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Abstract

In this survey article we show the basic method how to give topological structures on

mapping spaces or mapping space quotients and moreover introduce a new method to

provide differentiable structures on them with illustrative examples.

1 Introduction.

To describe complicated phenomena, we need an infinite number of parameters, since our real

world has, of course, infinite dimension. However, on the other hand, we are able to under‐

stand fully only finite dimensional objects. Therefore we have to pick up a finite number of

parameters, according to each purpose, among an infinite number of parameters. We extract

finite dimensional objects from infinite dimensional objects and naturally such parameters
enjoy several relations or conditions. Thus we proceed to study finite dimensional manifolds.
In this stage, geometrical study plays an important role. Then, in the study of finite dimen‐

sional manifolds, functions on manifolds and mappings between manifolds are investigated.
The space of mappings are of infinite dimensional. Then, again we extract finite dimensional

objects from infinite dimensional mapping spaces. Thus our understanding is improved, step
by step, on various complicated phenomena and the mathematical structures behind them as

well. Now we are going to start with finite dimensional manifolds.

Let N, M be differentiable manifolds of dimension n, m respectively. In this article we

only treat  c\infty i.e. infinitely differentiable manifolds and  c\infty mappings, otherwise stated.

Let  C^{\infty}(N, M) denote the set of differentiable mappings from N to M , and X be a subset

of C^{\infty}(N,  $\Lambda$ I) . Suppose an equivalence relation \sim is given on  X . Then  X/\sim denotes the

quotient space (mapping space quotient). The problem is how to give a topological structure

and a differentiable structure on the mapping space quotient  X/\sim.

Example 1.1 (The space of knots.) An embedding from the circle S^{1} to the space \mathrm{R}^{3} or

its image is called a knot. Let \mathrm{E}\mathrm{m}\mathrm{b}(S^{1}, \mathrm{R}^{3})\subset C^{\infty}(S^{1}, \mathrm{R}^{3}) denote the set consisting of knots

(the space of knots). Then the knot theory treats connected components of the space of knots

\mathrm{E}\mathrm{m}\mathrm{b}(S^{1}, \mathrm{R}^{3}) . Moreover we can define on it various geometric structures (e.g. a symplectic
structure, a complex structure and so on. See [8]. See also subsection 6.3 of this article.

Example 1.2 (The diffeomorphism group.) The space \mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}(N) of diffeomorphisms on N can

be endowed with the structure of a topological group and an infinite dimensional Lie group.
For example the famous theorem stating that the space \mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}^{+}(S^{2}) of orientation‐preserving
diffeomorphisms on the sphere S^{2} is homotopy equivalent to the special orthogonal group

SO(3) need the topology on the mapping space \mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}^{+}(S^{2}) .
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Example 1.3 (The super space of Riemannian structures. ) Let \mathcal{R}_{N} be the set of Rieman‐

nian structures on N . Then \mathcal{R}_{N} is regarded as a mapping space. The diffeomorphism group

\mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}(N) naturally acts on \mathcal{R}_{N} and the orbit space or the quotient space \prime R_{N}/\mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}(N) which is

designated by S_{N} is the space of isomorphisms classes of Riemannian structures on N , which

is called the super space. See subsection 6.4.

Example 1.4 (The variational method.) Let  $\Phi$ =  $\Phi$(f) be a real valued function on the

mapping space C^{\infty}(N, M) . Then the variable f means a differentiable mapping from N

to M . A mapping f \in  C^{\infty}(N, M) is called a critical point of  $\Phi$ if, for any one‐parameter

deformation  f_{\mathrm{t}}, \displaystyle \frac{d}{dt} $\Phi$(f_{t})|_{t=0}=0 . Based on this idea, later we will give a differentiable structure

on C^{\infty}(N, M) . See section 5.

Example 1.5 (Stability and the classification problem of mappings.) On the mapping space

C^{\infty}(N, M) , the product group \mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}(N) \times \mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}(M) of diffeomorphism groups naturally acts.

Then we call a mapping f\in C^{\infty}(N, M) is stable if the orbit through f forms an open subset

of C^{\infty}(N, M) , namely if any f' belonging to some neighbourhood of f is transformed to f
via the action of \mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}(N) \times \mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}(M) . The purpose of the differential topology of mapping is

to study on the the quotient space \mathcal{M} := C^{\infty}(N, M)/\mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}(N) \times \mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}(M) . Considering, for

each point x_{0} \in  N , the germ of f \in  C^{\infty}(N, M) at x0 , we define the equivalence relation

\sim_{x_{0}} on the set C^{\infty}(N, M) . The quotient space C^{\infty}(N, M)/\sim_{x_{0}} represents the space of germs

f : (N, x_{0})\rightarrow M of differentiable mappings. We will give the topology and the differentiable

structure on C^{\infty}(N, M)/\sim_{x_{0}} . Then the purpose of the singularity theory of mappings is to

study on the various (further) quotient spaces of C^{\infty}(N, M)/\sim_{x_{0}}.

First we recall how to introduce several topologies on mapping spaces in §2 for the case

of Cartesian spaces, and in §3 for the case of finite dimensional manifolds. In §4 we treat

the space of map‐germs. We explain our main theory of differentiable structures on mapping
space quotients in §5, and provide several examples and applications of the theory in §6.

This paper was first prepared by the author for a lecture at Department of Mathematics,
Hokkaido University performed on the autumn‐winter semester of 2004. The manuscript has

been renewed and arranged on March 2016 by the author.

2 Topology of mapping spaces between Cartesian spaces

We denote by C^{0}(\mathrm{R}^{n}, \mathrm{R}^{m}) the set of C^{0} (i.e. continuous) mappings from \mathrm{R}^{n} to \mathrm{R}^{m}.

Then we define the C^{0}‐topology (or compact open topology) on C^{0}(\mathrm{R}^{n}, \mathrm{R}^{m}) by giving its

generator: For a compact set K\subset \mathrm{R}^{n} and an open set U\subset \mathrm{R}^{n}\times \mathrm{R}^{m} we set

W(K, U) :=\{f\in C^{0}(\mathrm{R}^{n}, \mathrm{R}^{m})|j^{0}f(K)\subseteq U\},

where j^{0}f : \mathrm{R}^{n} \rightarrow \mathrm{R}^{n} \times \mathrm{R}^{m} is the �graph mapping�� defined by j^{0}f(x) = (x, f(x)) . Then

W(K, U) is the set of continuous mapping such that the graph over the the given compact set

is included in the given open subset of \mathrm{R}^{n}\times \mathrm{R}^{m} . We take as the generator of the topology
the family of subsets of C^{\infty}(\mathrm{R}^{n},\mathrm{R}^{m}) :

{W(K, U) |K\subset \mathrm{R}^{n} compact, U\subset \mathrm{R}^{n}\times \mathrm{R}^{m} open}.
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Thus, for the C^{0} topology, a subset  $\Omega$\subseteq C^{0}(\mathrm{R}^{n}, \mathrm{R}^{m}) is an open subset if and only if for any

 f\in  $\Omega$ there exist compact set  K_{1} , . . . , K_{s} , in \mathrm{R}^{n} and open subsets U_{1} , . . . : U_{s} in \mathrm{R}^{n}\times \mathrm{R}^{m},
such that

f\in W(K_{1}, U_{1})\cap W(K_{2}, U_{2})\cap\cdots\cap W(K_{s}, U_{s})\subseteq $\Omega$.
Note that if f\in W(K_{1}, U_{1})\cap W(K_{2}, U_{2}) , then there exist a compact set K\subset \mathrm{R}^{n} and an open

subset U\subseteq \mathrm{R}^{n}\times \mathrm{R}^{m} with f\in W(K, U)\subseteq W(K_{1}, U_{1})\cap W(K_{2}, U_{2}) . In fact it suffices to set

K=K_{1}\cup K_{2}, U=($\pi$_{1}^{-1}(K_{1}\cap K_{2})\cap U_{1}\cap U_{2})\cup(U_{1}\backslash $\pi$^{-1}(K_{1}\cap K_{2}))\cup(U_{2}\backslash $\pi$^{-1}(K_{1}\cap K_{2}
The topological space C^{0}(\mathrm{R}^{n}, \mathrm{R}^{m}) is a Hausdorff space with respect to C^{0}‐topology.

