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Abstract

The shape of extremal functions in Poincaré type trace inequalities for functions of bounded

variation in the unit ball \mathrm{B}^{n} of the n‐dimensional Euclidean space \mathbb{R}^{n} is discussed. Both cus‐

tomary and less standard normalization conditions are considered. The extremals in question
tum out to take a different form, depending on the condition imposed. A key step in our

analysis is a characterization of the sharp constants in the relevant trace inequalities in any

admissible domain  $\Omega$\subset \mathbb{R}^{n} , in terms of isoperimetric inequalities for subsets of  $\Omega$.

1 Introduction

The purpose of this note is to survey some results on Poincaré inequalities for the boundary
trace of functions in the Eulidean ball from [Ma3] and [Ci3], as well to announce some recent

developments on the same topic to appear in [CFNT2].
Assume that  $\Omega$ is a domain, namely a bounded connected open set in \mathbb{R}^{n}, n\geq 2 . It is well

known that if the boundary \partial $\Omega$ of  $\Omega$ is sufficiently regular, then a linear operator if defined on

the space  BV( $\Omega$) of functions of bounded variation in  $\Omega$ , which associates with any function

 u\in BV( $\Omega$) its (suitably defined) boundary trace \overline{u}\in L^{1}(\partial $\Omega$) . Here, L^{1}(\partial $\Omega$) denotes the Lebesgue
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space of integrable functions on \partial $\Omega$ with respect to the (n-1)‐dimensional Hausdorff measure

\mathcal{H}^{n-1} . Moreover, there exists a constant C , depending on  $\Omega$ , such that

(1.1) \displaystyle \inf_{c\in} \Vert\overline{u}-c\Vert_{L^{1}(\partial $\Omega$)}\leq C\Vert Du\Vert( $\Omega$)
for every u \in  BV( $\Omega$) , where \Vert Du\Vert( $\Omega$) stands for the total variation over  $\Omega$ of distributional

gradient Du of  u [Ma3, Theorem 9.6.4].
A property of L^{1} norms ensures that the infimum in (1.1) is attained when c agrees with a

median of a on \partial $\Omega$ , given by

\displaystyle \mathrm{m}\mathrm{e}\mathrm{d}_{\partial $\Omega$}\overline{u}=\sup\{t\in \mathbb{R} : \mathcal{H}^{n-1}(\{\overline{u}>t\})>\mathcal{H}^{n-1}(\partial $\Omega$)/2\}

(see e.g. [CP1, Lemma 3.1]) Thus, inequality (1.1) is equivalent to

\Vert\overline{u}-\mathrm{m}\mathrm{e}\mathrm{d}_{\partial $\Omega$}\overline{u}\Vert_{L^{1}(\partial $\Omega$)}\leq C\Vert Du\Vert( $\Omega$)

for every u\in BV( $\Omega$) , with the same constant C.

Other normalizing operators than \mathrm{m}\mathrm{e}\mathrm{d}_{\partial $\Omega$}\overline{u} are admissible in inequalities of the form (3.2).
General assumptions on an operator T such that

BV( $\Omega$)\ni u\mapsto T(u)\in \mathbb{R}

are known for an inequality of the form

(1.2) \Vert\overline{u}-T(u)\Vert_{L^{1}(\partial $\Omega$)}\leq C\Vert Du\Vert( $\Omega$)

to hold for some constant C , and for every u\in BV( $\Omega$) . These assumptions can be derived, for

instance, by specializing an abstract result from [Zi, Lemma 4.1.3].
Besides the median of \overline{u} on \partial $\Omega$ , another classical choice for  T(u) is the mean value \mathrm{m}\mathrm{v}\partial $\Omega$(\overline{u}) of

\overline{u} over \partial $\Omega$ , given by

\displaystyle \mathrm{m}\mathrm{v}\partial $\Omega$(\overline{u})=\frac{1}{\mathcal{H}^{n-1}(\partial $\Omega$)}\int_{\partial $\Omega$}\overline{u}(x)d\mathcal{H}^{n-1}(x) .

Less conventional admissible operators T(u) amount to

(1.3) T(u)=\mathrm{m}\mathrm{e}\mathrm{d}_{ $\Omega$}(u) ,

where

\displaystyle \mathrm{m}\mathrm{e}\mathrm{d}_{ $\Omega$}(u)=\sup\{t\in \mathbb{R}:|\{u>t\}|>| $\Omega$|/2\},

the median of u in the whole of  $\Omega$ , and

(1.4)  T(u)=\mathrm{m}\mathrm{V} $\Omega$(u) ,

where

\displaystyle \mathrm{m}\mathrm{V} $\Omega$(u)=\frac{1}{| $\Omega$|}\int_{ $\Omega$}u(x)dx,
the mean value of u in the whole of  $\Omega$ Here, |\cdot| denotes Lebesgue measure. The choices (1.3) and

(1.4) make inequality (1.2) nonst�andard, in that its left‐hand side combines quantities depending
both on \overline{u} and on u.

