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Abstract

In this paper, we consider asymptotic properties of the support vector machine (SVM)
in high‐dimension, low‐sample‐size (HDLSS) settings. We first show that the linear SVM

holds a consistency property in which misclassification rates tend to zero as the dimension

goes to infinity under certain severe conditions. Next, we consider a non‐linear SVM based

on the Gaussian kernel in HDLSS settings. We also show that the non‐linear SVM holds

the consistency property under mild conditions. Finally, we check the performance of the

SVMs by numerical simulations.
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1 Introduction

High‐dimension, low‐sample‐size (HDLSS) data situations occur in many areas of modern

science such as genetic microarrays, medical imaging, text recognition, finance, chemometrics,
and so on. Suppose we have independent and d‐variate two populations, $\pi$_{i}, i=1 , 2, having
an unknown mean vector $\mu$_{i} and unknown covariance matrix $\Sigma$_{i} (\geq O) . We assume that

\mathrm{t}\mathrm{r}($\Sigma$_{i})/d \in (0, \infty) as d \rightarrow \infty for  i = 1 , 2. Here, for a function, f
�

f(d) \in (0, \infty) as

d \rightarrow \infty
�

implies \displaystyle \lim\inf_{d\rightarrow\infty}f(d) > 0 and \displaystyle \lim\sup_{d\rightarrow\infty}f(d) < \infty . Let  $\Delta$ = \Vert$\mu$_{1}-$\mu$_{2}\Vert^{2},
where \Vert \Vert denotes the Euclidean norm. We assume that \displaystyle \lim\sup_{d\rightarrow\infty} $\Delta$/d < \infty . We have

independent and identically distributed (i.i. \mathrm{d}. ) observations, x_{i1}, x_{in_{i}} , from each $\pi$_{i} . We
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assume n_{i}\geq 2, i=1 ,
2. Let x_{0} be an observation vector of an individual belonging to one of

the two populations. We assume x_{0} and x_{ij}\mathrm{s} are independent. Let N=n_{1}+n_{2}.
In the HDLSS context, Hall et al. [6] and Marron et al. [7] considered distance weighted

classifiers. Aoshima and Yata [2] and Chan and Hall [5] considered distance‐based classifiers.

In particular, Aoshima and Yata [2] gave the misclassification rate adjusted classifier for

multiclass, high‐dimensional data in which misclassification rates are no more than specified
thresholds. On the other hand, Aoshima and Yata [1, 3] considered geometric classifiers based

on a geometric representation of HDLSS data. Aoshima and Yata [4] considered quadratic
classifiers in general and discussed asymptotic properties and optimality of the classifiers

under high‐dimension, non‐sparse settings. They showed that the misclassification rates tend

to 0 as d increases, i.e.,

e(i)\rightarrow 0 as  d\rightarrow\infty for  i=1 , 2 (1)

under the non‐sparsity such as  $\Delta$\rightarrow\infty as  d\rightarrow\infty , where  e(i) denotes the error rate of mis‐

classifying an individual from $\pi$_{i} into the other class. We call (1) �the consistency property
In the field of machine learning, there are many studies about the classification in the

context of supervised learning. A typical method is the support vector machine (SVM).
The SVM has versatility and effectiveness both for low‐dimensional and high‐dimensional
data. See Schölkopf and Smola [9] and Vapnik [10] for the details. Even though the SVM is

quite popular, its asymptotic properties seem to have not been studied sufficiently. Recently,
Nakayama et al. [8] investigated asymptotic properties of a linear SVM for HDLSS data.

In this paper, we investigate linear and non‐linear SVMs in the HDLSS context where

 d\rightarrow\infty while  N is fixed. In Section 2, we show that the linear SVM holds (1) under certain

severe conditions. In Section 3, we consider a non‐linear SVM based on the Gaussian kernel

in HDLSS settings. We also show that the non‐linear SVM holds (1) under mild conditions.

Finally, we check the performance of the SVMs by numerical simulations.

