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Abstract

This note mainly presents a review of recent works [3, 4] on a variant

of the Allen‐Cahn equation with a nondecreasing constraint on flow.

1 Introduction

Gradient flows appear in various fields to describe dynamics of nonequilibrium sys‐

tems, e.g., diffusion process, phase transition. They are usually formulated in terms

of an evolution equation governed by the gradient \mathrm{d}\mathcal{F} of a free energy functional \mathcal{F},

 u'(t)=-\mathrm{d}\mathcal{F}(u(t)) , 0<t<+\infty . (1)

Then the nonincrease of the free energy,  t\mapsto \mathcal{F}(u(t)) , naturally follows from (1). In

particular, the Allen‐Cahn equation (2) is a typical example of gradient systems,

u_{t}=\triangle u-W'(u) in  $\Omega$\times(0, +\infty) , (2)

where u=u(x, t) ,
x \in  $\Omega$, t > 0,  $\Omega$ is a domain of \mathbb{R}^{N}, u_{t} = \partial u/\partial t and W(u) is a

double‐well potential (e.g., W(u) = u^{4}/4-u^{2}/2), equipped with the homogeneous
Dirichlet or Neumann boundary condition (when \partial $\Omega$\neq\emptyset ), and it is rephrased as an

 L^{2}‐gradient system associated with the Ginzburg‐Landau free energy,

\mathcal{F}(u) :=\displaystyle \frac{1}{2}\int_{ $\Omega$}|\nabla u|^{2}\mathrm{d}x+\int_{ $\Omega$}W(u(x)) dx .

Indeed, the derivative \mathrm{d}\mathcal{F}(u) of \mathcal{F} (e.g., in L^{2}( $\Omega$) ) corresponds to the terms - $\Delta$ u+

W'(u) . Among various features of the Allen‐Cahn equation, we particularly recall

the following properties. Here let us focus on the bounded domain case (with the

homogeneous Dirichlet or Neumann boundary condition).
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\bullet Smoothing effect: even though initial data are not so smooth, solutions imme‐

diately recover certain regularity. For instance, one can construct an  L^{2}( $\Omega$)-
solution of (2) (i.e., the each term of (2) lies on L^{2}( $\Omega$) ) such that u t) belongs
to H^{2}( $\Omega$) for any t>0 even for initial data u_{0} belonging to a wider class, say

u_{0}\in L^{2}( $\Omega$) .

\bullet Energy dissipation and existence of global attractors: besides the nonincrease of

the free energy, one can derive energy dissipation estimates, which exhibit the

(strict) decrease of the free energy and other quantities along the evolution of

solutions which are still far from equilibrium. Moreover, in a proper function

space setting, one can construct an absorbing set, into which the orbit of any

bounded set enters in finite time. Furthermore, these properties may enable

us to construct a global attractor, which is a compact subset of a phase space

and attracts any bounded set in the phase space (see, e.g., [50, 14, 28] for more

details).

\bullet Convergence to an equilibrium and Lyapunov stability: each orbit  u(x, t) con‐

verges to an equilibrium  $\phi$(x) as t \rightarrow \infty (namely, the equilibrium is uniquely
determined by the initial datum) and every equilibrium is characterized as a

solution to the stationary problem,

- $\Delta \phi$+W'( $\phi$)=0 in  $\Omega$

equipped with a corresponding boundary condition. Hence the stationary equa‐

tion itself is independent of the choice of initial data, and moreover, it may have

multiple solutions and cover all the possible equilibria of the system. Therefore

from a variational analysis on the (single) stationary problem, one may deter‐

mine stability and instability (e.g., in Lyapunov�s sense) of each equilibrium.

In the context of Damage Mechanics, the evolution of damage, e.g., brittle frac‐

ture [32, 27, 7, 8, 33, 40, 41, 13, 30, 31, 32], crack propagation [49, 38] and damage
accumulation [17, 18] (see also [37]), is often described in terms of phase field model,
where an order parameter  u(x, t) is introduced to represent the degree of damage;
more precisely, we mean that the point x of a specimen is completely damaged at time

t by u(x, t)=1 and it is not at all damaged by u(x, t)=0 . And then, the evolution

of u(x, t) is given in such a way as to decrease a certain free energy. For instance,
the so‐called Ambrosio‐Tortorelli regularization (see [7, 8]) of the Francfort‐Marigo
energy (see [32]) is used:

\displaystyle \mathcal{E}_{ $\epsilon$}(z, u) :=\int_{ $\Omega$}(1-u^{2})|\nabla z|^{2}\mathrm{d}x + \int_{ $\Omega$}(\frac{ $\epsilon$}{2}|\nabla u|^{2}+\frac{V(u)}{ $\epsilon$}) \mathrm{d}x
bulk energy surface energy (Modica‐Mortola funct.)

where  $\epsilon$>0 is a small (regularization) parameter, z denotes the deformation of the

specimen and V is a potential function (e.g., V(u) = u^{2}/2), equipped with some
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boundary condition including an external load onto the specimen. However, in con‐

trast with standard phase field models, the evolution of the order parameter u(x, t)
is constrained to. be nondecreasing in time from the nature of damage phenomena.
Indeed, the evolution of damage is always unidirectional. In order to realize such

constrained gradient flows, let us modify (1) as follows:

u_{t}= (-\mathrm{d}\mathcal{F}(u))_{+},
where (\cdot)_{+} :=\displaystyle \max\{\cdot, 0\}\geq 0 is the so‐called positive‐part function (cf. see also [34,
35] )^{} Such nondecreasing constrained problems are also studied in other context

(see, e.g., [10, 11, 19, 20, 21, 46, 43, 47

In order to understand how the nondecreasing constraint (i.e., the presence of

the positive‐part function) influences the dynamics of the gradient‐like systems, one

may start with analyzing concrete and simple examples, which often enable us to

investigate more precise properties of the dynamics. As for the diffusion equation
with a given function f(x, t) ,

the following variant

u_{t}= ( $\Delta$ u+f(x, t))_{+},
is studied in [5] (see also [45]), where some regularity result on elliptic variational

inequalities is developed (cf. see also [39]) and well‐posedness, comparison principle
and convergence of solutions for the Cauchy‐Dirichlet problem are studied based on

the regularity result. Then it is also pointed out that equilibria can be characterized

by an elliptic obstacle problem whose obstacle function is given by the initial data.

Furthermore, the positive‐part modification is also applied to a nonlinear diffusion

equation along with a blow‐up term (see [18] for N=1 and [1] for general N), that

is,

u_{t}=u^{ $\alpha$}(\triangle u+u)_{+},  $\alpha$\geq 0,
which arises from a damage accumulation model proposed by Barenblatt and Pros‐

tokishin [17]. In this study, analysis requires somewhat involved arguments to deal

with the fully nonlinear equation. On the other hand, behaviors of solutions do not

change drastically (indeed, due to the blow‐up term, solutions tend to increase and

the nondecreasing constraint does not prevent such increasing behaviors).