Namely, for two mappings f, g \in  C^{0}(\mathrm{R}^{n}, \mathrm{R}^{m}) , f \neq  g , there exist an open neighbourhood
W of f and an open neighbourhood W' of g satisfying W\cap W'=\emptyset.

For a compact set L\subset \mathrm{R}^{n} and an open subset V\subseteq \mathrm{R}^{m} , we set

W'(L, V) :=\{f\in C^{0}(\mathrm{R}^{n}, \mathrm{R}^{m}) |f(L)\subseteq V\},
and consider the topology on C^{0}(\mathrm{R}^{n}, \mathrm{R}^{m}) generated by \{W'(L, V) |  L\subset \mathrm{R}^{n} compact, V \subseteq
\mathrm{R}^{m} open}. Then this topology coincides with the C^{0}‐topology. Therefore the C^{0}‐topology
can be said as �the topology of uniform convergence on compact subsets

The product space C^{0}(\mathrm{R}^{n}, \mathrm{R}^{m})\times C^{0}(\mathrm{R}^{n}, \mathrm{R}^{\ell}) is homeomorphic to C^{0}(\mathrm{R}^{n}, \mathrm{R}^{m}\times \mathrm{R}^{\mathrm{e}}) with

respect to C^{0}‐topology.
For a positive integer r>0 , we denote by C^{r}(\mathrm{R}^{n}, \mathrm{R}^{m}) the set of C^{r}‐mappings. Then we

can induce a topology on the subset C^{r}(\mathrm{R}^{n}, \mathrm{R}^{m}) \subset  C^{0}(\mathrm{R}^{n}, \mathrm{R}^{m}) form the C^{0}‐topology on

C^{0}(\mathrm{R}^{n}, \mathrm{R}^{m}) . We call it the C^{0}‐topology on C^{r}(\mathrm{R}^{n}, \mathrm{R}^{m}) .

Next we define the C^{1} ‐topology on C^{1}(\mathrm{R}^{n}, \mathrm{R}^{m}) .

Let f : \mathrm{R}^{n}\rightarrow \mathrm{R}^{m} be a C^{1} ‐mapping. Set f= (f_{1}, f2, . . . , f_{m}) , where f_{i}=f_{i}(x_{1}, \ldots , x_{n}) :

\mathrm{R}^{n}\rightarrow \mathrm{R} are of class C^{1} . Consider, by the partial derivatives \displaystyle \frac{\partial f_{i}}{\partial x_{j}} : \mathrm{R}^{n}\rightarrow \mathrm{R}, (1\leq i\leq m,  1\leq

 j\leq n) , the 1‐jet extension of f :

j^{1}f:\mathrm{R}^{n}\rightarrow \mathrm{R}^{n}\times \mathrm{R}^{m}\times \mathrm{R}^{nm}=\mathrm{R}^{n+m+nm}

defined by j^{1}f(x)=(x, f(x), \displaystyle \frac{\partial f_{i}}{\partial x_{j}}(x)) . The mapping j^{1}f is obviously continuous.

For a compact set K\subset \mathrm{R}^{n} and an open subset U\subseteq \mathrm{R}^{n+m+nm} , we set

W(K, U) :=\{f\in C^{1}(\mathrm{R}^{n}, \mathrm{R}^{m}) |j^{1}f(K)\underline{\subseteq}U\}
The family of subsets

{W(K, U) |K\subset \mathrm{R}^{n} compact, U\subseteq \mathrm{R}^{n+nm} open}

of C^{1}(\mathrm{R}^{n}, \mathrm{R}^{m}) generate a topology, which is called the C^{1}‐topology on C^{1}(\mathrm{R}^{n}, \mathrm{R}^{m}) . The

C^{1}‐topology on C^{1}(\mathrm{R}, \mathrm{R}) is stronger than C^{0}‐topology.
As if the C^{0}‐topology is the topology of uniform convergence on compact subsets, the C^{1}-

topology is the topology of uniform convergence together with first derivatives on compact
subsets.

Similarly we define the C^{2} topology on C^{2}(\mathrm{R}^{n}, \mathrm{R}^{m}) . For a C^{2}‐mapping f\in C^{2}(\mathrm{R}^{n}, \mathrm{R}^{m}) ,

we define the 2‐jet extension

j^{2}f:\displaystyle \mathrm{R}^{n}\rightarrow \mathrm{R}^{n}\times \mathrm{R}^{m}\times \mathrm{R}^{nm}\times \mathrm{R}\frac{n(n+1)}{2}m
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by j^{2}f(x)=(x, f(x), \displaystyle \frac{\partial f_{i}}{\partial x_{j}}(x), \frac{\partial^{2}f_{i}}{\partial x\partial x}(x)) . For a compact set K\subset \mathrm{R}^{n} and an open subset U

in \displaystyle \mathrm{R}^{n}\times \mathrm{R}^{m}\times \mathrm{R}^{nm}\times \mathrm{R}\frac{n(n+1)}{2}m , we set

W(K, U) :=\{f\in C^{2}(\mathrm{R}^{n}, \mathrm{R}^{m})|j^{2}f(K)\subseteq U\},

and consider the topology generated by the family \{W(K, U)\} consisting of such subsets in

C^{2}(\mathrm{R}^{n}, \mathrm{R}^{m}) . We call it the C^{2}‐topology on C^{2}(\mathrm{R}^{n}, \mathrm{R}^{m}) .

Now we introduce the jet space J^{r}(\mathrm{R}^{n}, \mathrm{R}^{m}) , for each r\geq 0 . Motivating on the space of

Taylor polynomials, we set

J^{r}(\displaystyle \mathrm{R}^{n}, \mathrm{R}^{m})=\mathrm{R}^{n}\times \mathrm{R}^{m}\times \mathrm{R}^{nm}\times \mathrm{R}\frac{n(n+1)}{2}m\times\cdots\times \mathrm{R}^{N}=\mathrm{R}^{M},

where N= \left(\begin{array}{ll}
n+r & -1\\
r & 
\end{array}\right)m , and

M=n+m+nm+\displaystyle \frac{n(n+1)}{2}m+\cdots+\left(\begin{array}{ll}
n+r & -1\\
r & 
\end{array}\right)m=n+\displaystyle \left(\begin{array}{l}
n+r\\
r
\end{array}\right)m.
Then, for a C�‐mapping f\in C^{r}(\mathrm{R}^{n},\mathrm{R}^{m}) ,

we define r‐jet extension j^{r}f : \mathrm{R}^{n}\rightarrow J^{r}(\mathrm{R}^{n}, \mathrm{R}^{m})
by

j^{r}f(x):= (x, f(x), \displaystyle \frac{\partial f_{i}}{\partial x_{j}}(x)_{1}\frac{\partial^{2}f_{i}}{\partial xk\partial_{\ell}}(x), \ldots, \frac{\partial^{r}.f_{i}}{\partial x_{j_{1}}\cdot\cdot\partial x_{j_{r}}}(x)) .