We are concerned with the problem of the optimal constant C in (1.2) when T(u) is either

\mathrm{m}\mathrm{e}\mathrm{d}_{\partial $\Omega$}\overline{u} , or mv \partial $\Omega$ (ũ), or \mathrm{m}\mathrm{e}\mathrm{d}_{ $\Omega$}(u) , or \mathrm{m}\mathrm{v} $\Omega$(u) . For any admissible domain  $\Omega$ , these optimal
constants equal certain geometric constants of isoperimetric type. In the special case when  $\Omega$ is
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an Euclidean ball, an explicit description of the extremal functions is possible. In fact, due to

the scaling invariance of the relevant inequalities, we shall deal, without loss of generality, with

the unit ball \mathrm{B}^{n}
, centered at 0 , in \mathbb{R}^{n}.

Interestingly, the Poincaré inequalities in question share the same extremals under the con‐

straint on \mathrm{m}\mathrm{e}\mathrm{d}_{0 $\Omega$}\overline{u}, \mathrm{m}\mathrm{v}\partial $\Omega$(\overline{u}) and \mathrm{m}\mathrm{v}_{ $\Omega$}(u) , but take a different, non‐standard form, for \mathrm{m}\mathrm{e}\mathrm{d}_{ $\Omega$}(u) .
The geometric characterizations of the sharp constants in the Poincaré inequalities are stated

in Section 2. Section 3 is devoted to the description of the extremals in the Poincaré inequalities
in \mathrm{B}^{n}.

Let us mention that trace inequalities in Sobolev type spaces, involving optimal constants,
have been extensively investigated in the literature. Contributions along this line of research

include [AFV, AMR, BGP, Bro, \mathrm{B}\mathrm{r}\mathrm{F} , Ci2, CFNT2, DDM, Esl, MV1, MV2, Mal, Ma2, Ma3,
Na, Ro, \mathrm{W}] . Sharp forms of Poincaré type inequalities for Sobolev functions and functions of

bounded variation, involving norms of u in the whole of  $\Omega$ , are the object of [BK, \mathrm{B}\mathrm{o}\mathrm{V}, \mathrm{B}\mathrm{r}\mathrm{V},
Cil, DG, DN, EFKNT, ENT, FNT, GW, Le, NR].

2 Geometric constants

Let E be a measurable set in \mathbb{R}^{n} . The essential boundary \partial^{M}E of E is defined as the complement
in \mathbb{R}^{n} of the sets of points of densities 0 and 1 with respect to E . One has that \partial^{M}E is a Borel

set, and \partial^{M}E\subset\partial E , the topological boundary of E.

The set E is said to be of finite perimeter relative to an open set  $\Omega$\subset \mathbb{R}^{n} if D$\chi$_{E} , the distributional

derivative of the characteristic function $\chi$_{E} of E , is a vector‐valued Radon measure in  $\Omega$ with

finite total variation in  $\Omega$ . The perimeter of  E relative to  $\Omega$ is defined as

(2.1)  P(E; $\Omega$)=\Vert D$\chi$_{E}\Vert( $\Omega$\rangle.

A result from geometric measure theory tells us that E is of finite perimeter in  $\Omega$ if and only if

\mathcal{H}^{n-1}(\partial^{M}E\cap $\Omega$)<\infty ; moreover,

(2.2)  P(E; $\Omega$)=\mathcal{H}^{n-1}(\partial^{M}E\cap $\Omega$)

[Fe, Theorem 4.5.11]. A domain  $\Omega$ in \mathbb{R}^{n} will be called admissible if \mathcal{H}^{n-1}(\partial $\Omega$)<\infty, \mathcal{H}^{n-1}(\partial $\Omega$\backslash 
\partial^{M} $\Omega$)=0 , and

(2.3) \displaystyle \min\{\mathcal{H}^{n-1}(\partial^{M}E\cap\partial $\Omega$), \mathcal{H}^{n-1}(\partial $\Omega$\backslash \partial^{M}E)\}\leq C\mathcal{H}^{n-1}(\partial^{M}E\cap $\Omega$)

for some positive constant C and every measurable set  E\subset $\Omega$ [Zi, Definition 5.10.1]. In partic‐
ular, any Lipschitz domain is an admissible domain.