2 Linear SVM in HDLSS settings

In this section, we give asymptotic properties of the linear SVM in HDLSS settings. Since

HDLSS data are hnearly separable by a hyperplane, we consider the hard‐margin linear SVM.

2.1 Hard‐margin linear SVM

We consider the following linear classifier:

y(x)=w^{T}x+b , (2)

where w is a weight vector and b is an intercept term. Let us write that (x_{1}, x_{N}) =

(x_{11}, \ldots, x_{1n_{1}}, x_{21}, x_{2n_{2}}) . Let t_{j}=-1 for j=1, n_{1} and t_{j}=1 for j=n_{1}+1, N . The

hard‐margin SVM is defined by maximizing the smallest distance of all observations to the
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separating hyperplane. The optimization problem of the SVM can be written as follows:

\displaystyle \arg\min_{w,b}\frac{1}{2}\Vert w\Vert^{2} subject to t_{j}(w^{T}x_{j}+b)\geq 1, j=1, N.

A Lagrangian formulation is given by

L(w, b; $\alpha$)=\displaystyle \frac{1}{2}||w||^{2}-\sum_{j=1}^{N}$\alpha$_{j}\{t_{j}(w^{T}x_{j}+b)-1\},
where  $\alpha$= ($\alpha$_{1}, $\alpha$_{N})^{T} and $\alpha$_{j}\mathrm{s} are Lagrange multipliers. By differentiating the Lagrangian
formulation with respect to w and b , we obtain the following conditions:

w=\displaystyle \sum_{j=1}^{N}a_{j}t_{j}x_{j} and \displaystyle \sum_{j=1}^{N}$\alpha$_{j}t_{j}=0.
After substituting them into L(w, b; $\alpha$) , we obtain the dual form:

L( $\alpha$)=\displaystyle \sum_{j=1}^{N}$\alpha$_{j}-\frac{1}{2}\sum_{j=1}^{N}\sum_{k=1}^{N}$\alpha$_{j}$\alpha$_{k}t_{j}t_{k}x_{j}^{T}x_{k}.
The optimization problem can be transformed into the following:

\displaystyle \mathrm{a}x\mathrm{g}\max_{ $\alpha$}L( $\alpha$)
subject to

$\alpha$_{j}\geq 0, j=1 , \cdots ,  N, and \displaystyle \sum_{j=1}^{N}$\alpha$_{j}t_{j}=0 . (3)

Let us write that

\hat{ $\alpha$}= (\hat{ $\alpha$}_{1}, \hat{ $\alpha$}_{N})^{T}=\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}xL( $\alpha$) $\alpha$ subject to (3).

There exist some  x_{j}\mathrm{s} satisfying that t_{j}y(x_{j})=1 (i.e., \hat{ $\alpha$}_{j}\neq 0 ). Such x_{\mathrm{j}}\mathrm{s} are called the support
vector. Let \hat{S}=\{j|\hat{ $\alpha$}_{j} \neq 0, j= 1, N\} and N_{\hat{S}}=\#\hat{S} , where \# A denotes the number of

elements in a set A . The intercept term is given by

\displaystyle \hat{b}=\frac{1}{N_{\hat{S}}}\sum_{j\in\hat{S}}(t_{j}-\sum_{k\in\hat{S}}\hat{ $\alpha$}_{k}t_{k}x_{j}^{T}x_{k}) .

Then, the linear classifier in (2) is defined by

\displaystyle \hat{y}(x)=\sum_{k\in\hat{S}}\hat{ $\alpha$}_{k}t_{k}x_{k}^{T}x+\hat{b} . (4)

Finally, in the SVM, one classifies x_{0} into $\pi$_{1} if \hat{y}(x_{0})<0 and into $\pi$_{2} otherwise. See Vapnik
[10] for the details.
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2.2 Asymptotic properties of the linear SVM in the HDLSS context

We assume the following assumptions:

(A‐i) \displaystyle \frac{\mathrm{v}_{\mathrm{a}\mathrm{T}(\Vert x_{ik}-$\mu$_{i}\Vert^{2})}}{$\Delta$^{2}}\rightarrow 0 as  d\rightarrow\infty for  i=1 , 2;

(A‐ii) \displaystyle \frac{\mathrm{t}\mathrm{r}($\Sigma$_{i}^{2})}{\triangle^{2}}\rightarrow 0 as  d\rightarrow\infty for  i=1 , 2.