Note that, for r\geq s,

J^{r}(\mathrm{R}^{n}, \mathrm{R}^{m})=\{j^{r}f(x_{0}) |x_{0}\in \mathrm{R}^{n}, f\in C^{S}(\mathrm{R}^{n}, \mathrm{R}^{m}

Then the C^{r} topology on C^{r}(\mathrm{R}^{n}, \mathrm{R}^{m}) is defined as the topology generated by the family
\{W(K, U)\} of subsets

W(K, U) :=\{f\in C^{r}(\mathrm{R}^{n},\mathrm{R}^{m})|j^{r}f(K)\subseteq U\}

of C^{r}(\mathrm{R}^{n}, \mathrm{R}^{m}) .

Moreover the C^{r} topology on C^{S}(\mathrm{R}^{n}, \mathrm{R}^{m}) (s = r, r+ 1, \ldots, \infty, $\omega$) is induced, since

C^{s}(\mathrm{R}^{n}, \mathrm{R}^{m})\subseteq C^{r}(\mathrm{R}^{n}, \mathrm{R}^{m}) .

Lastly we define the  c\infty‐topology on  C^{\infty}(\mathrm{R}^{n}, \mathrm{R}^{m}) . For r \geq  0 , a compact set  K\subset \mathrm{R}^{n}

and an open subset U\subseteq J^{r}(\mathrm{R}^{n}, \mathrm{R}^{m}) , set

W(r, K, U) :=\{f\in C^{\infty}(\mathrm{R}^{n}, \mathrm{R}^{m}) |j^{r}f(K)\subseteq U\}.

Then the C^{\infty} topology is defined as the topology generated by \{W(r, K, U

On the space X=C^{\infty}(\mathrm{R}^{n}, \mathrm{R}^{m}) we have a sequence of topologies

\mathcal{O}_{X}^{0} \subseteq \mathcal{O}_{X}^{1} \subseteq \mathcal{O}_{X}^{2} . . . \subseteq \displaystyle \bigcup_{r=0^{\mathcal{O}_{X}^{r}=\mathcal{O}_{X}^{\infty}}}^{\infty}.

namely the C^{0}‐topology, the C^{1}‐topology, the C^{2}‐topology, . .. , and the C^{\infty}‐topology.
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Proposition 2.1 For 0\leq r\leq s , including the case  s=\infty , the composition of mappings

 $\Phi$ :  C^{S}(\mathrm{R}^{n}, \mathrm{R}^{m})\times C^{s}(\mathrm{R}^{m}, \mathrm{R}^{\ell})\rightarrow C^{S}(\mathrm{R}^{n}, \mathrm{R}^{f}) ,  $\Phi$(f,g)=g\circ f,

is a continuous mapping on the C^{r} ‐topology.

Proof: We set  $\Phi$(f_{0}, g_{0})=g_{0}\circ f_{0}=h_{0} : \mathrm{R}^{n}\rightarrow \mathrm{R}^{p} . Suppose h_{0} \in W(r, K, U) for a compact
K\subset \mathrm{R}^{n} and an open U\subseteq J^{r}(\mathrm{R}^{n}, \mathrm{R}^{\mathrm{e}}) , namely, j^{r}h_{0}(K)\subseteq U . We set

J^{r}(\mathrm{R}^{n}, \mathrm{R}^{m})\times \mathrm{R}^{m}J^{r}(\mathrm{R}^{m}, \mathrm{R}^{\ell})
=\{ (j^{r}f(x0), j^{r}g(y_{0}))\in J^{r}(\mathrm{R}^{n}, \mathrm{R}^{m})\times J^{r}(\mathrm{R}^{m}, \mathrm{R}^{\ell}) f(x_{0})=y_{0}\}

and define  $\varphi$ :  J^{r}(\mathrm{R}^{n}, \mathrm{R}^{m}) \times \mathrm{R}^{m}J^{r}(\mathrm{R}^{m}, \mathrm{R}^{\ell}) \rightarrow  J^{r}(\mathrm{R}^{n}, \mathrm{R}^{\ell}) by  $\varphi$(j^{r}f(x0),j^{r}g(y_{0})) =j^{r}(g\circ
f)(x0). Then  $\varphi$ is a continuous mapping which is expressed by a polynomial. In general, for

 A\subset J^{r}(\mathrm{R}^{n}, \mathrm{R}^{m}) , B\subset J^{r}(\mathrm{R}^{m}, \mathrm{R}^{\mathrm{e}}) , set

A\times \mathrm{R}^{m}B :=\{j^{r}f(x0), j^{r}g(y_{0})\in A\times B | f(x_{0})=y_{0}\}\subseteq J^{r}(\mathrm{R}^{n},\mathrm{R}^{m})\times \mathrm{R}^{m}J^{r}(\mathrm{R}^{m}, \mathrm{R}^{\ell}) .

Then, from the assumption, we have  $\varphi$ ((j^{r}f_{0})(K) \times \mathrm{R}^{m} (j^{r}g_{0})(f_{0}(K))) \subseteq  U . By Proposition
2.2 below, there exist an open neighbourhood V of (j^{r}f_{0})(K) in J^{r}(\mathrm{R}^{n}, \mathrm{R}^{m}) , and an open

neighbourhood V' of (j^{r}g_{0})(f_{0}(K)) ) in J^{r}(\mathrm{R}^{m}, \mathrm{R}^{p}) such that V\times \mathrm{R}^{m}V' \subseteq $\varphi$^{-1}U . Thus we

have  $\Phi$(W(K, V), W(f_{0}(K), V \subseteq W(K, U) , and we see that  $\Phi$ is continuous. \square 

Proposition 2.2 ([21][15]) Suppose A, B, P are Hausdorff spaces, and P locally compact and

paracompact, e.g. A, B, P are manifolds. Suppose  $\pi$ :  A \rightarrow  P, $\pi$' : B \rightarrow  P are continuous

mappings, K \subseteq  A, L \subseteq  B subsets,  $\pi$|_{K} : K \rightarrow P, $\pi$'|_{L} :  L\rightarrow  P proper. Suppose U' is an

open neighbourhood of K\mathrm{X}pL = \{(a, b) \in K \times L |  $\pi$(a) =  $\pi$(b)\} in A \times pB = \{(a, b) \in

 A\times B |  $\pi$(a) =$\pi$'(b)\} . Then there exist an open neighbourhood V of K in A and an open

neighbourhood V' of L in B such that V\mathrm{x}_{P}V'\subseteq U'.

Remark 2.3 Remark that the C^{r}‐topology (r=0,1,2, \ldots, \infty) is generated by a countable

number of subsets. In fact,

\{W(r,\overline{U_{1/k}(a)}, U_{1/\ell}(b)) |a\in \mathrm{Q}^{n}, b\in \mathrm{Q}^{M}, k=1, 2, . . . , \ell=1, 2, . . . \}
generates the C^{r}‐topology, where \mathrm{Q}^{M}\subset \mathrm{R}^{M}=J^{r}(\mathrm{R}^{n}, \mathrm{R}^{m}) is the set of rational points.

We define other topologies on C^{\infty}(\mathrm{R}^{n}, \mathrm{R}^{m}) defined by H. Whitney: For an open subset

U\subseteq \mathrm{R}^{n}\times \mathrm{R}^{m} , we set

W(U) :=\{f\in C^{\infty}(\mathrm{R}^{n},\mathrm{R}^{m}) |j^{0}f(\mathrm{R}^{n})\underline{\subseteq}U\}.
Then the family \{W(U)\} of subsets generates a topology on C^{\infty}(\mathrm{R}^{n}, \mathrm{R}^{m}) , which is called

the Whitney C^{0} ‐topology. Also we define the Whitney C^{\infty} ‐topology on C^{\infty}(\mathrm{R}^{n}, \mathrm{R}^{m}) , as the

topology generated by the family \{W(r, U) |r\geq 0, U\subseteq J^{r}(\mathrm{R}^{n},\mathrm{R}^{m} where

W(r, U)=\{f\in C^{\infty}(\mathrm{R}^{n}, \mathrm{R}^{m})|j^{r}f(\mathrm{R}^{n})\subseteq U\}

for non‐negative integer r and an open subset U\subseteq J^{r}(\mathrm{R}^{n}, \mathrm{R}^{m}) , and j^{r}f : \mathrm{R}^{n}\rightarrow J^{r}(\mathrm{R}^{n}, \mathrm{R}^{m})
is the r‐jet extension of f . Similarly we define the Whitney C^{r} ‐topology on C^{S}(\mathrm{R}^{n}, \mathrm{R}^{m})
(s\geq r) .