If  $\Omega$ is an admissible domain, the boundary trace \overline{u} of a function u\in BV( $\Omega$) is well defined for

\mathcal{H}^{n-1}-\mathrm{a}.\mathrm{e}.  x\in\partial $\Omega$ as

(2.4) \displaystyle \overline{u}(x)=\lim_{r\rightarrow 0^{+}}\frac{1}{|B_{r}(x)\cap $\Omega$|}\backslash \int_{B_{r}(x)\cap $\Omega$}u(y)dy,
where B_{r}(x) denotes the ball centered at x , with radius r [Ma3, Corollary 9.6.5]. The assumption
that  $\Omega$ be an admissible domain is necessary and sufficient for \overline{u} to belong to L^{1}(\partial $\Omega$) for every

function u\in BV( $\Omega$)- see [AG] and [Ma3, Theorem 9.5.2]. Moreover, L^{1}(\partial $\Omega$) cannot be replaced
with any smaller Lebesgue space independent of u.

Alternate notions of the boundary trace of a function of bounded variation can be found in the

literature. One definition relies upon the notion of upper and lower approximate limits of the
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extension of u by 0 outside  $\Omega$ [Zi, Definition 5.10.5]. Another possible definition is that of rough
trace in the sense of [Ma3, Section 9.5.1]. Both of them coincide with \overline{u} , up to subsets of \partial $\Omega$ of

\mathcal{H}^{n-1} ‐measure zero.

If  $\Omega$ is a Lipschitz domain, and the function  u enjoys some additional regularity property, such

as membership to the Sobolev space W^{1,1}( $\Omega$) , then the trace of u on \partial $\Omega$ defined as the limit of

the restrictions to \partial $\Omega$ of approximating sequences of smooth functions on St also agrees with \overline{u}

for \mathcal{H}^{n-1}-\mathrm{a}.\mathrm{e} . point on \partial $\Omega$.

We assume through this section that  $\Omega$ is an admissible domain in \mathbb{R}^{n} , with n\geq 2 . Let us

denote by C(\mathrm{m}\mathrm{e}\mathrm{d}_{\partial $\Omega$}) the optimal constant in the inequality

(2.5) \Vert\overline{u}-\mathrm{m}\mathrm{e}\mathrm{d}_{\partial $\Omega$}(\overline{u})\Vert_{L^{1}(\partial $\Omega$)}\leq C(\mathrm{m}\mathrm{e}\mathrm{d}_{\partial $\Omega$})\Vert Du\Vert( $\Omega$)

for u\in BV( $\Omega$) . A pioneering result by Burago and Maz�ya [Ma3, Theorem 9.5.2] tells us that

C(\mathrm{m}\mathrm{e}\mathrm{d}_{\partial $\Omega$}) equals the geometric constant K(\mathrm{m}\mathrm{e}\mathrm{d}_{\partial $\Omega$}) of  $\Omega$ defined as

(2.6)  K(\displaystyle \mathrm{m}\mathrm{e}\mathrm{d}_{\partial $\Omega$})=\sup_{E\subset $\Omega$}\frac{\min\{\mathcal{H}^{n-1}(\partial^{M}E\cap\partial $\Omega$),\mathcal{H}^{n-1}(\partial $\Omega$\backslash \partial^{M}E)\}}{\mathcal{H}^{n-1}(\partial^{M}E\cap $\Omega$)}.
Here, and in similar occurrences in what follows, we tacitly assume that the supremum is ex‐

tended over non‐negligible subsets E of  $\Omega$.

Theorem 2.1 [Ma3, Theorem 9.5.2] Let  $\Omega$ be an admissible domain in \mathbb{R}^{n} , with n\geq 2 . Then

(2.7) C(\mathrm{m}\mathrm{e}\mathrm{d}_{\partial $\Omega$})=K(\mathrm{m}\mathrm{e}\mathrm{d}_{\partial $\Omega$}) .

Equahty holds in (2.5) for some nonconstant function u if and only if the supremum is attained

in (2.6) for some set E. In particular, if E\dot{u} an extremal set in (2.6), then the function a$\chi$_{E}+b
\dot{u} an extremal function in (2.5) for every a\in \mathbb{R}\backslash \{0\} and b\in \mathbb{R}.

More generally, if \{E_{k}\} is an optimizing sequence of sets in (2.6), then the sequence \{u_{k}\} =

\{a_{k}$\chi$_{E_{k}}+b_{k}\} is an optimizing sequence offunctions in (2.5) for every a_{k}, b_{k}\in \mathbb{R}.