Note that \mathrm{V}\mathrm{a}\mathrm{r}(\Vert x_{ik}-$\mu$_{i}\Vert^{2}) = 2\mathrm{t}\mathrm{r}($\Sigma$_{i}^{2}) when $\pi$_{i} is Gaussian, so that (A‐i) and (A‐ii) are

equivalent when $\pi$_{i}\mathrm{s} are Gaussian. Let

 $\delta$= $\Delta$+\displaystyle \frac{\mathrm{t}\mathrm{r}($\Sigma$_{1})}{n_{1}}+\frac{\mathrm{t}\mathrm{r}($\Sigma$_{2})}{n_{2}} and \displaystyle \bullet=\frac{\mathrm{t}\mathrm{r}($\Sigma$_{1})}{n_{1}}-\frac{\mathrm{t}\mathrm{r}($\Sigma$_{2})}{n_{2}}.
Then, Nakayama et al. [8] gave the following results.

Lemma 2.1 ([8]). Under (A‐i) and (A‐ii), it holds that as  d\rightarrow\infty

\displaystyle \hat{ $\alpha$}_{j}=\frac{2}{ $\delta$ n_{1}}\{1+o_{p}(1)\} forj=1, n_{1} ; and

\displaystyle \hat{ $\alpha$}_{j}=\frac{2}{ $\delta$ n_{2}}\{1+o_{p}(1)\} for j=n_{1}+1, N.

Furthermore, it holds that as  d\rightarrow\infty

\displaystyle \hat{y}(x_{0})=\frac{(-1)^{i} $\Delta$}{ $\delta$}+\frac{ $\kappa$}{ $\delta$}+o_{\mathrm{p}}(\frac{ $\Delta$}{ $\delta$}) when x_{0}\in$\pi$_{i}, i=1 , 2.

From Lemma 2.1, it holds that as  d\rightarrow\infty

\displaystyle \frac{ $\delta$}{ $\Delta$}\hat{y}(x_{0})=(-1)^{i}+\frac{ $\kappa$}{ $\Delta$}+o_{p}(1) (5)

when x_{0}\in$\pi$_{i}, i=1 , 2. Hence,  $\kappa$/ $\Delta$
�

is the bias term of the (normalized) SVM. We consider

the following assumption:

( \mathrm{A}‐iii) \displaystyle \lim\sup\frac{| $\kappa$|}{ $\Delta$}<1. d\rightarrow\infty

Then, Nakayama et al. [8] gave the following results.

Theorem 2.1 ([8]). Under (A‐i) to ( A‐iii), the hnear SVM holds (1).

Corollary 2.1 ([8]). Under (A‐i) and (A‐ii), the linear SVM holds the following properties:

e(1)\rightarrow 1 and e(2)\rightarrow 0 as  d\rightarrow\infty if \displaystyle \lim \mathrm{i}_{ $\Gamma$ \mathrm{J}}\mathrm{f}\frac{ $\kappa$}{ $\Delta$}d\rightarrow\infty>1 ; and

e(1)\rightarrow 0 and e(2)\rightarrow 1 as  d\rightarrow\infty if \displaystyle \lim_{d\rightarrow}\sup_{\infty}\frac{ $\kappa$}{\triangle}<-1.
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We expect from (5) that, for sufficiently large d, e(1) and e(2) for the SVM become small

and e(1) (or e(2) ) is larger than e(2) (or e(1) ) if  $\kappa$/ $\Delta$>0 (or  $\kappa$/\triangle <0). In addition, from

Corollary 2.1, if \displaystyle \lim\inf_{d\rightarrow\infty}|\mathrm{K}|/ $\Delta$ > 1 , one should not use the SVM. In order to overcome

the difficulties, Nakayama et al. [8] proposed a bias‐corrected SVM (BC‐SVM). They showed

that the BC‐SVM gives preferable performances even when ( \mathrm{A}‐iii) is not met.