Set

C_{\mathrm{p}r}^{s}(\mathrm{R}^{n}, \mathrm{R}^{m}) := { f\in C^{S}(\mathrm{R}^{n}, \mathrm{R}^{m}) |f is a proper mapping}.
We can show the following similarly as Proposition 2.1.
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Proposition 2.4 Let 0\leq r\leq s , ( including the case  s=\infty). Then the composition

 $\Phi$ :  C_{pr}^{s}(\mathrm{R}^{n}, \mathrm{R}^{m})\times C^{s}(\mathrm{R}^{m}, \mathrm{R}^{\ell})\rightarrow C^{ $\epsilon$}(\mathrm{R}_{:}^{n}\mathrm{R}^{l}) ,  $\Phi$(f,g)=g\circ f,

is a continuous mapping with respect to the Whitney C^{r} ‐topology.

3 Topology of mapping spaces between manifolds

A differential manifold is a space such that, we can take, near each point, a system of coor‐

dinates (a local chart) and coordinate transformations are differentiable, for any pair of local

charts. The dimension of a manifold is defined as the number of coordinates.

Let N be an n‐dimensional differentiable manifold, and M an m‐dimension differentiable

manifold. A mapping f : N\rightarrow M is called a differentiable mapping if f is continuous and, for

any pair of local charts (U,  $\varphi$) , (V,  $\psi$) , the local representation

f=$\psi$^{-1}\circ f\circ $\varphi$:$\varphi$^{-1}( $\varphi$(U)\cap f^{-1} $\psi$(V))\rightarrow V

illustrated by
N \rightarrow^{f} M

 $\varphi$\uparrow \uparrow $\psi$
\mathrm{R}^{n}\supseteq U V\subseteq \mathrm{R}^{m}

is differentiable.

Now we set

C^{\infty}(N, M) := {f : N\rightarrow M | f is a differentiable mapping}.

Example 3.1 S^{1}=\{(x,y)\in \mathrm{R}^{2} |x^{2}+y^{2}=1\} is a 1‐dimensional differentiable manifold and

\mathrm{R}^{2} is a 2‐dimensional differentiable manifold. Then C^{\infty}(S^{1}, \mathrm{R}^{2}) is the set of differentiable

closed curves on the plane.

Example 3.2 The space consisting of one point N= {pt} is a ‐dimensional differentiable

manifold. C^{\infty}(\{\mathrm{p}\mathrm{t}\},M) is identified with M by the identification (f : pt \rightarrow M ) \mapsto  f(\mathrm{p}\mathrm{t}) \in

 M.

A mapping  $\varphi$ :  N\rightarrow N' is called a diffeomorphism if  $\varphi$ is differentiable, bijective and the

inverse mapping  $\varphi$^{-1} is differentiable.

We introduce the notion of jet space J^{r}(N, M) . For each x0 \in  N , we say that two

mappings f : N\rightarrow M and g:N\rightarrow M have the same r‐jet at x0 , and write as f\sim_{r,x0}g , if,
for a common local chart, the local representations

f=(f_{1}(x_{1}, \ldots, x_{n}), \ldots, f_{m}(x_{1}, \ldots,x_{n})) , g=(g_{1}(x_{1}, \ldots,x_{n}), \ldots,g_{m}(x_{1}, \ldots,x_{n})) ,

have the same partial derivatives at x0 up to order r , i.e.

\displaystyle \frac{\partial^{| $\alpha$|}f_{i}}{\partial x^{ $\alpha$}}(x_{0})=\frac{\partial^{| $\alpha$|}g_{i}}{\partial x^{ $\alpha$}} (x0), 0\leq| $\alpha$|\leq r, 1\leq i\leq m.
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The equivalence class of ffor \sim_{r,x0} is denoted by j^{r}f (x0). Then we define the r‐jet space on

N\times M by
J^{r} (N , A4) =\{j^{r}f(x\mathrm{o})|x0\in N, f\in C^{\infty}(N, 1\mathrm{I}\ell)\}.

Then J^{r}(N, M) is a differentiable manifold as J^{r}(\mathrm{R}^{n}, \mathrm{R}^{m}) and we have

\dim J^{r}(N, M)=\dim J^{r}(\mathrm{R}^{n}, \mathrm{R}^{m}) .

For f\in C^{r}(N, M) , we define the r‐jet extension j^{r}f : N\rightarrow J^{r}(N, M) by j^{r}f(x)=j^{r}f(x) .

Then j^{r}f is a differentiable mapping.
Then we introduce the C^{\infty} ‐topology on C^{\infty}(N, M) as the topology generated by

{W(r, K, U) | r\geq 0 integer, K\subseteq N compact, U\subseteq J^{r}(N, M) open},

where, for a non‐negative integer r , a compact subset K \subseteq  N , and for an open subset

U\subseteq J^{r}(N, M) we set

W(r, K, U) :=\{f\in C^{\infty}(N, M)|j^{r}f(K)\subseteq U\}.

Moreover we introduce Whitney C^{\infty} ‐topology on C^{\infty}(N, M) as the topology generated by
\{W(r, U)\} where, for an open subset U\subseteq J^{r}(N, M) ,

W(r, U) :=\{f\in C^{\infty}(N, M)|j^{r}f(N)\subseteq U\}.

Let f \in  C^{\infty}(N, M) . If f \in  W(r, U) then clearly f \in  W(r, U) \subseteq  W(r, K, U) for any

compact K \subseteq  N . Therefore C^{\infty}‐topology is weaker than Whitney C^{\infty}‐topology. If N is

compact, then the C^{\infty} topology and the Whitney C^{\infty} topology coincide.

For 0 \leq  r \leq  s \leq \infty , similarly we define the  C^{r}‐topology on the set C^{S}(N, M) of C^{s_{-}}

mappings f : N\rightarrow M . Then we have

Proposition 3.3 Let N, M, L be differentiable manifolds and  0\leq r\leq s\leq\infty . The composi‐
tion

 $\Phi$ :  C^{S}(N, M)\times C^{s}(M, L)\rightarrow C^{s}(N, L) ,  $\Phi$(f, g)=g\circ f,

is continuous with respect to C^{r} ‐topology.

If we set

C_{pr}^{s}(N, M) := { f\in C^{S}(N, M) |f is proper}.

Proposition 3.4 Let N, M, L be differentiable manifolds and  0\leq r\leq s\leqq\infty . The compo‐
sition

 $\Phi$ :  C_{\mathrm{r}}^{s}(N, M)\times C^{s}(M, L)\rightarrow C^{S}(N, L) ,  $\Phi$(f, g)=g\circ f,
is continuous with respect to C^{r}‐topoÌogy.