1This formulation may sacrifice accuracy, since the original flow is posed on an abstract space

and the positive function is not defined there. However, it would be more helpful to understand a

central idea of this research, which has already been proposed in [5]. A more rigorous formulation

can be given by using subdifferential operators of indicator functions over closed convex cones (see,
e.g., [48, 51] and also [6]).
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This note is concerned with a constrained version of the Allen‐Cahn equation (2).
More precisely, let us consider the Cauchy‐Dirichlet problem (denoted by (irAC)),

u_{t}= ( $\Delta$ u-W'(u))_{+} in  $\Omega$\times(0, \infty) ,

u=0 on \partial $\Omega$\times(0, \infty) , u|_{\mathrm{t}=0}=u_{0} in  $\Omega$,

where  $\Omega$ is a bounded domain of \mathbb{R}^{N} with smooth boundary \partial $\Omega$ . For simplicity, we

set  W(u) =u^{4}/4-u^{2}/2 . As mentioned above, one of main features of the problem
above lies on the nondecrease of t\mapsto u(x, t) for each  x\in $\Omega$ . On the analogy of the

Allen‐Cahn equation, solutions may decrease and increase to be stabilized (note that

 W(u) has two global minimizers, 1 and -1 ). However, the nondecreasing constraint

prohibits decreasing behaviors of solutions. So one may expect that solutions may

face obstructions to be stabilized. The main purpose of this study is to reveal where

and how such obstructions appear and influence the dynamics of the system ( irAC) .

In Section 2, we shall reformulate (irAC) into an evolution equation of doubly‐
nonlinear type which restores a gradient structure to be better fitted for energy

techniques. Section 3 is devoted to existence and uniqueness of (L^{2_{-}}) solutions for

(irAC) . Furthermore, Section 4 concerns the convergence of solutions to equilibria aô

 t\rightarrow +\infty ,
and then, in Section 5, we shall discuss Lyapunov stability of equilibria.

Finally, we shall close this paper with a brief discussion on related topics, mainly on

the existence of global attractors, in Section 6. All the results presented below and

their proofs are reported in [3, 4]. So we refer the reader to these papers for more

details.

2 Reformulations of the problem
First of all, let us note that, as will be shown below, the energy  t \mapsto \mathcal{F}(u(t)) is

nonincreasing along the evolution of each solution t\mapsto u(t) u t) (this property
is shared with the classical Allen‐Cahn equation (2)). However, this fact may not

be straightforward from the equation (irAC) ,
which is classified as a fully nonlinear

(parabolic) equation and not presented in divergence form. However, through a

certain reformulation of the equation, a gradient structure will (partially) recover

and one can readily find out the nonincrease of the energy from the reformulated

equation.
By applying the (multi‐valued) inverse mapping (. )+-1 of the positive part function

(\cdot)_{+},
(s)_{+}^{-1}=s+\partial I_{[0,\infty)}(s) for s\in \mathbb{R}

(see below for more details) to both sides of (irAC) , we readily derive an equivalent
form (denoted by (irAC)), which is better fitted for energy methods:

u_{t}+ $\eta$= $\Delta$ u-u^{3}+u,  $\eta$\in\partial I_{[0,\infty)}(u_{t}) in  $\Omega$\times(0, \infty) ,

u=0 on \partial $\Omega$\times(0, \infty) , u|_{t=0}=u_{0} in  $\Omega$,

72



where \partial I_{[0,\infty)} denotes the subdifferential operator2 of the indicator function I_{[0,\infty)}
over [0, \infty ), that is,

 I_{[0,\infty)}(s)= \left\{\begin{array}{ll}
0 & \mathrm{i}\mathrm{f} s\geq 0\\
+\infty & \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e},
\end{array}\right. \partial I_{[0,\infty)}(s)= \left\{\begin{array}{ll}
\{0\} & \mathrm{i}\mathrm{f} s>0\\
(-\infty, 0] & \mathrm{i}\mathrm{f} s=0\\
\emptyset & \mathrm{i}\mathrm{f} s<0
\end{array}\right. for s\in \mathbb{R}.

Here, evolution equations such as (irAC) (namely, equations with nonlinear oper‐

ators acting on u_{t} as well as u) are often called doubly nonlinear evolution equations
(see, e.g., [16, 9, 26, 25, 52, 29

Multiply the equation in (irAC) by u_{t} and integrate it over  $\Omega$ . Then applying
a chain‐rule for the functional derivative (see, e.g., [23]) to the right‐hand side, we

find that

\displaystyle \Vert u_{t}\Vert_{L^{2}}^{2}+( $\eta$, u_{t})=-\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{F}(u) ,

where ) stands for the inner product of L^{2}( $\Omega$) . Moreover, note that  $\eta$ u_{t}\equiv 0 , since

\partial I_{[0,\infty)}(s) = \{0\} if s > 0 (otherwise, s = 0 ,
and hence, the product is also zero).

Therefore we obtain the same energy identity as that of (2),

\displaystyle \Vert u_{t}\Vert_{L^{2}}^{2}=-\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{F}(u) , (3)

and the nondecrease of the energy \mathcal{F}(u(t)) follows. On the other hand, if we multiply
the equation by u , then the additional term ( $\eta$, u) cannot be eliminated as above (also
note that \partial I_{[0,\infty)} is an unbounded operator), and then, it yields an explicit difference

from (2).

Remark 2.1. (i) By comparison between ( irAC) and (irAC), one can readily
find that

 $\eta$=-( $\Delta$ u-W'(u))_{-},
where (\cdot)_{-} :=\displaystyle \max\{-\cdot, 0\}\geq 0.

(ii) Throughout this paper, we shall work in the L^{2}( $\Omega$) framework, where both

the Laplace operator  $\Delta$ and the subdifferential operator \partial I_{[0,\infty)} are unbounded.

Another possibility would be an H_{0}^{1}( $\Omega$) framework, where the Laplace operator
turns out to be bounded from H_{0}^{1}( $\Omega$) into its dual space. On the other hand,
in the H_{0}^{1}( $\Omega$) framework, it is more delicate to obtain the representation of

the subdifferential of I_{[0,\infty)} in H_{0}^{1}( $\Omega$) in order to check the equivalence between

(irAC) and (irAC) .