3 Non‐linear SVM in HDLSS settings

In this section, we consider a non‐linear SVM based on the Gaussian kernel. We give asymp‐

totic properties of the non‐linear SVM in HDLSS settings.
The optimization problem of the non‐linear SVM can be written as follows: Let

L_{*}( $\alpha$)=\displaystyle \sum_{j=1}^{N}$\alpha$_{j}-\frac{1}{2}\sum_{j=1}^{N}\sum_{k=1}^{N}$\alpha$_{j}$\alpha$_{k}t_{j}t_{k}\exp(-\frac{\Vert x_{j}-x_{k}\Vert^{2}}{ $\gamma$}) ,

where  $\gamma$>0 is a tuning parameter. The optimization problem can be transformed into the

following:

\displaystyle \mathrm{a}x\mathrm{g}\max_{ $\alpha$}L_{*}( $\alpha$)
subject to (3). Let us write that

\tilde{ $\alpha$}= (\displaystyle \tilde{ $\alpha$}_{1}, \tilde{ $\alpha$}_{N})^{T}=\mathrm{a}x\mathrm{g}\max_{ $\alpha$}L_{*}( $\alpha$) subject to (3).

Let \tilde{S}=\{j|\tilde{ $\alpha$}_{j}\neq 0, j=1, N\} and N_{\overline{\mathcal{S}}}=\#\tilde{S} . The intercept term is given by

\displaystyle \tilde{b}=\frac{1}{N_{\tilde{S}}}\sum_{j\in\overline{S}}(t_{j}-\sum_{k\in\tilde{S}}\tilde{ $\alpha$}_{k}t_{k}\exp(-\frac{\Vert x_{j}-x_{k}\Vert^{2}}{ $\gamma$})) .

Then, the classifier is given by

\displaystyle \ovalbox{\tt\small REJECT}(x)=\sum_{k\in\tilde{S}}\tilde{ $\alpha$}_{k}t_{k}\exp(-\frac{\Vert x_{k}-x\Vert^{2}}{ $\gamma$}) +\tilde{b} . (6)

Finally, in the non‐linear SVM, one classifies x_{0} into $\pi$_{1} if ỹ(x0) <0 and into $\pi$_{2} otherwise.

We assume the following condition for  $\gamma$ :

 c_{i}=\displaystyle \exp(-\frac{2\mathrm{t}\mathrm{r}($\Sigma$_{i})}{ $\gamma$}) , i=1 , 2, and

(A‐iv)  $\gamma$/d\in(0, \infty) as d\rightarrow\infty.

Let

c_{3}=\displaystyle \exp(-\frac{\mathrm{t}\mathrm{r}($\Sigma$_{1})+\mathrm{t}\mathrm{r}($\Sigma$_{2})+\triangle}{ $\gamma$}) .

Let $\Delta$_{*}=c_{1}+c_{2}-2c_{3}, $\delta$_{*}=$\Delta$_{*}+\displaystyle \sum_{i=1}^{2}(1-c_{\dot{ $\tau$}})/n_{i} and $\kappa$_{*}=(1-c_{1})/n_{1}-(1-c_{2})/n_{2} . Here,
we assume the following assumptions:

14



(A‐v) \displaystyle \frac{\mathrm{V}\mathrm{a}\mathrm{r}(\Vert x_{ij}-$\mu$_{i}\Vert^{2})}{d^{2}$\Delta$_{*}^{2}}\rightarrow 0 as  d\rightarrow\infty for  i=1 , 2;

(A‐vi) \displaystyle \frac{\mathrm{t}\mathrm{r}($\Sigma$_{i}^{2})}{d^{2}$\Delta$_{*}^{2}}\rightarrow 0 as  d\rightarrow\infty for  i=1 , 2.

