0 in © x (0, 00). Thus problem (1.1) possesses a global-in-time solution,
and Theorem 1.2 follows. O

* Furthermore, as a corollary of Theorem 4.1, we have the following result.

Corollary 4.1 Assume that p > 1. Let ¢ be a nonnegative measurable function on 0%2.
Assume that problem (1.1) possesses a local-in-time solution uw with the initial data @.
Then, for any u € (0,1), problem (1.14) possesses a solution with p = ug.

Proof. Let u be a solution of (1.1) with the initial data ¢ in  x (0,T) for some T > 0.
Then i(z,t) := pu(z,t) satsfies
—Ad=p PV, @G>0, z€Q, te(0,T),
ot + 8,1 =0, z€dQ, te(0,T),
i(z,0) = pd(x) >0, z € 0f.
Since p~®~Y > 1, we see that
' —AG=p VP > PP, zeQ, t>0,
provided that p=®=1 > e and 0 < ¢ < T. Therefore, the problem
—Aw=e*uw?, w>0, z€Q, t>0,
Oyw + G,w =0, zed, t>0,
w(z,0) = pe(z) > 0, z €09,

16
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possesses a local-in-time supersolution. Then,; by Lemma 2.4 and Theorem 4.1 we deduce
that problem (1.14) possesses a solution with ¢ = u@. Thus Corollary 4.1 follows. O

On the other hand, by the definition of vy, we obtain the following.
Theorem-4.2 Let ¢ be a nonnegative measurable function on 0Q such that ¢ Z 0 in Q.

Assume (4.1) and that there exists a classical supersolution v of (4.2). Then problem (4.2)
possesses a solution.

Proof. Let v be a classical supersolution of (4.2). Let k, n = 1,2, ... and let vy, be as in
(4.3). By Definition 1.2 (iii), Lemma 2.2 and (4.3), we apply Lemma 4.1 to v and v ; and
we see that v(z) > vg1(z) in Q. Then, by (4.4) and (4.5) we apply Lemma 4.1 to v and
k2, and obtain v(z) > vy 2(z) in . Repeating this argument, for any k, n = 1,2,..., we
deduce that v(z) > vgn(z) for all z € Q. Similarly to (4.16), by (4.6) we have

va(2) := Jim lim veq(z,t) < v(z)

for all z € . Furthermore, we see that v, is a solution of (4.2). Thus Theorem 4.2
follows. O

5 Proof of Theorems 1.3 and 1.4

For the proof of Theorems 1.3 and 1.4, applying the estimate
u(z,t) > [(—Ap) " u(t)?](x)
for almost all z € Q and ¢ € (0,T), we prepare the following lemma.

Lemma 5.1 Assume thatp > 1. Let u be a solution of (1.1) in Qx (0,T) for some T > 0.
Let R>5 and A > 0. Assume that u satisfies (1.8) att =T, € (0,T) and

u(z,T.) > Alz| V=2

for almost all x € 0\ B(0,R). Then there exists a positive constant K, independent of
R, such that, if A > KRO-N/@-1)  then

u(z, T,) > e |z|~ V-2

for almost all x € Q\ B(0,R,) and alln = 1,2,.... Here v := max{p(N — 2), N} and
R, :=3""'R.
Now we are ready to prove Theorem 1.3.

Proof Theorem 1.3. Let 1 < p < p,. Then 7 := max{p(N —2), N} = N. Let ¢ be a
nonnegative measurable function on O such that ¢ # 0 in Q. Assume that there exists a



nonnegative solution u of (1.1) in Q x (0, T) for some T > 0.- Then we can find T, € (0,7T)
that u satisfies (1.8) at ¢t = T,

On the other hand, since ¢ # 0 on 992, we see that S(7./2)¢ is positive on Q. Then,
by (2.2) we can find a positive constant m such that

(5.1) S(T./2)¢ >2m on 0Q.
This together with (1.8), (2.1) and (2.3) implies that

u(z, T.) 2 [S(T)¢l(x) = [S(T/2)[S(T/2)¢)] ()

(5.2) > [S(T./2)m](z) > m[e™2|z)]" V= > C,|e|- -2

for almost all € Q, where C, is a positive constant.
Let R > 5. Since 1 < p < p,, it follows from (1.8) and (5.2) that

(e, T) > / G(z,y)u(y, T dy > KCP / WGz, v) dy
Q

B(0,R/2)\B(0,1)

kenC? / ly| ™
5.3 = W4
(53) N -2 Jpo,r/2\B01) [T — YN 2

cP ' v
_ Key *|x|_(N_2)/ ly|~ —dy
N -2 BO,R/2\B©,1) [Y — T4]

for almost all z € Q. Furthermore, since N > 2, there exist constants C; and Cj,
independent of R, such that

Yy~ _ _ .
—I—'—dy>0 Y|~V 2)/ ly|™" dy,

/3(0,3/2)\3(0,1) |z — y|N-2 B(0,R/2)\B(0,1)

— .
/ LN_Q dy < 01/ ly|~NDdy < Gy,
B(0,R/2)\B(0,1) ly — .| B(0,R/2)\B(0,1)

for x € Q\ B(0, R). By (5.3) and (5.4) we see that

(5.4)

(55) u(e, 7) > SN g0 2’[0- / |y|-~dy-cz]
B(0,R/2)\B(0,1)

for almost all z € Q\ B(0, R). Let K be the constant given in Lemma 5.1. Since y = N,
taking a sufficiently large R, by (5.5) we obtain

u(z,T,) > K|z|~ N2
for all z € 0\ B(0, R). This together with Lemma 5.1 implies that