The proof of Propositions 3.3, 3.4 is established by the same proof as that of Proposition
2.1.
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4 Spaces of map‐germs

Let x0 \in  N . We say that  f,g\in  C^{\infty}(N, M) has the same germ at x_{0} and write as f\sim_{x_{0}} g,

if there exists an open neighbourhood U \subseteq  N of x_{0} such that f(x) = g(x)(x \in U) . The

equivalence class of f is denoted by f_{x_{0}} and called the germ of the mapping f at x_{0} . The

amount of local data of a mapping is contained in its germ completely.
Also for open neighbourhoods  $\Omega$ and  $\Omega$' of x_{0} in N and f \in  C^{\infty}( $\Omega$, M) , g \in  C^{\infty} ( $\Omega$'

, A4)
we define the relation that f and g have the same germ at x0 similarly.

Let x0\in N,  $\Omega$ an open neighbourhood of  x0 in N , and f\in C^{\infty}( $\Omega$, M) . Then there exists

an F\in C^{\infty}(N, M) such that f and F have same germ at x_{0}.

The notation of the germ f_{x0} for an f \in  C^{\infty}(N, M) and an x_{0} \in  N is often written

f : (N, x_{0})\rightarrow(M, y_{0}) , where y_{0}=f(x\mathrm{o}) . For example, a diffeomorphism‐germ  $\sigma$ : (\mathrm{R}, x0) \rightarrow

( \mathrm{R} , xÓ) means the germ of a diffeomorphism  $\sigma$ : \mathrm{R} \rightarrow \mathrm{R} (\in C^{\infty}(\mathrm{R}, \mathrm{R})) at x_{0} \in \mathrm{R} with

xÓ = $\sigma$ (x0).
Let  f : (N, x_{0}) \rightarrow (M, y_{0}) and g : (M, y_{0}) \rightarrow (L, z_{0}) be differentiable map‐germs. Then

the composition g\circ f : (N,x_{0})\rightarrow(L, z_{0}) is well‐defined as a differentiable map‐germ.

Now we give on the product space C^{\infty}(N, M)\times N the product topology of the C^{\infty} ‐topology
on C^{\infty}(N, M) and the manifold topology N . Moreover define an equivalence relation \sim \mathrm{o}\mathrm{n}

C^{\infty}(N, M)\times N by setting (f, x_{0})\sim ( g , xÓ) if x0 = xÓ, f_{x0}=g_{x0} . Consider the quotient space

\mathcal{G}(N, M) :=(C^{\infty}(N, M)\times N)/\sim,

endowed with the quotient topology from the topological space C^{\infty}(N, M)\times N . We call it the

space of map‐germs. Then there are natural continuous mappings  $\pi$ : \mathcal{G}(N, M)\rightarrow J^{r}(N, f)
defined by  $\pi$(f_{x_{0}})=j^{r}f(X0) , and  $\Pi$ :  J^{r}(N, M)\rightarrow N\times M defined by j^{r}f(x\mathrm{o})\mapsto(x0, f(x\mathrm{o})) .

Two map‐germs f : (N, x_{0}) \rightarrow (M,y_{0}) and f' : (N'
, xÓ) \rightarrow (  M' , yÓ) axe called dif‐

feomorphic (or \mathcal{A}‐equivalent, right‐left equivalent) and written as f_{x0} \simdiff  g_{x_{\acute{0}}} if there ex‐

ist diffeomorphism‐germs  $\sigma$ : (N, x_{0}) \rightarrow (  N' , xÓ) and  $\tau$ : (M, y_{0}) \rightarrow (  M'
, yÓ) such that

 $\tau$\circ f=f'\circ $\sigma$:(N,x\mathrm{o})\rightarrow (  M' , yÓ).
Set

$\Sigma$_{\infty}=\displaystyle \{f_{x_{0}}\in \mathcal{G}(\mathrm{R}, \mathrm{R})|\frac{d^{r}f}{dx^{r}}(x\mathrm{o})=0, r=1 , 2, 3, . . .

the set of map‐germs with constant Taylor series (flat map‐germs). Then we have the following
classification theorem:

Theorem 4.1 The space of diffeomorphism classes (\mathcal{G}(\mathrm{R}, \mathrm{R})\backslash $\Sigma$_{\infty})/\sim A of non‐flat map‐

germs, endowed with the quotient topology is homeomorphic to the space \mathrm{N}= \{0 , 1, 2, . . .

, \}
of natural numbers.

Here we do not give on \mathrm{N} the discrete topology but we give on it the topology

\mathcal{O}_{\mathrm{N}}=\{\{0, 1, . .. , n\}|n\in \mathrm{N}\}\cup\{\emptyset, \mathrm{N}\}

induced from the natural ordering of N. The topological space (\mathrm{N}, \mathcal{O}_{\mathrm{N}}) is illustrated as

\bullet\leftarrow\bullet\leftarrow\bullet\leftarrow\cdots\cdots

Proof of Theorem 4.1. For  g:(\mathrm{R}, x_{0})\rightarrow(\mathrm{R},y_{0}) , we set

\displaystyle \mathrm{o}\mathrm{r}\mathrm{d}_{x0}g:=\min\{r\in \mathrm{N}|\frac{d^{r}(g-g(X0))}{dx^{r}}(x\mathrm{o})\neq 0\}
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and call it the order of g at x_{0} . The mapping  $\varphi$ : \mathcal{G}(\mathrm{R}, \mathrm{R})\backslash $\Sigma$_{\infty}\rightarrow \mathrm{N} defined by f_{x0}\displaystyle \mapsto \mathrm{o}\mathrm{r}\mathrm{d}_{x_{0}}\frac{df}{dx}
is surjective and continuous. In fact, let  $\pi$ :  C^{\infty}(\mathrm{R}, \mathrm{R}) \times \mathrm{R} \rightarrow \mathcal{G}(\mathrm{R}, \mathrm{R}) be the natural

projection, (f, x_{0}) \in (C^{\infty}(\mathrm{R}, \mathrm{R}) \times \mathrm{R})\backslash $\pi$^{-1}($\Sigma$_{\infty}) , and \displaystyle \mathrm{o}\mathrm{r}\mathrm{d}_{x0}\frac{df}{dx} =n . Then, if we take  $\epsilon$>0

sufficiently small, and set K=[x0- $\epsilon$, x_{0}+ $\epsilon$], V=(x0- $\epsilon$, x0+ $\epsilon$) ,

U=\{j^{n+1}g(x)\in J^{n}(\mathrm{R}, \mathrm{R})| |g^{(n+1)}(x)-f^{(n+1)}(x_{0})|< $\epsilon$\},

then (g, x) \in  W(n, K, U) \times V implies \displaystyle \mathrm{o}\mathrm{r}\mathrm{d}_{x}\frac{dg}{dx} \leq  n . Moreover  $\varphi$ is an open mapping, i.e.  $\varphi$

maps any open subset to an open subset. In fact, for any open neighbourhood  W of (f, x_{0}) and

df
any integer \ell with  0\leq\ell\leq $\varphi$(f_{x0})=\mathrm{o}\mathrm{r}\mathrm{d}_{x0_{\overline{dx}'}} we set g(x)=f(x)+ $\epsilon$(x)(x-x_{0})^{l+1} , where  $\epsilon$ is

a differentiable function satisfying that  $\epsilon$(x_{0}) \neq 0 and vanishing outside of a neighbourhood
dgof x_{0} . Then we choose  $\epsilon$ appropriate, then  g\in W and \mathrm{o}\mathrm{r}\mathrm{d}_{x_{0}}\overline{dx}=\ell . The mapping  $\varphi$ induces

 df
\overline{ $\varphi$} : (\mathcal{G}(\mathrm{R}, \mathrm{R})\backslash $\Sigma$_{\infty})/\sim A \rightarrow N. Then \overline{ $\varphi$} is a bijection. In fact, if \mathrm{o}\mathrm{r}\mathrm{d}_{x0_{\overline{dx}}} = n then f_{x0} is

diffeomorphic to the germ of x^{n+1} at 0 . Moreover  $\varphi$ is continuous and an open mapping.
Since \overline{ $\varphi$}^{-1} : \mathrm{N}\rightarrow(\mathcal{G}(\mathrm{R}, \mathrm{R})\backslash $\Sigma$_{\infty})/\sim A is also continuous, we see \overline{ $\varphi$} is a homeomorphism. \square 

Next we consider

\mathcal{G}(\mathrm{R}^{2}, \mathrm{R})=(C^{\infty}(\mathrm{R}^{2}, \mathrm{R})\times \mathrm{R}^{2})/\sim,
the space of germs of real‐valued functions on \mathrm{R}^{2}.