We have the following result.

Lemma 3.1. Assume (A‐iv) to (A‐vi). It holds that as  d\rightarrow\infty

\displaystyle \tilde{ $\alpha$}_{j}=\frac{2}{$\delta$_{*}n_{1}}\{1+o_{p}(1)\}
\displaystyle \tilde{ $\alpha$}_{j}=\frac{2}{$\delta$_{*}n_{2}}\{1+o_{p}(1)\}

Furthermore, it holds that as  d\rightarrow\infty

 forj=1, n_{1} ; and

for j=n_{1}+1, N.

ỹ(x0) =\displaystyle \frac{(-1)^{i}$\Delta$_{*}}{$\delta$_{*}}+\frac{$\kappa$_{*}}{$\delta$_{*}}+o_{p}(\frac{ $\Delta$}{$\delta$_{*}}*) when x_{0}\in$\pi$_{i} for i=1 , 2. (7)

We consider the following assumption:

( \mathrm{A}‐vii) \displaystyle \lim_{d\rightarrow}\sup_{\infty}\frac{|$\kappa$_{*}|}{\triangle_{*}}<1.
Then, from Lemma 3.1, we have the followin \mathrm{g} result.

Theorem 3.1. Under (A‐iv) to (A‐vii), the non‐linear SVM holds (1).

Now, we consider the following conditions:

\mathrm{V}\mathrm{a}x(\Vert x_{ij}-$\mu$_{i}\Vert^{2})=O\{\mathrm{t}\mathrm{r}($\Sigma$_{i}^{2})\} and \mathrm{t}\mathrm{r}($\Sigma$_{i}^{2})/d^{2}\rightarrow 0 as  d\rightarrow\infty for  i=1 , 2. (8)

We note that

$\Delta$_{*}\geq [\exp\{-\mathrm{t}\mathrm{r}($\Sigma$_{1})/ $\gamma$\}-\exp\{-\mathrm{t}\mathrm{r}($\Sigma$_{2})/ $\gamma$\}]^{2}
If one can assume that \displaystyle \lim\inf_{d\rightarrow\infty}|\mathrm{t}\mathrm{r}($\Sigma$_{1})/\mathrm{t}\mathrm{r}($\Sigma$_{2})-1|>0 , it follows limirffd\rightarrow\infty^{$\Delta$_{*}}>0 under

(A‐iv), so that (A‐v) and (A‐vi) hold under (8). Thus the non‐linear SVM has the consistency
even when $\mu$_{1} =$\mu$_{2} . We emphasize that the non‐linear SVM based on the Gaussian kernel

draws information about heteroscedasticity via the difference of \mathrm{t}\mathrm{r}($\Sigma$_{i})\mathrm{s}.
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(a) $\mu$_{1}=1_{d}, $\mu$_{2}=$\mu$_{*}, $\Sigma$_{1}=$\Phi$_{1} and $\Sigma$_{2}=$\Phi$_{2}.

u\triangleleft\} \mathfrak{W}\}  $\epsilon$

(b)  $\mu$_{1}=1_{d}, $\mu$_{2}=$\mu$_{*}, $\Sigma$_{1}=1.4$\Phi$_{1} and $\Sigma$_{2}=$\Phi$_{2}.

s$ \} \wedge\aleph 2\}  $\epsilon$

(c)  $\mu$_{1}=$\mu$_{2}=1_{d}, $\Sigma$_{1}=1.4$\Phi$_{1} and $\Sigma$_{2}=$\Phi$_{2}.

Figure 1: The performance of the linear SVM and the non‐linear SVM for (a) to (c). The

error rates of the linear SVM are denoted by the dotted lines, and those of the non‐linear

SVM are denoted by the solid lines.
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4 Simulation

In this section, we compare the performance of the linear SVM given by (4) and the non‐linear

SVM given by (6) in numerical simulations.