2The subdifferential operator \partial $\varphi$ :  H\rightarrow 2^{H} of a proper ( $\varphi$\not\equiv+\infty) lower semicontinuous convex

functional  $\varphi$ :  H\rightarrow(-\infty, +\infty ] on a Hilbert space  H is defined by \partial $\varphi$(u) =\{ $\xi$\in H :  $\varphi$(v)- $\varphi$(u) \geq

( $\xi$, v-u)_{H} for all v \in  H}, where )_{H} is an inner product of H
, with domain D(\partial $\varphi$) = \{u \in

 D( $\varphi$) : \partial $\varphi$(u)\neq\emptyset\} , where D( $\varphi$) :=\{u\in H:  $\varphi$(u) <+\infty\} is called the effective domain of  $\varphi$ . Every
subdifferential operator is cyclic monotone, and particularly, it is maximal monotone. We refer the

reader to [23, 15] for more details.
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We shall give another equivalent form (denoted by (irAC)) in terms of a parabolic
obstacle problem as the third reformulation (see Theorem 4.4 below).

3 Existence and smoothing effect of solutions

In this section, we discuss existence and uniqueness of L^{2}‐solutions. Let us start with

recalling a definition of L^{2} solution,

Definition 3.1. A function u \in  C([0, \infty);L^{2}( $\Omega$)) is said to be a solution (or an

L^{2}( $\Omega$) ‐solution) of (irAC) (equivalently, (irAC)), if the following conditions are all

satisfied:

(i) u belongs to W^{1,2}( $\delta$, T;L^{2}( $\Omega$)) , C([ $\delta$, T];H_{0}^{1}( $\Omega$)\cap L^{4}( $\Omega$)) and  L^{2}( $\delta$, T;H^{2}( $\Omega$)\cap
 L^{6}( $\Omega$)) for any 0< $\delta$<T<\infty,

(ii) there exists  $\eta$\in L^{\infty}(0, \infty;L^{2}( $\Omega$)) such that

u_{t}+ $\eta$- $\Delta$ u+u^{3}-u=0,  $\eta$\in\partial I_{[0,\infty)}(u_{t}) for a.e. (x, t)\in $\Omega$\times(0, \infty) (4)

and  $\eta$=-( $\Delta$ u-u^{3}+u)_{-}for a.e. (x, t)\in $\Omega$\times (0, \infty) ,

(iii) u 0 ) =u_{0} a.e. in  $\Omega$.

Now, our main result reads,

Theorem 3.2 (Existence of L^{2}‐solutions [3]). For any T > 0 , the following holds

true:

(i) For u_{0} \in  H^{2}( $\Omega$)\cap L^{6}( $\Omega$) , there exists an L^{2} ‐solution u = u(x, t) of (irAC)
on [0, T] such that u \in  W^{1,2}(0, T;H_{0}^{1}( $\Omega$))\cap C_{w}([0, T];H^{2}( $\Omega$)\cap L^{6}( $\Omega$)) , where

C_{w}([0, T];X) denotes the space of weakly continuous functions on [0, T] with

values in a Banach space X.

For r>0 , define

D_{r} :=\{u\in H^{2}( $\Omega$)\cap H_{0}^{1}( $\Omega$)\cap L^{6}( $\Omega$): \Vert( $\Delta$ u-u^{3}+u)_{-}\Vert_{L^{2}}^{2}\leq r\}.
(ii) For u_{0}\in\overline{D_{r}}^{H_{0}^{1}\cap L^{4}}, (irAC) admits an L^{2} ‐solution

u\in W_{loc}^{1,2}((0, T];H_{0}^{1}( $\Omega$))\cap C_{w}((0, T];H^{2}( $\Omega$)\cap L^{6}( $\Omega$))\cap C([0, T];H_{0}^{1}( $\Omega$)\cap L^{4}( $\Omega$))\backslash 
satisfying u(t) \in D_{r} for any t>0.
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(iii) For u_{0}\in\overline{D_{r}}^{L^{2}} , there is an L^{2} ‐solution u=u(x, t) \in C([0, T L^{2}( $\Omega$) ) of (irAC)
such that

u\in W_{lo\mathrm{c}}^{1,2}((0, T];H_{0}^{1}( $\Omega$))\cap C_{w}((0, T];H^{2}( $\Omega$)\cap L^{6}( $\Omega$))\cap C((0, T];H_{0}^{1}( $\Omega$)\cap L^{4}( $\Omega$))
and u(t)\in D_{r} for any t>0.

Equation (irAC) falls within the scope of an abstract theory developed by
Arai [9], where existence of solution is proved for initial data lying on the domain of

the operator A : u\mapsto- $\Delta$ u+W'(u) in L^{2}( $\Omega$) ,
that is, D(A)=H^{2}( $\Omega$)\cap H_{0}^{1}( $\Omega$)\cap L^{6}( $\Omega$) .

So (i) follows immediately. On the other hand, (ii) and (iii) on smoothing effect
come from a specific structure of (irAC) and are not derived from the abstract

theory. Here we reconstruct an existence result by inserting a specific structure of

the equation (irAC) to the framework of [9]. Moreover, we also derive energy

estimates, which will be used to prove the convergence of solutions to equilibria and

existence of global attractors, in parallel with constructing a solution. To this end,
we approximate (irAC) as an evolution equation on H :=L^{2}( $\Omega$) ,

\partial_{t}u_{ $\lambda$}+$\eta$_{ $\lambda$}+\partial$\psi$_{ $\lambda$}(u_{ $\lambda$})=u_{ $\lambda$}, $\eta$_{ $\lambda$}\in\partial I_{[0,\infty)}(\partial_{t}u_{ $\lambda$}) , 0<t<T, u_{ $\lambda$}(0)=u_{0} , (5)

where $\psi$_{ $\lambda$} is the so‐called Moreau‐Yosida regularization

$\psi$_{ $\lambda$}(u) :=\displaystyle \min_{v\in H}\{\frac{1}{2 $\lambda$}\Vert u-v\Vert_{H}^{2}+ $\psi$(v)\}
of the functional  $\psi$ :  H\rightarrow[0, +\infty] given by

$\psi$_{ $\lambda$}(u):=\left\{\begin{array}{ll}
\frac{1}{2}\int_{ $\Omega$}|\nabla u|^{2}\mathrm{d}x+\frac{1}{4}\int_{ $\Omega$}|u|^{4}\mathrm{d}x & \mathrm{i}\mathrm{f} u\in H_{0}^{1}( $\Omega$)\cap L^{4}( $\Omega$) ,\\
+\infty & \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}.
\end{array}\right.
Then the subdifferential \partial$\psi$_{ $\lambda$} of $\psi$_{ $\lambda$} coincides with the Yosida approximation of \partial $\psi$,
and hence, it is Lipschitz continuous in H . Moreover, since the inverse mapping of

u\mapsto u+\partial I_{[0,\infty)}(u) (namely, the resolvent of \partial I_{[0,\infty)} ) is nonexpansive (\mathrm{i}.\mathrm{e}. , Lipschitz
continuous with Lipschitz constant 1), for each  $\lambda$>0 the approximate problem above

admits \mathrm{a} (classical) solution u_{ $\lambda$} \in  C^{1,1}([0, T];H) such that $\eta$_{ $\lambda$} \in  C^{0,1}([0, T];H) and