Then we have

Proposition 4.2 For a germ f : (\mathrm{R}^{2}, x_{0}) \rightarrow (\mathrm{R}, y_{0}) , f_{x0} \in \mathcal{G}(\mathrm{R}^{2}, \mathrm{R}) , the following condi‐

tions are equivalent to each other:

(1) There exists an open neighbourhood V of f : (\mathrm{R}^{2}, x_{0}) \rightarrow (\mathrm{R}, y_{0}) in \mathcal{G}(\mathrm{R}^{2},\mathrm{R}) the

quotient set V/\sim A is a finite set.

(2) For the equivalence class [f_{x_{0}}]\in \mathcal{G}(\mathrm{R}^{2}, \mathrm{R})/\sim A of f_{x_{0}} for the equivalence relation ∼A,

there exists an open neighbourhood of [f_{x0}] in \mathcal{G}(\mathrm{R}^{2}, \mathrm{R})/\sim A which consists of a finite number

of points.

If one of conditions is fulfilled, we call f : (\mathrm{R}^{2}, x_{0})\rightarrow(\mathrm{R}, y_{0}) 0‐modal (or simple), and also

call the equivalence class [f_{x_{0}}] 0‐modal (simple). In general, for a topological space (\mathcal{G}, \mathcal{O})
we can call a point g \in \mathcal{G} 0‐modal (or simple) if there exists an open finite neighbourhood
U\in O of g in \mathcal{G} . We denote by $\Sigma$_{NS}\subset \mathcal{G}(\mathrm{R}^{2}, \mathrm{R}) the set consisting of diffeomorphism classes

of non‐simple germs. Then \mathcal{G}(\mathrm{R}^{2}, \mathrm{R})\backslash $\Sigma$_{NS} designates the set consisting of diffeomorphism
classes of simple germs. Then we have

Theorem 4.3 The quotient space (\mathcal{G}(\mathrm{R}^{2}, \mathrm{R})\backslash $\Sigma$_{NS})/\sim A is homeomorphic to the �ADE‐

space�� (Figure 1).

For the proof, see [1].

Let X be a set and \mathcal{W}=\{W_{ $\mu$}\} is a family of subsets of X . Then there exists the minimal

topology O containing \mathcal{W} . We call it the topology generated by \mathcal{W}.
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Figure 1: ADE‐space

Let X=(X, \mathcal{O}_{X}) be a topological space, and Y a subset of X . Then we collect subsets of

\mathrm{y} of the form \mathrm{Y}\cap V for any open subset V\in \mathcal{O}_{X} of X . Then we get a topological structure

O_{Y} , which is called the relative topology on Y.

Let X=(X, \mathcal{O}_{X}) be a topological space, \sim \mathrm{b}\mathrm{e} an equivalence relation on X . The we give
the quotient topology on X/\sim \mathrm{b}\mathrm{y} setting

\mathcal{O}_{X/\sim} :=\{U\subseteq X/\sim | $\pi$^{-1}(U)\in \mathcal{O}_{X}\}.
Then U\subseteq X/\sim \mathrm{i}\mathrm{s} open if and only if $\pi$^{-1}(U) is open in X.

Let X, Y be topological spaces. A mapping f : X\rightarrow \mathrm{Y} is called continuous if for any open

subset U of Y , the inverse image f^{-1}(U) is an open subset of X.

A mapping  $\varphi$ :  X \rightarrow \mathrm{Y} is called a homeomorphism if  $\varphi$ is one‐to one onto continuous

mapping and the inverse mapping  $\varphi$^{-1} is also continuous. If there is a homeomorphism from

X to Y , then we call X and \mathrm{Y} are homeomorphic.

Example 4.4 (1) \mathrm{L}\mathrm{e}\mathrm{t}\sim \mathrm{b}\mathrm{e} an equivalence relation on \mathrm{R} defined by the condition that x\sim x'
if and only if x' = x or x'= -x . We give on \mathrm{R}/\sim the quotient topology from R. On the

other hand we give the relative topology on the half line \mathrm{R}_{\geq 0} = \{x \in \mathrm{R} | x \geq 0\} from R.

The we see \mathrm{R}/\sim and \mathrm{R}_{\geq 0} are homeomorphic.
(2) We define another equivalence relation \approx \mathrm{o}\mathrm{n}\mathrm{R} by that x\approx x' if and only if x=x'=0

or xx' \neq 0 . The quotient set \mathrm{R}/\approx consists of two equivalence relations: \mathrm{R}/\approx = \{[0] , [1] \}.
The quotient topology on \mathrm{R}/\approx \mathrm{i}\mathrm{s} given by \{\emptyset, \{[1]\}, \{[0], [1]\}\} . This topological space can be

indicated by the diagram:
\bullet\leftarrow\bullet

Let ( $\Lambda$, \leq) be a partially ordered set: A relation v\leq v' on a set  $\Lambda$ is defined and satisfies

that  v\leq v, (v\leq v', v'\leq v\Rightarrow v=v') and (v\leq v', v' \leq v'' v\leq v Then a subset  V\subseteq $\Lambda$
is called saturated if, for any  v \in  V, v' \in  $\Lambda$, v' \leq  v implies v' \in  V . Then the family \mathcal{O}_{ $\Lambda$} of

all saturated subsets of  $\Lambda$ satisfies the condition of topology. It is called the topology induced

from the ordering.
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5 Differentiable structure of mapping space quotients

In this section we introduce the method to give a differentiable structure on mapping spaces

and their quotients. See also [18].
There are known several methods: For instance, the Eells� method based on Frechet

differentials and Omori�s method of �ILB manifold� (inverse limit Banach manifold). Our

method is new and easy to apply compared with other known methods.

5.1 What are structures?

Let \{X_{ $\nu$}\} be a family of sets. The family X_{ $\nu$} is supposed to consist of quotients of subspaces
of a topological space, in particular a mapping space C^{\infty}(N, M) for manifolds N, M.

To define a �differentiable structure� on each X_{ $\nu$} from \{X_{ $\nu$}\} , it is sufficient to give a

criterion, for each pair X_{\mathrm{v}}, X_{$\nu$'}, X_{ $\nu$} and X_{$\nu$'} are �diffeomorphic� For that it is sufficient to

give a criterion that a mapping  $\Phi$ :  X_{ $\nu$}\rightarrow X_{$\nu$'} is �differentiable� or not.

Then, for example, how should we define that a given mapping  $\Phi$ :  C^{\infty}(N, M) \rightarrow

 C^{\infty}(L, W) (L, W are manifolds) is �differentiable�i?