Let us next consider the optimal constant C(\mathrm{m}\mathrm{v}\partial $\Omega$) in the inequality

(2.8) \Vert\overline{u}-\mathrm{m}\mathrm{v}\partial $\Omega$(\overline{u})\Vert_{L^{1}(\partial $\Omega$)}\leq C(\mathrm{m}\mathrm{v}\partial $\Omega$)\Vert Du\Vert( $\Omega$)

for u\in BV( $\Omega$) . It has been shown in [Ci3] that C(\mathrm{m}\mathrm{v}\partial $\Omega$) agrees with another geometric constant

K(\mathrm{m}\mathrm{v}\partial $\Omega$) , given by

(2.9) K(\displaystyle \mathrm{m}\mathrm{v}\partial $\Omega$)=\sup_{E\subset $\Omega$}\frac{2\min\{\mathcal{H}^{n-1}(\partial^{M}E\cap\partial $\Omega$),\mathcal{H}^{n-1}(\partial $\Omega$\backslash \partial^{M}E)\}}{\mathcal{H}^{n-1}(\partial $\Omega$)\mathcal{H}^{n-1}(\partial^{M}E\cap $\Omega$)}.
Theorem 2.2 [Ci3, Theorem 1.1] Let  $\Omega$ be an admissible domain in \mathbb{R}^{n} , with n\geq 2 . Then

(2.10) C(\mathrm{m}\mathrm{v}\partial $\Omega$)=K(\mathrm{m}\mathrm{v}\partial $\Omega$) .

Equality holds in (2.8) for some nonconstant function u if and only if the supremum is attained

in (2.9) for some set E. In particular, if E\dot{u} an extremal set in (2.9), thenrthe function a$\chi$_{E}+b
is an extremal function in (2.8) for every a\in \mathbb{R}\backslash \{0\} and b\in \mathbb{R}.

More generally, if \{E_{k}\} is an optimizingI sequence of sets in (2.9), then the sequence \{u_{k}\} =

\{a_{k}$\chi$_{E_{k}}+b_{k}\} is an optimizing sequence of functions in (2.8) for every a_{k}, b_{k}\in \mathbb{R}.
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The geometric constants associated with the Poincaré inequalities with normalization de‐

pending on the whole funtion u , instead of just its boundary trace \overline{u} , are exhibited in [CFNT2].
Specifically, let us denote by C(\mathrm{m}\mathrm{v} $\Omega$) the optimal constant in the inequality

(2.11) \Vert\overline{u}-\mathrm{m}\mathrm{V} $\Omega$(u)\Vert_{L^{1}(\partial $\Omega$)}\leq C(\mathrm{m}\mathrm{v} $\Omega$)\Vert Du\Vert( $\Omega$)
for u\in BV( $\Omega$) . Then C(\mathrm{m}\mathrm{v} $\Omega$) is related to the isoperimetric constant K(\mathrm{m}\mathrm{v} $\Omega$) associated with

 $\Omega$ by

(2.12)  K(\displaystyle \mathrm{m}\mathrm{v}_{ $\Omega$})=\sup_{E\subset $\Omega$}\frac{|E|\mathcal{H}^{n-1}(\partial $\Omega$\backslash \partial^{M}E)+| $\Omega$\backslash E|\mathcal{H}^{n-1}(\partial^{M}E\cap\partial $\Omega$)}{| $\Omega$|\mathcal{H}^{n-1}(\partial^{M}E\cap $\Omega$)}.
Theorem 2.3 [CFNT2, Theorem 2.1] Let  $\Omega$ be an admissible domain in \mathbb{R}^{n} , with n\geq 2 . Then

(2.13) C(\mathrm{m}\mathrm{v}_{ $\Omega$})=K(\mathrm{m}\mathrm{v}_{ $\Omega$}) .

Equality holds in (2.11) for some nonconstant function uif.and only if the supremum \dot{u} attained

in (2.12) for some set E. In particular, ifE is an extremal set in (2.12), then the function a$\chi$_{E}+b
is an extremal function in (2.11) for every a\in \mathbb{R}\backslash \{0\} and b\in \mathbb{R}.

More generally, if \{E_{k}\} is an optimizing sequence of sets in (2.12), then the sequence \{uk\} =

\{ak$\chi$_{E_{k}}+b_{k}\} \dot{u} an optimizing sequence of functions in (2.11) for every a_{k}, b_{k}\in \mathbb{R}.

We conclude this section by a geometric characterization of the optimal constant C(\mathrm{m}\mathrm{e}\mathrm{d}_{ $\Omega$})
in the inequality

(2.14) \Vert\overline{u}-\mathrm{m}\mathrm{e}\mathrm{d}_{ $\Omega$}(u)\Vert_{L^{1}(\partial $\Omega$)} \leq C(\mathrm{m}\mathrm{e}\mathrm{d}_{ $\Omega$})\Vert Du\Vert( $\Omega$)
for u\in BV( $\Omega$) . The isoperimetric constant which now comes into play is defined as