the equation holds on [0, T] (hence, $\eta$_{ $\lambda$}(0) is well defined). Besides the energy estimate

as in §2, we need to derive an estimate to control the section /^{J}$\eta$_{ $\lambda$} of the unbounded

operator \partial I_{[0,\infty)} evaluated at u_{t} . To this end, differentiate (5) and multiply it by $\eta$_{ $\lambda$}

to get

(\displaystyle \partial_{t}^{2}u_{ $\lambda$}, $\eta$_{ $\lambda$})+\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\Vert$\eta$_{ $\lambda$}\Vert_{L^{2}}^{2}+(\frac{\mathrm{d}}{\mathrm{d}t}\partial$\psi$_{ $\lambda$}(u_{ $\lambda$}), $\eta$_{ $\lambda$}) =(\partial_{t}u_{ $\lambda$}, $\eta$_{ $\lambda$})=0,
where the last equality follows as in §2. Therefore it suffices to show the nonnegativity
of the first and third terms of the left‐hand side, and then, one obtains

\displaystyle \sup \Vert$\eta$_{ $\lambda$}(t)\Vert_{L^{2}}\leq \Vert$\eta$_{ $\lambda$}(0)\Vert_{L^{2}}.
t\in[0,T]
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Here we note that

\Vert$\eta$_{ $\lambda$}(0)\Vert_{L^{2}}\approx\Vert( $\Delta$ u_{0}-u_{0}^{3}+u_{0})_{-}\Vert_{L^{2}}^{2}.
Hence, even though u_{0} lies on a closure of D_{r} (for some r>0 fixed), then \Vert$\eta$_{ $\lambda$}(0)\Vert_{L^{2}}
turns out to be still bounded for any  $\lambda$ > 0 . Convergence of approximate solutions

follows from standard weak compactness technique as well as the Aubin‐Lions com‐

pactness lemma. Finally, the limits of nonlinear terms are identified by using the

so‐called Minty�s trick (or demiclosedness of maximal monotone operators).

Remark 3.3. (i) The closure of D_{r} in a space X (e.g., L^{2}( $\Omega$) ) may not coincide

with X itself (\mathrm{i}.\mathrm{e}., \overline{D_{r}}^{X}\neq X) . In order to observe how smoothing effect occurs

(in Theorem 3.2), let us consider the initial datum u_{0}(x)=|x|-1\in H_{0}^{1}(-1,1)
(with N=1 and  $\Omega$=(-1,1 Then set u_{0, $\epsilon$}\in W^{2,\infty}(-1,1) by

u_{0, $\epsilon$}(x)= \left\{\begin{array}{ll}
|x|-1 & \mathrm{i}\mathrm{f} |x| > $\epsilon$,\\
\frac{1}{ $\epsilon$}\frac{x^{2}}{2}+\frac{ $\epsilon$}{2}-1 & \mathrm{i}\mathrm{f} |x|\leq $\epsilon$
\end{array}\right.
for  $\epsilon$>0 . Then one observes that

u_{0, $\epsilon$}'' - u_{0, $\epsilon$}^{3} +u_{0, $\epsilon$} = \left\{\begin{array}{ll}
-u_{0, $\epsilon$}^{3} +u_{0, $\epsilon$} & \mathrm{i}\mathrm{f} |x| >  $\epsilon$,\\
\frac{1}{ $\epsilon$}-u_{0, $\epsilon$}^{3}+u_{0, $\epsilon$}>0 & \mathrm{i}\mathrm{f} |x|\leq $\epsilon$\\
\mathrm{c}\mathrm{l}\mathrm{o}\mathrm{s}\mathrm{e} \mathrm{t}\mathrm{o} \mathrm{z}\mathrm{e}\mathrm{r}\mathrm{o} & 
\end{array}\right.
for  $\epsilon$>0 enough small. Therefore

\displaystyle \Vert(u_{0_{ $\xi$ j}}'',-u_{0, $\epsilon$}^{3}+u_{0, $\epsilon$})_{-}\Vert_{2}\leq\int_{|x|> $\epsilon$}(u_{0, $\epsilon$}^{3}-u_{0, $\epsilon$})^{2}\mathrm{d}x\leq\Vert u_{0}^{3}-u_{0}\Vert_{L^{2}}^{2}=:r<+\infty.
Moreover, one can check that u_{0, $\epsilon$}\rightarrow u_{0} strongly in H_{0}^{1}(-1,1) . Hence u_{0} belongs
to the closure of D_{r} in H_{0}^{1}(-1,1) . On the other hand, u_{0} does not belong to

H^{2}(-1,1) ; indeed, uÓ is not continuous at x =. 0 but H^{2}(-1,1) is embedded

in C^{1, $\alpha$}([-1,1]) by Sobolev embeddings. Due to Theorem 3.2, the solution

u t) turns to lie on H^{2}(-1, 1) \subset  C^{1, $\alpha$}([-1, 1]) for any t > 0 . However, this

observation may not be true if we change the sign of u_{0}.

(ii) Thanks to Theorem 3.2, we assure that the set D_{r} (and its closures) is invari‐

ant under the flow generated by the solutions to (irAC) . This fact will play a

fundamental role in analysis of long‐time behaviors of solutions (see §5 and §6
below).

Concerning uniqueness of solution, we have:

Theorem 3.4 (Uniqueness of solution [3]). It holds that
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(i) Let T>0 be fixed. For N\leq 3 , solutions u belonging to the class

W^{1,2}(0, T;L^{2}( $\Omega$))\cap L^{\infty}(0, T;H_{0}^{1}( $\Omega$))\cap L^{2}(0, T;H^{2}( $\Omega$)) (6)

are uniquely determined for each initial data u_{0}\in H_{0}^{1}( $\Omega$) .

(ii) Furthermore, for general N
, bounded solutions belonging to L^{\infty}( $\Omega$\times (0, T)) as

well as (6) are uniquely determined for each initial data u_{0}\in H_{0}^{1}( $\Omega$) .

In order to handle the nonlinearity of u_{t} , we subtract equations of two solutions

and multiply the time‐derivative of the difference of the two solutions (instead of the

difference itself). Then the dimension restriction, N\leq 3 (then H_{0}^{1}( $\Omega$) is continuously
embedded in L^{6}( $\Omega$) ), arises from the cubic nonlinearity of u . On the other hand, such

a restriction can be removed for bounded solutions.

4 Convergence of solutions to equilibria
From now on, we assume N\leq 3 to guarantee the uniqueness of solution. The follow‐

ing theorem concerns the convergence of each solution u=u(x, t) to an equilibrium
 $\phi$= $\phi$(x) as t\rightarrow\infty.