We set d=2^{s}, s= 5 , 10, and (n_{1}, n_{2}) = (5,5) . We generated x_{ij}, j = 1 , 2, (i =

1 , 2) independently from $\pi$_{i} : N_{d}($\mu$_{i}, $\Sigma$_{i}) . We set $\mu$_{*} = (1, 1, 0, 0)^{T} whose last \lceil d^{2/3}\rceil
elements are  0 , where \lceil x\rceil denotes the smallest integer \geq x . Let $\Phi$_{1}=B(0.3^{|i-j|^{1/3}})B, $\Phi$_{2}=

B(0.4^{|i-j|^{1/3}})B and

B=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{g}[\{0.5+1/(d+1)\}^{1/2}, \{0.5+d/(d+1)\}^{1/2}].
We considered three cases :

(a) $\mu$_{1}=1_{d}=(1, 1)^{T}, $\mu$_{2}=$\mu$_{*}, $\Sigma$_{1}=$\Phi$_{1} and $\Sigma$_{2}=$\Phi$_{2} ;

(b) $\mu$_{1}=1_{d}, $\mu$_{2}=$\mu$_{*}, $\Sigma$_{1}=1.4$\Phi$_{1} and $\Sigma$_{2}=$\Phi$_{2} ; and

(c) $\mu$_{1}=$\mu$_{2}=1_{d}, $\Sigma$_{1}=1.4$\Phi$_{1} and $\Sigma$_{2}=$\Phi$_{2}.

For x_{0} \in $\pi$_{i} (i = 1,2) we calculated each classifier 2000 times to confirm if each rule does

(or does not) classify x_{0} correctly and defined P_{ir} = 0 (or 1) accordingly for each $\pi$_{i} . We

calculated the error rates, \overline{e}(i) = \displaystyle \sum_{r=1}^{2000}P_{ir}/2000, i = 1 , 2. Also, we calculated the average

error rate, \overline{e}= \{\overline{e}(1)+\overline{e}(2)\}/2 . For the Gaussian kernel, we chose  $\gamma$ from the candidates,
 d^{(t+5)/10}, t = 1 , 10, by a cross‐validation procedure. Their standard deviations are less

than 0.011. In Figure 1, we plotted \overline{e}(1) , \overline{e}(2) and \overline{e} for (a) to (c).
We observed that the SVMs give preferable performances for (a) in Figure 1. However,

the linear SVM gave a quite bad performance for (c). This is because of  $\Delta$=0 for (c). On the

other hand, the non‐linear SVM gave a better performance compared to the linear SVM for

(b) and (c). This is because the non‐linear SVM draws information about heteroscedasticity
from the difference of \mathrm{t}\mathrm{r}($\Sigma$_{i})\mathrm{s} . See Section 3 for the details.

5 Appendix

Proof of Lemma 3.1. Similarly to the proof of Lemma 1 in Nakayama et al. [8], we have that

as  d\rightarrow\infty

 L_{*}( $\alpha$)=2$\alpha$_{\star^{-\frac{ $\Delta$}{2}$\alpha$_{\star}^{2}\{1+o_{p}(1)\}-\frac{1}{2}((1-c_{1})\sum_{=1}^{n_{1}}$\alpha$_{j}^{2}+(1-c_{2})\sum_{1}^{N}$\alpha$_{j}^{2})}}^{*}jj=n+1
subject to (3) under (A‐iv) to (A‐vi), where $\alpha$_{\star}=\displaystyle \sum_{j=1}^{n_{1}}a_{j} . Then, by noting

\mathrm{h}\mathrm{m}\mathrm{i}\mathrm{i}_{\mathrm{J}}\mathrm{f}(1d\rightarrow\infty-c_{\dot{ $\tau$}})/$\Delta$_{*}>0, i=1, 2 ,

under (A‐iv), in a way similar to the proof of Lemma 2 in Nakayama et al. [8], we can obtain

the result. \square 

Proof of Theorem 3.1. By using (7), the result is obtained straightforwardly. \square 
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