Let  $\Phi$ :  C^{\infty}(N, M)\rightarrow C^{\infty}(L, W) be a mapping. Then, for each differentiable mapping  f\in
 C^{\infty}(N, M) , there corresponds a differentiable mapping  $\Phi$(f) \in C^{\infty}(L, W) . Now we propose
to call  $\Phi$ differentiablè if, for any �differentiable� family  h_{ $\lambda$}\in C^{\infty}(N, M) ,  $\Phi$(h_{ $\lambda$})\in C^{\infty}(L, W)
is �differentiable�, where the �fparameter�  $\lambda$ runs over a finite dimensional manifold  $\Lambda$ . In

fact moreover we demand that  $\Phi$ is continuous. As an ordinary term in global analysis and

differential topology, we call  h_{ $\lambda$} : N\rightarrow M, ( $\lambda$\in $\Lambda$) is a differentiable family if there exists a

differentiable mapping H :  $\Lambda$\times N\rightarrow M which satisfies h_{ $\lambda$}(x)=H( $\lambda$, x) for each ( $\lambda$, x)\in $\Lambda$\times N.
Then the mapping h: $\Lambda$\rightarrow C^{\infty}(N, M) defined by h( $\lambda$)=h_{ $\lambda$} is called differentiable naturally.

Then for  $\Phi$(h_{ $\lambda$})\in C^{\infty}(L, W) , we can take a differentiable mapping G :  $\Lambda$\times L\rightarrow W with

 $\Phi$(h_{ $\lambda$})(x') = G( $\lambda$, x') , ( $\lambda$, x') \in  L\times  W . Therefore we can take the derivative of  $\Phi$(h_{ $\lambda$}) with

respect to  $\lambda$.

5.2 Differentiability along finite dimensional directions.

Consider another example. How to define the differentiability of a functional  $\Psi$ :  C^{\infty}(L, W)\rightarrow
\mathrm{R} ? The real value  $\Psi$(g) is determined for each mapping g\in C^{\infty}(L, W) . The function  $\Psi$(g_{ $\lambda$})
of variable  $\lambda$ is determined for finite dimensional differentiable family  g_{ $\lambda$}\in C^{\infty}(L, W) ,  $\lambda$\in $\Lambda$.

Then we call a mapping  $\Psi$ :  C^{\infty}(L, W)\rightarrow \mathrm{R} differentiable if the function  $\Psi$(g_{ $\lambda$}) is differentiable

on  $\lambda$ . We regard each  g_{ $\lambda$} \in  C^{\infty}(L, W) as a point in the space C^{\infty}(L, W) . Then the family
of mapping g_{ $\lambda$} \in C^{\infty}(L, W) is regarded as a finite dimensional subspace in C^{\infty}(L, W) . The

family  $\Psi$(g_{ $\lambda$}) is the restriction of  $\Psi$ to there, and we look at the differentiability of  $\Psi$(g_{ $\lambda$}) in the

ordinary sense. The differentiability we are going to define may be called the differentiability
along finite dimensional directions.

If  $\Phi$ :  C^{\infty}(N, M) \rightarrow  C^{\infty}(L, W) and  $\Psi$ :  C^{\infty}(L, W) \rightarrow \mathrm{R} are differentiable then the

composition  $\Psi$\circ $\Phi$ :  C^{\infty}(N, M) \rightarrow \mathrm{R} is differentiable. If fact, for any differentiable family
h_{ $\lambda$} \in  C^{\infty}(N, M) , we have ( $\Psi$\circ $\Phi$)(h_{ $\lambda$}) =  $\Psi$( $\Phi$(h_{ $\lambda$})) and  $\Phi$ :  C^{\infty}(N, M) \rightarrow  C^{\infty}(L, W) is

differentiable, we see  $\Phi$(h_{ $\lambda$}) is differentiable on  $\lambda$ . Since  $\Psi$ is differentiable,  $\Psi$( $\Phi$(h_{ $\lambda$})) is

differentiable, so is ( $\Psi$ 0 $\Phi$)(h_{ $\lambda$}) on  $\lambda$.

We have defined that  $\Psi$ :  C^{\infty}(L, W) \rightarrow \mathrm{R} is differentiable. On the other hand, since

\mathrm{R} is identified with C^{\infty}(\{\mathrm{p}\mathrm{t}\}, \mathrm{R}) , we can regard  $\Psi$ :  C^{\infty}(L, W) \rightarrow  C^{\infty}(\mathrm{p}\mathrm{t}, \mathrm{R}) . Then  $\Psi$ is
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differentiable in the sense of the first definition. In fact, for any differentiable family  g_{ $\lambda$} \in

 C^{\infty}(L_{:}W) ,  $\Psi$(g_{ $\lambda$}) is differentiable on  $\lambda$ . If we define  H :  $\Lambda$\times\{\mathrm{p}\mathrm{t}\}\rightarrow \mathrm{R} by H (  $\lambda$
, pt) = $\Psi$(g_{ $\lambda$}) ,

then H is differentiable. By definition,  $\Psi$ :  C^{\infty}(L, W)\rightarrow C^{\infty}(\{\mathrm{p}\mathrm{t}\}, \mathrm{R}) is differentiable.

Example 5.1 We define  $\Psi$ :  C^{\infty}(S^{1}, \mathrm{R}^{2}) \rightarrow \mathrm{R} by  $\Psi$(f) := \displaystyle \int_{S^{1}}f^{*}(xdy) where x, y is the

system of coordinates on \mathrm{R}^{2} . Then  $\Psi$ is differentiable.

Figure 2: The area surrounded by a plane curve.

5.3 Differential structure of manifold quotients.

First we start with the case that the mapping space is a subset of a finite dimensional manifold

 N which will be identified with the space C^{\infty}(\{\mathrm{p}\mathrm{t}\}, N) .

Let N be a differentiable manifold, S a subset of N
, and \sim a equivalence relation on  S.

Assume  $\Lambda$, M and Q are also differentiable manifolds which play a role of �test space�
Then the differentiability is introduced inductively as follows:

(1) We call a mapping h :  $\Lambda$\rightarrow S from a manifold to a subset of a manifold differentiable
if the composed mapping h :  $\Lambda$\rightarrow S\mapsto N is a differentiable mapping from the manifold  $\Lambda$ to

the manifold  N.

(2) We call a mapping k : S\rightarrow Q from a subset of a manifold to a manifold differentiable if

k is continuos, and for any differentiable mapping h :  $\Lambda$\rightarrow S in the sense of (1), the composed
mapping k\mathrm{o}h: $\Lambda$\rightarrow Q is a differentiable mapping from the manifold  $\Lambda$ to the manifold  Q.

(3) We call a mapping \ell :  S/\sim\rightarrow Q from a quotient of a subset of a manifold to a manifold

differentiable if the composed mapping \ell 0 $\pi$ :  S\rightarrow  S/\sim\rightarrow  Q is differentiable in the sense of

(2).
(4) We call a mapping m :  $\Lambda$ \rightarrow  S/\sim from a manifold to a quotient of a subset of a

manifold differentiable if, for any differentiable mapping \ell :  S/\sim \rightarrow Q in the sense of (3), the

composed mapping \ell\circ m :  $\Lambda$ \rightarrow  Q is a differentiable mapping from the manifold  $\Lambda$ to the

manifold  Q.
More generally:
(5) We call a mapping  $\varphi$ :  S/\sim\rightarrow T/\approx\leftarrow T\subseteq M from a quotient of a subset of a manifold

to a subset of a manifold differentiable if  $\varphi$ is continuous and, for any differentiable mapping
\ell :  T/\approx \rightarrow Q in the sense of (3), the composed mapping \ell 0 $\varphi$ :  S/\sim \rightarrow Q is differentiable in

the sense of (3).
(6) A mapping  $\varphi$ :  S/\sim\rightarrow T/\approx \mathrm{i}\mathrm{s} called a diffeomorphism if  $\varphi$ is differentiable in the sense

of (5), bijective, and the inverse mapping  $\varphi$^{-1} :  T/\approx \rightarrow  S/\sim \mathrm{i}\mathrm{s} differentiable in the sense of

(5).
(7) The quotient spaces  S/\sim and  T/\approx are called diffeomorphic if there exists a diffeomor‐

phism  $\varphi$ :  S/\sim\rightarrow T/\approx.
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Remark 5.2 There is a different definition for the stage (2) (cf. [24]): A mapping k:S\rightarrow Q
is called differentiable if there exists an open neighbourhood U in N and a differentiable

mapping \overline{k} : U \rightarrow  Q satisfying \overline{k}|_{S} = k . Compared with this definition which is based on

extensions of mappings on S , our definition is based on parametrisations of S and may be

called a �parametric‐minded�� definition.