Theorem 4.1 (Convergence to equilibria [3]). Let u_{0} \in\overline{D_{r}}^{H_{0}^{1}} and let u=u(x, t) be

the solution of (irAC) . Then there exists  $\phi$ \in  H^{2}( $\Omega$)\cap L^{6}( $\Omega$)\cap H_{0}^{1}( $\Omega$) such that  $\phi$
solves the following (\mathrm{E})_{\mathrm{o}\mathrm{P}} :

\partial I_{[\mathrm{u}_{0}(x),\infty)}( $\phi$)\ni $\Delta \phi-\phi$^{3}+ $\phi$  in  $\Omega$.

Inclusion (\mathrm{E})_{\mathrm{o}\mathrm{P}} can be equivalently rewritten as the following elliptic obstacle

problem,

 $\phi$\geq u_{0},  0\geq $\Delta \phi-\phi$^{3}+ $\phi$ in  $\Omega$\times(0, \infty) ,

( $\phi$-u_{0})(- $\Delta \phi$+$\phi$^{3}- $\phi$) =0 in  $\Omega$\times(0, \infty) .

Remark 4.2. (i) It is noteworthy that (\mathrm{E})_{\mathrm{o}\mathrm{P}} includes the initial datum u_{0} in itself.

(ii) Formally replacing u and u_{t} by  $\phi$ and  0
, respectively, in (irAC) ,

u_{t}+\partial I_{[0,\infty)}(u_{t})- $\Delta$ u+u^{3}\ni u,

we see that

\partial I_{[0,\infty)}(0)- $\Delta \phi$+$\phi$^{3}\ni $\phi$.
However, it is just a necessary condition for (\mathrm{E})_{\mathrm{o}\mathrm{P}} and it is not sufficient (indeed,
\partial I_{[0,\infty)} (0) = (‐00, 0
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(iii) Since  $\phi$ solves (irAC), one may not expect classical regularity for  $\phi$ . Indeed,
as for obstacle problems for the Dirichlet integral, minimizers lose  C^{2} regularity
on their contact sets where the minimizers touch obstacle functions and C^{1,1} is

the optimal regularity (see [24]). On the other hand, a corresponding regularity
issue for (\mathrm{E})_{\mathrm{o}\mathrm{P}} seems to be open.

Let us give a sketch of proof (for simplicity, we shall consider u_{0}\in H^{2}( $\Omega$)\cap H_{0}^{1}( $\Omega$)
only).

Step 1 (Pre‐compactness of orbits). By performing an energy method along
with the monotonicity of t\mapsto u(x, t) ,

we shall show that

Lemma 4.3. The  $\omega$ ‐limit set of  u(x, t) is singleton, that is, there exists a limit  $\phi$
such that

 u  t)\rightarrow $\phi$ strongly in  H_{0}^{1}( $\Omega$)\cap L^{4}( $\Omega$) ,

weakly in H^{2}( $\Omega$)\cap L^{6}( $\Omega$)

as t\rightarrow\infty.

Proof. Indeed, since \mathcal{F} is bounded from below, from the energy identity (3), we have

\displaystyle \int_{0}^{\infty}\Vert u_{t}\Vert_{L^{2}}^{2}\mathrm{d}t-C\leq \mathcal{F}(u_{0}) .

Thus for each n\in \mathbb{N} there exists $\tau$_{n}\in[n, n+1] such that

u_{t} $\tau$_{n})\rightarrow 0 strongly in L^{2}( $\Omega$) .

Then

 $\eta$($\tau$_{n})- $\Delta$ u($\tau$_{n})+W'(u($\tau$_{n}))=-u_{t}($\tau$_{n})^{\backslash }\rightarrow 0 strongly in L^{2}( $\Omega$) ,

where  $\eta$($\tau$_{n}) is a section of \partial I_{[0,\infty)}(u_{t}($\tau$_{n})) as in (4). Formally, differentiate (irAC) in

t and test it by  $\eta$\in\partial I_{[0,\infty)}(u_{t}) to get

(u_{tt}, $\eta$)_{L^{2}}+\displaystyle \frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\Vert $\eta$\Vert_{L^{2}}^{2}+(- $\Delta$ u_{t},  $\eta$)_{L^{2}}+\int_{ $\Omega$}W''(u)u_{t} $\eta$ \mathrm{d}x=0.
Here we note that, by using a chain‐rule for subdifferential,

(u_{tt},  $\eta$)_{L^{2}}=\displaystyle \frac{\mathrm{d}}{\mathrm{d}t}I_{[0,\infty)}(u_{\mathrm{t}})=0
and also that

(- $\Delta$ u_{t},  $\eta$)_{L^{2}} \geq 0 and u_{t} $\eta$=0.

Therefore we deduce that

\Vert $\eta$(\cdot, t)\Vert_{L^{2}}\leq \Vert $\eta$(\cdot, 0)\Vert_{L^{2}}=\Vert( $\Delta$ u_{0}-W'(u_{0}))_{-}\Vert_{L^{2}}.
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Furthermore, test (irAC) by (-\triangle u+W'(u))_{\mathrm{t}} . Then it follows that

(u_{t}, (- $\Delta$ u+W'(u))_{t})_{L^{2}}+( $\eta$, (- $\Delta$ u+W'(u))_{t})_{L^{2}}+\displaystyle \frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\Vert- $\Delta$ u+W'(u)\Vert_{L^{2}}^{2}=0.
Note that

( $\eta$, (- $\Delta$ u+W'(u))_{t})_{L^{2}}=( $\eta$, - $\Delta$ u_{t}+W''(u)u_{t})_{L^{2}}\geq 0
and

(u_{t}, (- $\Delta$ u+W'(u))_{t})_{L^{2}}=\displaystyle \Vert\nabla u_{t}\Vert_{L^{2}}^{2}+3\int_{ $\Omega$}u^{2}u_{t}^{2}\mathrm{d}x-\Vert u_{t}\Vert_{L^{2}}^{2}.
Hence

\displaystyle \Vert\nabla u_{t}\Vert_{L^{2}}^{2}+\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\Vert- $\Delta$ u+W'(u)\Vert_{L^{2}}^{2}\leq\Vert u_{t}\Vert_{L^{2}}^{2}(3)=-\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{F}(u(t)) .

Thus we conclude that

\displaystyle \int_{0}^{t}\Vert\nabla u_{t}( $\tau$)\Vert_{L^{2}}^{2}\mathrm{d} $\tau$+\frac{1}{2}\Vert- $\Delta$ u(t)+W'(u(t))\Vert_{L^{2}}^{2}+\mathcal{F}(u(t))
\displaystyle \leq\frac{1}{2}\Vert- $\Delta$ u_{0}+W'(u_{0})\Vert_{L^{2}}^{2}+\mathcal{F}(u_{0}) .

