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In this talk, I reported recent progress in the joint work with Slim Ibrahim, Nader

Masmoudi and Feberica Sani. The Trudinger‐Moser inequality on \mathbb{R}2:

\displaystyle \sup_{u\in H_{0}^{1}( $\Omega$),||\nabla \mathrm{u}\Vert_{2}^{2}\leq 2 $\pi$}\int_{ $\Omega$}e^{2u^{2}}dx\leq C| $\Omega$| (1)

is a celebrated substitute for the forbidden Sobolev embedding H1( \mathbb{R}2) \not\subset L \infty ( \mathbb{R} 2)
for bounded domains. Henceforth \Vert $\varphi$\Vert_{p} denotes the U_{x} norm. Moser [6] proved the

critical case \Vert\nabla u\Vert_{2}^{2}=2 $\pi$ ,
as well as the optimality of the growth  e^{2u^{2}} as u\rightarrow\infty,

and loss of compactness by concentration for some bounded sequences in H1( \mathbb{R}2) .

Carleson and Chang [2] proved however that the concentration cannot occur for

maximizing sequences of the inequality, hence existence of maximizers.

We consider a similar question on the whole plane \mathbb{R} 2. Cao [1] proved a variant

of (1) on \mathbb{R} 2 in the subcritical.case:

 $\alpha$<2 $\pi$ \displaystyle \Rightarrow \sup_{\Vert\nabla u\Vert_{2}^{2}\leq $\alpha$}\int_{\mathbb{R}^{2}}(e^{2\mathrm{u}^{2}}-1)d_{X}\leq C_{ $\alpha$}\Vert u\Vert_{2}^{2} . (2)

It is indeed a natural formulation for the nonlinear Schrödinger equation

i\dot{u}- $\Delta$ u=f'(u) (3)

or similar Klein‐Gordon equation on \mathbb{R} 1+2, where L2‐invariance plays crucial roles

in the dynamics, cf. [3]. It is easy to observe by Moser�s sequence of functions [6]
that the critical exponent  $\alpha$= 2  $\pi$ is prohibited on \mathbb{R} 2. Motivated by the dynamical
problems, the optimal version of (2) was obtained in [5]:

Theorem 1. Let  f:\mathbb{R}\rightarrow[0, \infty ) be any continuous function. Then (i)

 S(f):=\displaystyle \sup_{\Vert\nabla \mathrm{u}\Vert_{2}^{2}\leq 2 $\pi$}\Vert u\Vert_{2}^{-2}\int_{\mathbb{R}^{2}}f(u)dx (4)

is finite if and only if

\displaystyle \lim_{|u|\rightarrow}\sup_{\infty}f(u)\frac{|u|^{2}}{e^{2|u|^{2}}}+\mathrm{h}\mathrm{m}\sup_{|\mathrm{u}|\rightarrow 0}\frac{f(u)}{|u|^{2}}<\infty . (5)

(ii) For every sequence of radial functions  u_{n} satisfying \Vert\nabla u_{n}\Vert_{2}^{2} \leq  2 $\pi$ and weakly
convergent in  H^{1}(\mathbb{R}^{2}) , f(u_{n}) is strongly convergent in L^{1}(\mathbb{R}^{2}) , if and only if

\displaystyle \lim_{|\mathrm{u}|\rightarrow\infty}|f(u)|\frac{|u|^{2}}{e^{2|u|^{2}}}+\lim_{|u|\rightarrow 0}\frac{f(u)}{|u|^{2}}=0 . (6)

If f is smooth and S(f) is attained, then each maximizer u\in H^{1}(\mathbb{R}^{2}) solves the

static nonlinear Schrödinger equation:

- $\Delta$ u+ $\omega$ u=f^{f}(u) (7)
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with  $\omega$ = 2S(f) . The above compactness (ii), implies that S(f) is attained if (6)
holds. Note that the decay for |u| \rightarrow 0 can generally be assumed after subtracting
the limit mass:

f(u)-u^{2}\displaystyle \lim\underline{f(u)} (8)
u\rightarrow 0 u^{2}

�

at least for smooth f . Hence the vanishing (or spreading) phenomenon is not a

compactness issue in our setting. On the other hand, if f(u) grows faster than the

critical one, namely

\displaystyle \forall $\epsilon$>0, f(u)=o(e^{(2+ $\epsilon$)|u|^{2}}) , \lim_{|u|\rightarrow}\sup_{\infty}f(u)\frac{|u|^{2}}{e^{2|u|^{2}}}=\infty , (9)

then for every  0< $\omega$<\infty,  $\omega$=2\displaystyle \Vert u\Vert_{2}^{-2}\int f(u)dx is reached with a subcritical kinetic

energy \Vert\nabla u\Vert_{2}^{2}<2 $\pi$ , hence (7) has a solution by the above compactness result. Then

essentially the only remaining case is the exactly critical growth:

 f(u)\displaystyle \sim\frac{e^{2|u|^{2}}}{|u|^{2}} (|u|\rightarrow\infty) . (10)