(2.15) K(\displaystyle \mathrm{m}\mathrm{e}\mathrm{d}_{ $\Omega$})= |E|\leq| $\Omega$|/2\sup_{E\subset $\Omega$} \frac{\mathcal{H}^{n-1}(\partial^{M}E\cap\partial $\Omega$)}{\mathcal{H}^{n-1}(\partial^{M}E\cap $\Omega$)}.
Theorem 2.4 [ \mathrm{C} $\Gamma$ \mathrm{N}\mathrm{T}2 , Theorem 2.3] Let  $\Omega$ be an admissible domain in \mathbb{R}^{n} , with n\geq 2 . Then

(2.16) C(\mathrm{m}\mathrm{e}\mathrm{d}_{ $\Omega$})=K(\mathrm{m}\mathrm{e}\mathrm{d}_{ $\Omega$}) .

Equality holds in (2.14) for some nonconstant function u if and only if the supremum is attained

in (2.15) for some set E. In particular, if E\dot{u} an extremal in (2.15), then the function a$\chi$_{E}+b
is an extremal in (2.14) for every a\in \mathbb{R}\backslash \{0\} and b\in \mathbb{R}.

More generally, if \{E_{k}\} \dot{u} an optimizing sequence of sets in (2.15), then the sequence \{uk\} =

\{a_{k}$\chi$_{E_{k}}+b_{k}\} \dot{u} an optimizing sequence offunctions in (2.14) for every a_{k}, b_{k}\in \mathbb{R}.

Remark 2.5 The Poincaré type trace inequalities considered in the present section hold, in

particular, with the same constants, for every function u in the Sobolev space W^{1,1}( $\Omega$) . In‐

deed, the latter is a subspace of BV( $\Omega$) . For any such function u , the total variation \Vert Du\Vert( $\Omega$)
agrees with \Vert\nabla u\Vert_{L^{1}( $\Omega$)} , where \nabla u denotes the weak gradient of u . The constants in the relevant

Poincaré inequalities continue to be optimal in W^{1,1}( $\Omega$) , since any function u\in BV( $\Omega$) can be

approximated by a sequence of functions u_{k}\in W^{1,1}( $\Omega$) in such a way that

\overline{u_{k}}=\overline{u} and \displaystyle \lim_{k\rightarrow\infty}\Vert\nabla u_{k}\Vert_{L^{1}( $\Omega$)}=\Vert Du\Vert( $\Omega$) .

The existence of the sequence \{u_{k}\} follows, for instance, from [Gi, Theorem 1.17 and Remark

1,18]. Of course, the last part of the statements of Theorems 2.1−2.4 does not apply when

dealing with Sobolev functions, since characteristic functions of subsets of  $\Omega$ are not weakly
differentiable.
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Figure 1

3 Extremal functions in Poincaré inequalities on \mathrm{B}^{n}

In the case when the domain  $\Omega$ is the ball \mathrm{B}^{n} , the extremal subsets in geometric functionals

introduced in section 2 can be exhibited. As a consequence of Theorems 2.1−2.4, the extremal

functions in the associated Poincaré trace inequalities can be characterized.

The computation of the optimal constant C(\mathrm{m}\mathrm{e}\mathrm{d}_{\partial \mathrm{B}^{n}}) in the Poincaré trace inequality

(3.1) \Vert\overline{u}-\mathrm{m}\mathrm{e}\mathrm{d}_{\mathrm{B}^{n}}( $\gamma$ u\Vert_{L^{1}(\partial \mathrm{B}^{n})}\leq C(\mathrm{m}\mathrm{e}\mathrm{d}_{\partial \mathrm{B}^{n}})\Vert Du\Vert(\mathrm{B}^{n})

for u\in BV(\mathrm{B}^{n}) goes back to Burago and Maz�ya [Ma3, Corollary 9.4.4/3].
In what follows, $\omega$_{n}=$\pi$^{n/2}/ $\Gamma$(1+n/2) , the Lebesgue measure of the unit ball in \mathbb{R}^{n}.

Theorem 3.1 [Ma3, Corollary 9.4.4/3] Let n\geq 2 . Then

C(\displaystyle \mathrm{m}\mathrm{e}\mathrm{d}_{\partial \mathrm{B}^{n}})=\frac{n$\omega$_{n}}{2$\omega$_{n-1}}.
Equality holds in (3.1) if u agrees with the characteristic function of a half‐ball (see Figuoe1).

The best constant C(\mathrm{m}\mathrm{v}\partial \mathrm{B}^{n}) in the inequality

(3.2) \Vert\overline{u}-\mathrm{m}\mathrm{v}\partial \mathrm{B}^{n}(\overline{u})\Vert_{L^{1}(\partial B)} \leq C(\mathrm{m}\mathrm{v}_{\partial \mathrm{B}^{n}})\Vert Du\Vert(B)

for u \in  BV(B) is provided by a result from [Ci3], which is stated in Theorem 3.2 below.