Note that

\Vert- $\Delta$ u+u^{3}-u\Vert_{L^{2}}^{2}=\Vert-\triangle u\Vert_{L^{2}}^{2}+\Vert u^{3}||_{L^{2}}^{2}+\Vert u\Vert_{L^{2}}^{2}
+2(- $\Delta$ u, u^{3})_{L^{2}}-\Vert\nabla u\Vert_{L^{2}}^{2}-\Vert u\Vert_{L^{4}}^{4}.

Therefore u t) is uniformly bounded in H^{2}( $\Omega$)\cap L^{6}( $\Omega$) as  t\rightarrow\infty . Consequently,
we obtain

 u  $\tau$_{n})\rightarrow $\phi$ \starreakly in  H^{2}( $\Omega$)\cap L^{6}( $\Omega$) ,

strongly in H_{0}^{1}( $\Omega$)\cap L^{4}( $\Omega$) ,

 $\eta$  $\tau$_{n})\rightarrow$\eta$_{*} weakly in L^{2}( $\Omega$) ,

and hence,
$\eta$_{*}- $\Delta \phi$+$\phi$^{3}- $\phi$=0 in L^{2}( $\Omega$) .

By  $\eta$ \in \partial I_{[0,\infty)}(u_{t}) along with the demiclosedness of maximal monotone operators,
one can identify the limit,

$\eta$_{*}\in\partial I_{[0,\infty)}(0) .

Consequently,

\partial I_{[0,\infty)}(0)- $\Delta \phi$+W'( $\phi$)\ni 0 in L^{2}( $\Omega$) ,  $\phi$\in H_{0}^{1}( $\Omega$) .

We emphasize again that the relation above is not sufficient to derive (\mathrm{E})_{\mathrm{o}\mathrm{P}} , although
it corresponds to a formal stationary problem for (irAC) (see Remark 4.2).
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Furthermore, due to the uniform boundedness of u t) in H^{2}( $\Omega$)\cap L^{6}( $\Omega$) ,

u  t)\rightarrow $\phi$ weakly in  H^{2}( $\Omega$)\cap L^{6}( $\Omega$) ,

strongly in H_{0}^{1}( $\Omega$)\cap L^{4}( $\Omega$) as t\rightarrow\infty.

Indeed, as the evolution t\mapsto u(x, t) is nondecreasing by u_{t}\geq 0 ,
the limit  $\phi$ must be

unique and independent of the choice of subsequence. \square 

Now, we move on to

Step 2 (Further identification of the limit). \mathrm{W}\mathrm{e}_{\mathrm{I}} claim that

$\eta$_{*}\in\partial I_{[u_{0}(x),\infty)}( $\phi$) .

Then one can conclude that

\partial I_{[u_{0}(x),\infty)}( $\phi$)- $\Delta \phi$+W'( $\phi$)\ni 0 in L^{2}( $\Omega$) ,  $\phi$\in H_{0}^{1}( $\Omega$) .

To this end, we shall reformulate (irAC) as a parabolic obstacle problem, which is

the following third reformulation of (irAC) .

Theorem 4.4 (Reformulation by an obstacle problem [3]). Let u_{0}\in\overline{D_{r}}^{L^{2}}, ( irAC)
admits an L^{2} ‐solution u = u(x, t) which also solves the following Cauchy‐Dirichlet
problem (denoted by (irAC)):

u_{t}+ $\eta$=\triangle u-u^{3}+u,  $\eta$\in\partial I_{[u_{0}(x),\infty)}(u) in  $\Omega$\times(0, \infty) ,

u=0 on \partial $\Omega$\times (  0 , oo), u|_{t=0}=u_{0} in  $\Omega$,

where \partial I_{[\mathrm{u}\mathrm{o}(x),\infty)} stands for the subdifferential operator of the indicator function I_{[u_{0}(x),\infty)}
over [u_{0}(x), +\infty). In particular, if the solution to (irAC) is unique, then (irAC) is

equivalent to (irAC) .

Problem (irAC) is equivalent to the following obstacle problem:

u\geq u_{0}, u_{t}\geq $\Delta$ u-u^{3}+u in  $\Omega$\times (  0
, oo),

(u-u_{0})(u_{t}- $\Delta$ u+u^{3}-u) =0 in  $\Omega$\times(0, \infty) .

Remark 4.5. Parabolic obstacle problems whose obstacle functionsl coincide with

initial data also appear in the study of an optimal stopping time problem related to

American options (see, e.g., [42] and references therein).

To give a rigorous proof, we need an involved (measure theoretic) argument to

overcome some difficulty arising from the lack of smoothness in the L^{2} framework.

Instead, we shall give a more intuitive argument to formally derive the theorem stated

above.
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Idea of proof. Let  $\eta$\in\partial I_{[0,\infty)}(u_{t}) and suppose that u and  $\eta$ are sufficiently smooth.

Then we claim that

(\star) the region \{x\in $\Omega$: $\eta$(x, t)=0\} is expanding in t.

Lemma 4.6 (Nondecreasing of  $\eta$ \in \partial I_{[0,\infty)}(u_{t}) in time). Let u be a solution of
(irAC) and let  $\eta$ \in \partial I_{[0,\infty)} (ut). Then  $\eta$(x, t) = -(\triangle u-W'(u))_{-} is nondecreas‐

ing in t for a.e. x\in $\Omega$.

To prove the lemma above, differentiate (irAC) in t,

u_{tt}+$\eta$_{t}- $\Delta$ u_{t}+W'(u)u_{t}=0

and test it by  $\rho \eta$\in\partial I_{[0,\infty)}(u_{t}) with  $\rho$\in C_{0}^{\infty}( $\Omega$) , p\geq 0,

\displaystyle \frac{\mathrm{d}}{\mathrm{d}t}I_{[0,\infty)}(u_{t})+\frac{\mathrm{d}}{\mathrm{d}t}\int_{ $\Omega$}| $\eta$|^{2} $\rho$+(-\triangle u_{t\`{i}} $\rho \eta$)+\int_{ $\Omega$}W'(u)u_{t} $\eta \rho$=0,
which implies t\mapsto $\eta$(x, t) is nondecreasing. Thus the assertion follows.

Let (x_{0}, t_{0})\in $\Omega$\times(0, T) . We have the following alternative:

\bullet In case  u(x_{0}, t_{0})=u_{0}(x) ,
we have

\partial I_{[v_{ $\Phi$}(x),\infty)}(u(x_{0}, t_{0}))=(-\infty, 0].

Hence it is easy to see that  $\eta$\in\partial I_{[240(x),\infty)}(u) at (x_{0}, t_{0}) .

\bullet In case  u(x_{0}, t_{0})>u_{0}(x) ,
it yields that \partial I_{[u\mathrm{o}(x),\infty)}(u(x_{0}, t_{0}))=\{0\}.

On the other hand, it follows that

\exists t_{1}\in[0, t_{0}] u_{t}(x_{0}, t_{1})>0 ; hence  $\eta$(x_{0}, t_{1})=0.