(5.6) w(z, T,) > e |z|~ ™2

18
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for almost all z € 0 \ B(0,R,) and all n =1,2,..., where R,, = 3" 'R.
By (1.7), (1.8) and (5.6), we obtain

u(z,T.) > / G(z,y)u(y, T.)  dy > € Gz, y)ly|™ dy
Q B(0,2R,)\B(0,Rn)

ene?” / ly|~
5.7 = B L —
6.7) N =2 Jp2r)\B(O,RA) |7 — Y[V 2

B cyer” |x|_(N—2)/ ly|=~ dy
N-2 B(O2R.)\B(O,Rn) Y — T[N 72

for almost all z € Q and all n =1,2,.... Let L be a sufficiently large positive constant.
Since R, — 00 as n — 00, we can find positive constants C3, Cy, Cs and Cg, independent
of L and n, such that

e .
/ S 7= 4y > Cs / y|m NN dy
(5.8) B(0,2R)\B(O,Rn) 1T — Yl B(0,2Rn)\B(0,Rn)
=C3R; V7Y / ly|" N2~ dy > 4R, N2
B(0,2\B(0,1) -
and
/ Ldy < 05/ ‘y|—(N—2)—N dy
(5.9) B02Ra\B(O,R) [Y — TV 72 " JB(02RA)\B(0,Rn)
< CsR;(N_Z)/ Iyl-—(N-—Z)——N dy < CGR;(N_Z)
B(0,2)\B(0,1)
for all L < |z| < R, and sufficiently large n. By (5.7), (5.8) and (5.9) we obtain
p" :
(5.10) u(z, T) > X°_R; V=2 [Cy — Cola|~ VY]

N-2
for almost all z € Q with L < |z| < R, and all n = 1,2,.... Taking a sufficiently large L
if necessary, we see that 2C; > CsL~V=2), Then, by (5.10) we have

cne”” Cy
N —

for almost all z € Q with L < |z| < R, and all sufficiently large n. This implies that

u(z,T,) = oo for almost all € Q with |z| > L. This is a contradiction. Therefore we
see that problem (1.1) possesses no local-in-time solutions, and Theorem 1.3 follows. O

u(z, Tv) > R,

Proof of Theorem 1.4. Let p > p,. Let ¢ be a nonnegative measurable function on 02
such that ¢ # 0 in Q. Similarly to (5.1), we can find a positive constant m such that

(5.11) [S(t)g)(x) >m on 8Q
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forall1/2<¢, < 1.

"~ Let p be a sufficiently large constant. Assume that problem (1.1) possesses a local-
in-time solution with ¢ = u¢.. Then, by Lemma 2.4 and Theorem 1.2 we can find a
global-in-time solution v of (1.1) with A = 0. Furthermore, by (1.8) and (5.11) we see
that,

w(z,t) > p[S(t)¢)(z) = p [S(t — t.)[S(t.)4)"] (z) > mplz|~ V2

for almost all z € Q and ¢ € (1,2). Let R > 5. Then, taking a sufficiently large p if
necessary, by Lemma 5.1 we obtain

(5.12) w(z,t) > & |z~ W2

for almost all z € Q\ B(0,R,), t € (1,2) and all n = 1,2,..., where R, = 3"!R.
Similarly to (5.7), by (1.7), (1.8) and (5.12) we obtain

" —p(N-2)
u(z, 1) > N / Iyl—N—Zdy
N -2 B(0,2Rn)\B(0,Rp) |z -y

(5.13)

_ e || (V-2 / ly|?V2 dy
N-2 BO2R)\B(0,Rn) ¥ — TV 72

for almost all z € Q,t € (1,2) and all n =1,2,.... Let L be a sufficiently large constant.
Since R, — 00 as n — 0o, similarly to (5.8) and (5.9), we see that

'yl_p(N_Z)
/ A W20 / |y|~N=2-P(N=2) gy
B(0,2Ra\B(O,R») T — Y1~ B(0,2Rn)\B(0,Rn)

(5.14) ,
= ClR;P(N_z)'m/ |z|'(N‘2)-N dz > CzR;p(N—2)+2
B(0,2)\B(0,1)
and
ly| PN =2 —(N—=2)—p(N—2
s W< Cs ly| =R =2) dy
(5.15) /B<°’2R")\B<°:Rn> I B(0,2Rn)\B(0,Rn)
= CSR;P(N—2)+2/ |Z|_(N_2)_N dz < C4R;p(N_2)+2
B(0,2)\B(0,1)

for all L < |z| £ R, and all sufficiently large n, where C; (i = 1,2,3,4) are positive
constants independent of L and n. By (5.13), (5.14) and (5.15) we have

p"
(5.16) u(z,t) > Ic\;v—eéR;”(N‘z)“ [C2 — Cala|~ 2]
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for almost all z € Q with L < |z| < Ry, t € (1,2) and all sufficiently large n. Taking a
sufficiently large L if necessary, we have 2C; > C4L~N=2_ Then, by (5.16) we have
ene® Cy oo
> < p(N 2)+2
u(z,t) > N_332 R,

for almost all z € Q with L < |z| < Rp, t € (1,2) and all sufficiently large n. This implies
that u(z,t) = oo for almost all x € Q with |z| > L and t € (1,2). This is a contradiction.
Therefore we see that problem (1.1) possesses no local-in-time solution with ¢ = pug.
Thus the proof of Theorem 1.4 is complete. O

Proof of Corollary 1.1 Assertion (i) follows from Theorem 4.2. Furthermore, asser-
tion (ii) follows from Theorem 1.2, Theorem 1.3 and assertion (i) of Corollary 1.1. Thus
Corollary 1.1 follows. O
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