Interestingly, the existence and the form of extremals in inequality (3.2) turns out to depend on

the dimension n . In particular, Theorem 3.2 shows that extremals in the trace inequality (2.8)
need not exist, even for domains with such a simple geometry as the disk in \mathbb{R}^{2}.

In what follows, we call spherical segment in B the (non empty) intersection of B with a

half‐space.
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Figure 2

Theorem 3.2 [Ci3, Theorem 1.2] Let B be a ball in \mathbb{R}^{n}, n\geq 2 . Then

(3.3) C(\mathrm{m}\mathrm{v}\partial \mathrm{B}^{n})= \left\{\begin{array}{ll}
\frac{n$\omega$_{n}}{2$\omega$_{n-1}} & if n\geq 3,\\
2 & if n=2.
\end{array}\right.
If n\geq 4, equality holds in (3.2) when u agrees with the characteristic function of a half‐ball.
If n=3

, equality holds in (3.2) when u agrees with the characteristic function of any spherical
segment.
If n = 2 , equality never holds in (3.2), unless u is constant. Any sequence of characteristic

functions of spherical segments whose measure converges to 0 is optimizing in (3.2).

Remark 3.3 Let us incidentally mention that \mathrm{B}^{n} enjoys a minimizing property, among all

admissible domains in \mathbb{R}^{n} , as far as the constants C(\mathrm{m}\mathrm{e}\mathrm{d}_{\partial \mathrm{B}^{n}}) and C(\mathrm{m}\mathrm{v}\partial \mathrm{B}^{n}) are concerned.

Indeed, as shown in [CFNTI],

(3.4) C(\mathrm{m}\mathrm{e}\mathrm{d}_{\partial $\Omega$})\geq C(\mathrm{m}\mathrm{e}\mathrm{d}_{\partial \mathrm{B}^{n}}) ,

and

(3.5) C(\mathrm{m}\mathrm{v}\partial $\Omega$)\geq C(\mathrm{m}\mathrm{v}\partial \mathrm{B}^{n}) .

Moreover, equality holds in (3.4) if and only if  $\Omega$=\mathrm{B}^{n} , and, when n\geq 3 , equality holds in (3.5)
if and only if  $\Omega$=\mathrm{B}^{n} . On the other hand, if n=2 , there also exist domains  $\Omega$\neq \mathrm{B}^{2} attaining
equality in (3.5).

Let us next focus on the estremal functions in Poincaré type inequalities on \mathrm{B}^{n} under mean

value and median constraint over the entire \mathrm{B}^{n} . In the former case, namely in inequalities of the

form

(3.6) \Vert\overline{u}-\mathrm{m}\mathrm{v}\mathrm{B}^{n}(u)\Vert_{L^{1}(\partial \mathrm{B}^{n})}\leq C(\mathrm{m}\mathrm{v}_{\mathrm{B}^{n}})\Vert Du\Vert(\mathrm{B}^{n})
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Figure 3

for u\in BV(\mathrm{B}^{n}) characteristic functions of half‐balls are again extremals. Here, C(\mathrm{m}\mathrm{v}_{\mathrm{B}^{n}}) stands

for the sharp constant in (3.6).

Theorem 3.4 Let n\geq 2 . Then

C(\displaystyle \mathrm{m}\mathrm{v}\mathrm{B}^{n})=\frac{n$\omega$_{n}}{2$\omega$_{n-1}}.
Equality holds in (3.6) if u agrees with the characteristic function of a half‐ball.

In contrast with the previous results of this section, the extremals in the inequality

(3.7) \Vert\overline{u}-\mathrm{m}\mathrm{e}\mathrm{d}_{\mathrm{B}^{n}}(u)\Vert_{L^{1}(\partial \mathrm{B}^{n})}\leq C(\mathrm{m}\mathrm{e}\mathrm{d}_{\mathrm{B}^{n}})\Vert Du\Vert(\mathrm{B}^{n})

for u\in BV(\mathrm{B}^{n}) , with optimal constant C(\mathrm{m}\mathrm{e}\mathrm{d}_{\mathrm{I}\mathrm{B}^{n}}) , are characteristic functions of a new kind of

subsets of \mathrm{B}^{n} . These subsets are half‐m6on shaped (Figure 2), and hence, in particular, they are

not even convex. This is the content of the next theorem.

In the statement, E_{ $\theta,\ \varphi$} denotes the set depicted in Figure 3, where the couple ( $\theta$,  $\varphi$) belongs
to the set

(3.8) \mathrm{T}=\{( $\theta$,  $\varphi$):0< $\theta$< $\pi$, 0\leq $\varphi$< $\theta$\}.