By (\star) ,  $\eta$(x_{0}, t) = 0 for all t \geq  t_{1} . In particular,  $\eta$(x_{0}, t_{0}) = 0 . Thus  $\eta$ \in

\partial I_{[u\mathrm{o}(x),\infty)}(u) at (x_{0}, t_{0}) .

\square 

We have already shown that

 $\eta$ t)\in\partial I_{[u\mathrm{o}(x),\infty)}(u (\cdot, t))
and

 $\eta$  $\tau$_{n})\rightarrow$\eta$_{*} weakly in L^{2}( $\Omega$) ,

u  $\tau$_{n})\rightarrow $\phi$ strongly in  H_{0}^{1}( $\Omega$)\cap L^{4}( $\Omega$) .

Therefore thanks to the demiclosedness of \partial I_{[u_{0}(x),\infty)} ,
we conclude that

$\eta$_{*}\in\partial I_{[u\mathrm{o}(x),\infty)}( $\phi$) ,

and hence,  $\phi$ solves (\mathrm{E})_{\mathrm{o}\mathrm{P}}.
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5 Lyapunov stability of equilibria
This section is devoted to discussing the Lyapunov stability of equilibria. Here it is

noteworthy that each.. quilibrium  $\phi$ of (irAC) may be an accumulation point of the

set of equilibria,

\mathcal{S}:=\cup\{S(u_{0}):u_{0}\in\overline{D_{r}}^{H_{0}^{1}}\},
where S(u_{0}) stands for the set of solutions for (\mathrm{E})_{\mathrm{o}\mathrm{P}} associated with the obstacle func‐

tion u_{0} (see Corollary 5.3 below). So there is no hope of proving asymptotic stability
(in Lyapunov�s sense) of such non‐isolated equilibria. Indeed, every non‐isolated equi‐
librium  $\phi$ has different equilibria in its arbitrarily small neighbourhood and solutions

emanating from such neighboring equilibria never move (and hence, they never con‐

verge to  $\phi$). On the other hand, one may expect Lyapunov stability of non‐isolated

equilibria. Stability analysis of non‐isolated equilibria poses a major difficulty even

for gradient flows. In the case of gradient flows associated with smooth energy func‐

tionals, one may apply the so‐called Lojasiewicz‐Simon inequality (cf. see [36]). For

instance, a stability issue on non‐isolated asymptotic profiles of vanishing solutions to

fast diffusion equations is revealed by exploiting a Lojasiewicz‐Simon inequality in [2].
On the other hand, in the case of (irAC) and equivalent equations, these gradient‐like
systems are associated with nonsmooth functionals, and therefore, there arises a fa‐

tal problem to apply techniques based on Lojasiewicz‐Simon type inequalities, which

essentially require the smoothness of functionals.

Recall again that \overline{D_{r}}^{H_{0}^{1}} is invariant under the flow generated by the solutions to

(irAC) (see Theorem 3.2). Now, our result reads,

Theorem 5.1 (Lyapunov stability of equilibria [4]). Let  $\phi$ be a solution of (\mathrm{E})_{\mathrm{o}\mathrm{P}}
for some u_{0} \in \overline{D_{r}}^{H_{0}^{1}} Suppose that  $\phi$ lies on a small ( in H_{0}^{1}( $\Omega$)) neighbourhood
of the positive ground state $\phi$_{ac} of the classical elliptic Allen‐Cahn equation (i.e.,

\mathcal{F}($\phi$_{ac}) =\displaystyle \min_{H_{0}^{1}( $\Omega$)}\mathcal{F}) . Then  $\phi$ is (Lyapunov) stable, that is, for any  $\epsilon$ > 0 there

exists  $\delta$>0 such that any solution u=u(x, t) of ( irAC) satisfies

\displaystyle \sup ||u(t)- $\phi$\Vert_{H_{\mathrm{O}}^{1}( $\Omega$)} < $\epsilon$,
t\in[0,+\infty)

whenever \Vert u(0)- $\phi$\Vert_{H_{\mathrm{O}}^{1}( $\Omega$)} < $\delta$ and  u(0)\in\overline{D_{r}}^{H_{0}^{1}}
Instead of Lojasiewicz‐Simon type inequalities, we shall employ the monotone

evolution of solutions as well as variational convergence of a functional corresponding
to (irAC) with respect to limiting a sequence of obstacle functions (see [12]). Let

us give an outline of proof below.

Outline of proof. We first prove that equilibria  $\phi$ of (irAC) in a small neighbourhood
V (in H_{0}^{1}( $\Omega$) ) of $\phi$_{\mathrm{a}\mathrm{c}} entail

 $\phi$=\displaystyle \arg\min_{H_{0}^{1}( $\Omega$)}(\mathcal{F}+I_{1\cdot\geq $\phi$]}) ,
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which means \displaystyle \mathcal{F}( $\phi$)=\min_{w\in H_{0}^{1}( $\Omega$)}(\mathcal{F}(w)+I_{1\cdot\geq $\phi$]}(w))\backslash . If \Vert u_{0}- $\phi$\Vert_{H_{0}^{1}( $\Omega$)}\ll 1 , then

\bullet  u t)\in V for all t\geq 0,

\bullet the limit \hat{ $\phi$}\in V of u t) as  t\rightarrow\infty is also characterized as

\displaystyle \hat{ $\phi$}=\arg\min_{H_{0}^{1}( $\Omega$)}(\mathcal{F}+I_{[\cdot\geq \mathrm{u}\mathrm{o}]}) .

We next claim that

Lemma 5.2 (Convergence of minimizers). If w_{n}\rightarrow w strongly in H_{0}^{1}( $\Omega$) ,
then mini‐

mizers $\phi$_{n} of \mathcal{F}+I_{[\cdot\geq w_{n}]} converge to a minimizer  $\phi$ of \mathcal{F}+I_{[\cdot\geq w]} strongly in H_{0}^{1}( $\Omega$) .