It turned out that the right hand side is a sharp threshold also for the existence

of maximizers, which differs from the original Trudinger‐Moser inequality (1). To

state it more precisely, let f_{h}^{*} : \mathbb{R} \rightarrow [0, \infty ) be the model function with a cut‐off

parameter  h>0 , defined by

f_{h}^{*}(u)=\left\{\begin{array}{ll}
|u|^{-2}e^{2u^{2}} & (|u|>h) ,\\
0 & (|u|\leq h) .
\end{array}\right. (11)

Theorem 2. Let  $\delta$>0 and let  f:\mathbb{R}\rightarrow[0, \infty ) be a continuous function satisfying

\displaystyle \lim_{|u|\rightarrow\infty}f(u)/f_{1}^{*}(u)=1, \lim_{|u|\rightarrow 0}f(u)/u^{2}=m\in[0, \infty) . (12)

(i) S(f) is attained if f satisfies, for some h>0,

f(u)\geq f_{h}^{*}(u)(1+ $\delta$ u^{-2}) . (13)

(ii) S(f) is not attained if f satisfies, for some sufficiently large h\gg 1,

f(u)\leq f_{h}^{*}(u)(1- $\delta$ u^{-2})+mu^{2} . (14)

(iii) S(f) \dot{u} attained if f satisfies, for some h>0,

f(u)\geq f_{h}^{*}(u)+mu^{2}+ $\delta$ u^{4} . (15)

(iv) S(f) is not attained if f satisfies, for some sufficiently large h\gg 1,

f(u)\leq f_{h}^{*}(u)+mu^{2}- $\delta$ u^{4} . (16)

In other words, the existence is determined by the sign of small order perturbations
around the critical nonlinearity f_{h}^{*}(u) . Note that for the original Trudinger‐Moser
inequality (1) the existence of maximizer is stable for small perturbations.
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Our proof of Theorem 2 is inspired by [2], based on asymptotic expansion of S(f)
along concentration. More precisely, we introduce another height parameter H>0

as follows. Restricting to radially symmetric decreasing u\in H^{1}(\mathbb{R}^{2}) , let

X_{H} :=\{u|\exists R>0, \Vert\nabla u\Vert_{L^{2}(|x|<R)}^{2}\leq $\pi$, \Vert\nabla u\Vert_{L^{2}(|x|>R)}^{2}\leq $\pi$, u(R)=H\},

S_{H}(f) :=\displaystyle \sup_{u\in X_{H}}\Vert u\Vert_{2}^{-2}\int_{\mathbb{R}^{2}}f(u)dx .

(17)

Theorem 2 follows from the asymptotic expansion as  h\rightarrow\infty of

 S_{h}(f_{h}^{*})=2e^{- $\gamma$}+O(h^{-4}) , (18)
where  $\gamma$ denotes Euler�s constant. The vanishing of the order  O(h^{-2}) is the special
property of f_{h}^{*} (besides the critical growth for Theorem 1), which allows the small

order perturbations to determine the existence in Theorem 2.

We also need asymptotic expansion of an exponential radial Sobolev inequality:

\displaystyle \inf\{\Vert u\Vert_{L^{2}(|x|>1)}^{2};u(1)=h, \Vert\nabla u\Vert_{L^{2}(|x|>1)}^{2}\leq 2 $\pi$\}

=\displaystyle \frac{ $\pi$ e^{2h^{2}+ $\gamma$-1}}{4h^{2}}\{1+\frac{1}{2h^{2}}+O(h^{-4})\} ,

(19)

whose growth order was obtained in [5] to prove Theorem 1. It is noteworthy that

S(f) < \infty can be derived from the original Trudinger‐Moser inequality. (1) using
the above inequality, while (1) can be derived from Theorem 1 using the Hardy‐type
inequality:

 0<r<R \Rightarrow |u(r)|-|u(R)|\leq \sqrt{\frac{1}{2 $\pi$}\Vert\nabla u\Vert_{L^{2}(|x|<R)}^{2}\log(R/r)} . (20)

At the time of the conference, we were missing a logic to connect the asymptotics
of S_{H}(f_{H}^{*}) with that of S_{H}(f_{h}^{*}) for fixed h \gg  1 and H \rightarrow \infty

,
which requires us

to control the �tail� left behind the concentration. Using carefully the above two

inequalities, however, we are now able to prove that maximizers of  S_{H}(f_{h}^{*}) should

almost optimize the height H in the exterior region |x| >R and the nonlinear energy

f_{H}^{*}(u) in the interior region |x| <R.

A full proof will be published elsewhere for Theorem 2, as well as for (19).
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