The isoperimetric nature of the optimal constant in inequality (3.7), as described in Theorem

2.4, helps in accounting for this seemingly striking conclusion.

Theorem 3.5 Let n \geq  2 . Then equality holds in (3.7) if u is the characteristic function of
the half‐moon shaped set E_{ $\theta,\ \varphi$} as in Figure 3, where ( $\theta$,  $\varphi$) \dot{u} the unique solution in the set \mathrm{T}
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(defined by (3.8)) to the system

(3.9) \left\{\begin{array}{l}
\frac{$\Psi$_{n-2}( $\varphi$)}{$\Psi$_{n-2}( $\theta$)}\frac{\sin^{n} $\theta$}{\sin^{n} $\varphi$}=1-\frac{(n-1)$\Psi$_{n-2}( $\pi$)\cos $\theta$}{2[(n-1)\cos $\theta \Psi$_{n-2}( $\theta$)-\sin^{n-1} $\theta$]}\\
\frac{\cos $\varphi$}{\sin $\varphi$}=\frac{\cos $\theta$}{\sin $\theta$}(1-\frac{(n-1)$\Psi$_{n-2}( $\pi$)}{2[(n-1)\cos^{2} $\theta \Psi$_{n-2}( $\theta$)-\sin^{n-1} $\theta$\cos $\theta$]}) .
\end{array}\right.
Acknowledgements. This research was partly supported by the research project of MIUR

(Italian Ministry of Education, University and Research) Prin 2012, n. 2012\mathrm{T}\mathrm{C}7588 , �Elliptic
and parabolic partial differential equations: geometric aspects, related inequalities, and applica‐
tions and by GNAMPA of the Italian INdAM (National Institute of High Mathematics).

References

[AFV] A.Alvino, A.Ferone & R.Volpicelli, Sharp Hardy inequalities in the half‐space with trace

remainder term, Nonlinear Anal. 75 (2012), 5466‐5472.

[AMR] F.Andreu, J.M.Mazón, & J.D.Rossi, The best constant for the Sobolev trace embedding
from W^{1,1}( $\Omega$) into L^{1}(\partial $\Omega$) , Nonlinear Anal. 59 (2004), 1125‐1145.

[AG] G.Anzellotti & M.Giaquinta, Funzioni BVe tracce, Rend. Sem. Mat. Univ. Padova 60

(1978), 1‐21.

[BK] M.Belloni & B.Kawohl, A symmetry problem related to Wirtinger�s and Poincaré�s in‐

equality, J. Diff. Eq. 156 (1999), 211‐218.

[BGP] E.Berchio, F.Gazzola & D.Pierotti, Gelfand type elliptic problems under Steklov bound‐

ary conditions, Ann. Inst. Henri Poincaré Anal. Non Linéaire 27 (2010), 315‐335.

[BoV] V.Bouchez & J.Van Schaftingen, Extremal functions in Poincaré‐Sobolev inequalities for

functions of bounded variation, in Nonlinear Elliptic Partial Differential Equations, Amer.

Math. Soc., Contemporary Mathematics 540, 2011, 47‐58.

[BrF] L.Brasco & G.Franzina, An anisotropic eigenvalue problem of Stekloff type and weighted
Wulff inequalities, Nonhnear Diff. Equat. Appl. (NoDEA) , 20 (2013), 1795‐1830.

[BrV] H.Brezis & J.Van Schaftingen, Circulation integrals and critical Sobolev spaces: problems
of sharp constants, Perspectives in partial differential equations, harmonic analysis and

applications, Proc. Sympos. Pure Math. 79, Amer. Math. Soc. Providence, RI, 2008,
33‐47.

[Bro] F. Brock, An isoperimetric inequality for eigenvalues of the Stekloff problem, Z. Angew.
Math. Mech. 81 (2001), 69−71.

[BM] Yu.D.Burago & V.G.Maz�ya, Some questions of potential theory and function theory for

domains with non‐regular boundaries, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst.

Steklov. (LOMI) 3 (1967), 1‐152 (Russian); English translation: Seminars in Mathemat‐

ics, V.A. Steklov Mathematical Institute, Leningrad, Consultants Bureau, New York, 3

(1969) 1‐68.

112



[Cil] A.Cianchi, A sharp form of Poincaré type inequalites on balls and spheres, Z. Angew.
Math. Phys. (ZAMP) 40 (1989), 558‐569.

[Ci2] A.Cianchi, Moser‐Trudinger trace inequalities, Adv. Math. 217 (2008), 2005‐2044.

[Ci3] A.Cianchi, A sharp trace inequality for functions of bounded variation in the ball, Proc.

Royal Soc. Edinburgh 142A (2012), 1179‐1191.