Then one can deduce that \Vert $\phi$-\hat{ $\phi$}\Vert_{H_{0}^{1}( $\Omega$)} \ll  1 . We find that, by the nondecrease

of the evolution t\mapsto u(x, t) ,

u_{0}(x)- $\phi$(x)\leq u(x, t)- $\phi$(x)\leq\hat{ $\phi$}(x)- $\phi$(x) ,

whence

\displaystyle \sup_{t\geq 0}\Vert u(\cdot, t)- $\phi$\Vert_{p}\ll 1, 1\leq p\leq 6.
By performing an energy argument, one may improve the topology of the neighbour‐
hood and finally conclude that

\displaystyle \sup_{t\geq 0}\Vert u(\cdot, t)- $\phi$\Vert_{H_{0}^{1}( $\Omega$)}\leq $\epsilon$.
Indeed, subtracting equations,

u_{t}+ $\eta$- $\Delta$ u+u^{3}-u=0,  $\eta$\in\partial I_{[0,\infty)} (ut ),

 $\zeta$- $\Delta \phi$+$\phi$^{3}- $\phi$=0,  $\zeta$\in\partial I_{[\mathrm{u}\mathrm{o}(x),\infty)}( $\phi$) ,

setting w :=u- $\phi$ and testing it by  w_{t}=u_{t} , we obtain

\displaystyle \Vert u_{t}\Vert_{L^{2}}^{2}+\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\Vert\nabla w\Vert_{L^{2}}^{2}+\frac{\mathrm{d}}{\mathrm{d}t}(\frac{1}{4}\Vert u\Vert_{L^{4}}^{4}-($\phi$^{3}, w)_{L^{2}}) \leq\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\Vert w\Vert_{L^{2}}^{2}.
Here we used ( $\eta$, w_{t})_{L^{2}}=0 and (- $\zeta$, u_{\mathrm{t}})_{L^{2}} \geq 0 . Thus

\displaystyle \frac{1}{2}\Vert\nabla w(t)\Vert_{L^{2}}^{2}+\frac{1}{4}\Vert u(t)\Vert_{L^{4}}^{4}-($\psi$^{3}, w(t))-\frac{1}{2}\Vert w(t)\Vert_{L^{2}}^{2}
\displaystyle \leq\frac{1}{2}\Vert\nabla w(0)\Vert_{L^{2}}^{2}+\frac{1}{4}\Vert u(0)\Vert_{L^{4}}^{4}-($\psi$^{3}, w(0))-\frac{1}{2}\Vert w(0)\Vert_{L^{2}}^{2}.
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Moreover, note that

\Vert u(0)\Vert_{L^{4}}^{4}-\Vert u(t)\Vert_{L^{4}}^{4}

\displaystyle \leq\int_{ $\Omega$}(|u(x, 0)|^{2}+|u(x, t)|^{2})
\times(|u(x, 0)|+|u(x, t)|)|u(x, t)-u(x, 0)|\mathrm{d}x

\displaystyle \leq\int_{ $\Omega$}(|u(x, 0)|^{2}+|u(x, t)|^{2})
\times(|u(x, 0)|+|u(x, t (|w(x, t)|+|w(x, 0 \mathrm{d}x

\leq C(\Vert w(t)\Vert_{L^{4}}+\Vert w(0)\Vert_{L^{4}}) .

Accordingly, we conclude that

\Vert\nabla w(t)\Vert_{L^{2}}^{2} \leq $\omega$(\Vert w(t)\Vert_{L^{4}}+\Vert w(0)\Vert_{L^{4}}+\Vert\nabla w(0)\Vert_{L^{2}})

with a modulus  $\omega$(s)\rightarrow 0 as  s\rightarrow 0+\cdot \square 

As a by‐product of the proof above, one can assure that

Corollary 5.3. Every solution of (\mathrm{E})_{\mathrm{o}\mathrm{P}} in a small neighbourhood V of $\phi$_{ac} is an

accumulation point of the set S.

Proof. Let  $\phi$ \in  V be a solution of (\mathrm{E})_{\mathrm{o}\mathrm{P}} (with u_{ $\Phi$} ). Then it also minimizes the

functional,
\mathcal{F}+I_{1\cdot\geq $\phi$]}

over H_{0}^{1}( $\Omega$) . One can take a sequence (u_{0,n}) in H^{2}( $\Omega$)\cap H_{0}^{1}( $\Omega$) of initial data such

that u_{0,n}(x) is strictly decreasing at each  x\in $\Omega$ and  u_{0,n} converges to  $\phi$ strongly in

 H_{0}^{1}( $\Omega$) . Then the positive minimizer $\phi$_{n} of \mathcal{F}+I_{1\cdot\geq u_{0,n}]} belongs to S and converges to

 $\phi$ strongly in  H_{0}^{1}( $\Omega$) by Lemma 5.2. On the other hand, since  u_{0,n}> $\phi$ ,
the minimizer

 $\phi$_{n} is greater than  $\phi$ , and hence,  $\phi$\neq$\phi$_{n} . Hence  $\phi$ is an accumulation point of S. \square 

6 Other related topics
In contrast with (2), one cannot expect existence of global attractors in any Ư (  $\Omega$ )
spaces for any  1 \leq p\leq \infty . Indeed, if one takes nonnegative data  u_{0} \in Ư (  $\Omega$ ) , then

by means of the nondecrease of  u(x, t) in t
, one observes that

\Vert u_{0}\Vert_{L( $\Omega$)}p\leq\Vert u(t)\Vert_{L( $\Omega$)}p for t\geq 0.

Hence, one cannot construct any absorbing set in (the whole of) Ư spaces. On the

other hand, if the dynamical system (DS for short) generated by (irAC) possesses a

global attractor \mathcal{A} , then an  $\epsilon$‐neighbourhood of  A must be an absorbing set. Therefore

there is no global attractor for (irAC) in (the whole of) any IP spaces. On the other
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hand, setting D_{r} given by §3 to the phase set of the DS, one can construct a global
attractor. It indicates that due to the nondecreasing constraint, on some part of

domain, a solution never evolves, and hence, energy dissipation may not emerge in a

usual sense. However, on the other part of domain, the solution behaves like those of

(2), and hence, the DS exhibits partial energy dissipation. The set D_{r} plays a role of

mask to conceal the portion of domain where the solution never evolves. Therefore

working on the masked set, one can find out energy dissipation and construct a global
attractor.

Set D=D_{r} for arbitrary r>0 and set a metric \mathrm{d} ) by

\mathrm{d}(u, v):=\Vert u-v\Vert_{H_{\mathrm{O}}^{1}( $\Omega$)}+\Vert u-v\Vert_{L^{4}( $\Omega$)} for u, v\in D.

Let (S_{t}) be the semigroup generated by (irAC) . Here A is called a global attractor if

the following (\mathrm{i})-(\mathrm{i}\mathrm{i}\mathrm{i}) hold true:

(i) \mathcal{A} is compact in (D, \mathrm{d}) .

(ii) \mathcal{A} satisfies an attraction property in (D, \mathrm{d}) ,
that is, let B\subset D be a \mathrm{d}‐bounded

subset of D . Then for any neighborhood \mathcal{O} of \mathcal{A} in (D, \mathrm{d}) , there exists $\tau$_{\mathrm{O}}\geq 0
such that, S_{t}B\subset \mathcal{O} for all t\geq$\tau$_{O}.

(iii) \mathcal{A} is strictly invariant, i.e., for any t\geq 0 it holds that S_{t}\mathcal{A}=\mathcal{A}.

Theorem 6.1 (Existence of global attractor [3]). Let N\leq 3 . Then the DS(S_{t}, (D_{r}, \mathrm{d}))
generated by (irAC) admits a global attractor \mathcal{A}.
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