[CFNTI] A.Cianchi, V.Ferone, C.Nitsch & C.Trombetti, Balls minimize trace constants in BV,
J. Reine Angew. Math. (Crelle J.) 725 (2017), 41‐61.

[\mathrm{C} $\Gamma$ \mathrm{N}\mathrm{T}2] A.Cianchi, V.Ferone, C.Nitsch & C.Trombetti, Poincaré trace inequalities in BV(\mathrm{B}^{n})
with nonstandard normalization, preprint.

[CP1] A.Cianchi & L.Pick, Sobolev embeddings into spaces of Campanato, Morrey, and Hölder

type, J. Math. Anal. Appl. 282 (2003), 128‐150.

[DDM] J.Davila, L.Dupaigne & M.Montenegro, The extremal solution of a boundary reaction

problem, Comm. Pure Appl. Analysis 7 (2008) 795‐817.

[DG] F.Della Pietra & N.Gavitone, Symmetrization for Neumann anisotropic problems and

related questions, Advanced Nonlinear Studies 12 (2012), 219‐235.

[DN] A.V.Dem�yanov & A.I.Nazarov, On the existence of an extremal function in Sobolev em‐

bedding theorems with a limit exponent, Algebra i Analiz 17 (2005), 105‐140 (Russian);
English translation: St. Petersburgh Math. J. 17 (2006), 773‐796.

[Esl] J.F.Escobar, Sharp constant in a Sobolev trace inequality, Indiana Univ. Math. J. 37

(1988), 687‐698.

[Es2] J.F.Escobar, An isoperimetric inequality and the first Steklov eigenvalue, J. Funct. Anal.

165 (1999), 101‐116.

[ENT] L.Esposito, C.Nitsch & C.Trombetti, Best constants in Poincaré inequalities for convex

domains, J. Convex Analysis 20 (2013), 253‐264.

[EFKNT] L.Esposito, V.Ferone, B.Kawohl, C.Nitsch & C.Trombetti, The longest shortest fence

and sharp Poincaré‐Sobolev inequalities, Arch. Rational. Mech. Anal. 206 (2012), 821‐

851.

[Fe] H.Federer, �Geometric measure theory Springer, Berlin, 1969.

[FNT] V.Ferone, C.Nitsch & C.Trombetti, A remark on optimal weighted Poincaré inequalities
for convex domains, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appt. 23 (2012), 467‐475.

[GW] P. Girão & T.Weth, The shape of extremal functions for Poincaré‐Sobolev‐type inequalities
in a ball, J. Funct. Anal. 237 (2006), 194‐233.

[Gi] E.Giusti, �Minimal surfaces and functions of bounded variation Birkhäuser, Basel, 1984,

[Ka] B.Kawohl, �Rearrangements and convexity of level sets in PDE Lecture Notes in Math.

1150, Springer‐Verlag, Berlin, 1985.

[Le] M.Leckband, A rearrangement based proof for the existence of extremal functions for the

Sobolev‐Poincaré inequality on B^{n}
, J. Math. Anal. Appl. 363 (2010), 690‐696.

113



[MV1] F.Maggi & C.Villani, Balls have the worst best Sobolev constants, J. Geom. Anal. 15

(2005), 83−121.

[MV2] F.Maggi & C.Villani, Balls have the worst best Sobolev inequalities II. Variants and

extensions, Calc. Var. Partial Differential Equations 31 (2008), 47‐74.

[Mal] V.G.Maz�ya, Classes of regions and imbedding theorems for function spaces, Dokl. Akad.

Nauk. SSSR 133 (1960), 527‐530 (Russian); English translation: Soviet Math. Dokl. 1

(1960), 882‐885.

[Ma2] V.G.Maz�ya, Classes of sets and imbedding theorems for function spaces, Dissertation

MGU, Moscow, 1962 (Russian).

[Ma3] V.G.Maz�ya, �Sobolev spaces with applications to elliptic partial differential equations
Springer, Heidelberg, 2011.

[NR] A.I.Nazarov & S.I.Repin, Exact constants in Poincar type inequalities for functions with

zero mean boundary traces, Math. Methods Appl. Sci. 38 (2015), 3195‐3207.

[Na] B.Nazaret, Best constant in Sobolev trace inequalities on the half‐space, Nonlinear Anal.

65 (2006), 1977‐1985.

[Ro] J.D.Rossi, First variations of the best Sobolev trace constant with respect to the domain,
Canad. Math. Bull. 51 (2008), 140‐145.

[W] R. Weinstock, Inequalities for a classical eigenvalue problem, J. Rational Mech. Anal. 3

(1954), 745‐753.

[Zi] W.P.Ziemer, �Weakly differentiable functions Springer‐Verlag, New York, 1989.

114