Example 5.3 (Differentiable structure on orbifolds). Let G be a finite subgroup of \mathrm{G}\mathrm{L}(n, \mathrm{R})
which acts on \mathrm{R}^{n} naturally.

By the above general theory, we can endow with the � orbifold� \mathrm{R}^{n}/G the ordinary
differentiable structure.

Example 5.4 The quotient space \mathrm{R}/\sim \mathrm{i}\mathrm{s} diffeomorphic to \mathrm{R}_{\geq 0} , where \sim \mathrm{i}\mathrm{s} an equivalence
relation on \mathrm{R} defined by that x\sim x' if and only if x'=\pm x.

In fact  $\varphi$ : \mathrm{R}/\sim \rightarrow \mathrm{R}_{\geq 0},  $\varphi$([x]) = x^{2} is a diffeomorphism. For,  $\varphi$ 0 $\pi$ : \mathrm{R} \rightarrow \mathrm{R}_{\geq 0},
( $\varphi$ 0 $\pi$)(x) = x^{2} is a continuous differentiable mapping by (1), we see  $\varphi$ is a differentiable

mapping by (3). The inverse mapping is given by  $\psi$ : \mathrm{R}_{\geq 0} \rightarrow \mathrm{R}/\sim,  $\psi$(y) = 1\sqrt{y}]. To see

 $\psi$ is differentiable, we check, based on (5), for any differentiable mapping \ell : \mathrm{R}/\sim \rightarrow  Q,
that  l\mathrm{o} $\psi$ : \mathrm{R}_{\geq 0} \rightarrow  Q is differentiable. By (3), \ell\circ $\pi$ : \mathrm{R} \rightarrow  Q is differentiable. Since

(\ell\circ $\pi$)(x) = (\ell\circ $\pi$)(-x) , we see there exists a differentiable mapping  $\rho$ : \mathrm{R} \rightarrow  Q with

(\ell\circ $\pi$)(x)=p(x^{2}) . Then (\ell\circ $\psi$)(y)=\ell([fy])=(\ell 0 $\pi$)(\sqrt{y})= $\rho$(y) . Thus \ell\circ $\psi$ is differentiable.

\square 

Example 5.5 We give the equivalence relation∼on \mathrm{R}^{2} by that (x, y)\sim(x', y') if and only if

(x', y')=\pm(x, y) . Then we see \mathrm{R}^{2}/\sim \mathrm{i}\mathrm{s} homeomorphic to \mathrm{R}^{2} but \mathrm{R}^{2}/\sim \mathrm{i}\mathrm{s} not diffeomorphic
to \mathrm{R}^{2}.

The mapping s:\mathrm{R}^{2}/\sim\rightarrow \mathrm{R}^{2}, s([(x, y)])=(x^{2}-y^{2},2xy) is a homeomorphism. However s

is not a diffeomorphism. Moreover we see that there exists no diffeomorphism between \mathrm{R}^{2}/\sim
and \mathrm{R}^{2} . To see that, suppose that there exist a differentiable mapping  $\psi$ : \mathrm{R}^{2}\rightarrow \mathrm{R}^{2}/\sim and a

differentiable mapping  $\varphi$:\mathrm{R}^{2}/\sim\rightarrow \mathrm{R}^{2} satisfying  $\psi$\circ $\varphi$=\mathrm{i}\mathrm{d},  $\varphi$\circ $\psi$=\mathrm{i}\mathrm{d} . Since  $\varphi$ 0 $\pi$ : \mathrm{R}^{2}\rightarrow \mathrm{R}^{2}
is differentiable and invariant under the transformation (x, y) \mapsto (-x, -y) , there exists a

differentiable mapping  $\rho$ : \mathrm{R}^{3} \rightarrow \mathrm{R}^{2} satisfying ( $\varphi$ 0 $\pi$)(x, y) = $\rho$(x^{2} , xy, y^{2}) . Therefore there

exists a differentiable mapping  $\Phi$ : \mathrm{R}^{2}/\sim \rightarrow \mathrm{R}^{3} with ( $\Phi$\circ $\pi$)(x, y) = (x^{2} , xy, y^{2}) so with

 $\varphi$\circ $\pi$ =  $\rho$ 0 $\Phi$ 0 $\pi$ . Since  $\pi$ is a surjective, we have  $\varphi$ =  $\rho$ 0 $\Phi$ . Therefore id =  $\varphi$ 0 $\psi$ =

 $\rho$ 0 ( $\Phi$\circ $\psi$) : \mathrm{R}^{2} \rightarrow \mathrm{R}^{2} . However the image of  $\Psi$ :=  $\Phi$ 0 $\psi$ : \mathrm{R}^{2} \rightarrow \mathrm{R}^{3} is contained in

\{ (x^{2}, xy, y^{2}) | (x, y) \in \mathrm{R}^{2}\}= \{(X, \mathrm{Y}, Z) \in \mathrm{R}^{3} | XZ-\mathrm{Y}^{2} =0\} and thus \mathrm{r}\mathrm{a}\mathrm{r}\mathrm{k}_{0} $\Psi$ \leq  1 . This

leads a contradiction. \square 

Example 5.6 (The differentiable structure of a quotient space by the complex conjugation)
Let conj: \mathrm{C}^{n}\rightarrow \mathrm{C}^{n} , conj (z)=\overline{z} be the complex conjugation. The quotient space C/conj is

diffeomorphic to \mathrm{R}\times \mathrm{R}_{\geq 0} . For \mathrm{C}^{2}/conj, it is homeomorphic to \mathrm{R}^{4} and it is not diffeomorphic
to \mathrm{R}^{4} . Then we endow \mathrm{C}^{2}/ conj with the differentiable structure induced from the standard

one on \mathrm{R}^{4} . If we endow a differentiable structure on \mathrm{C}P^{2}/conj in the same way as above,
we see that \mathrm{C}P^{2}/conj is diffeomorphic to the ‐sphere S^{4} . (The theorem of Kuiper, Massey,
Arnold.)

5.4 Differentiable structures on mapping space quotients.

Let N, M, L, P be differentiable manifolds. Moreover, in this section,  $\Lambda$, Q always designate
(finite dimensional) differentiable manifolds respectively.
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Let X\subseteq C^{\infty}(N, M) be a subset. Then, such a set X is a mapping space.

(1) We call a mapping h :  $\Lambda$ \rightarrow  X differentiable if there exists a differentiable mapping
(between manifolds) H: $\Lambda$\times N\rightarrow M satisfying H( $\lambda$, x)=h( $\lambda$)(x)\in $\Lambda$ l, ( $\lambda$\in $\Lambda$, x\in N) .

(2) We call a mapping k:X\rightarrow Q differentiable if

k is a continuous mapping and, for any for any differentiable mapping h :  $\Lambda$\rightarrow X in the

sense of (1), the composition k\circ h: $\Lambda$\rightarrow Q is a differentiable mapping between manifolds.

Now, \mathrm{i}\mathrm{f}\sim \mathrm{i}\mathrm{s} an equivalence relation on a mapping space X , then we get the quotient space

 X/\sim . Such a quotient space  X/\sim \mathrm{i}\mathrm{s} called a mappings space quotient. Then the projection
 $\pi$ :  X\rightarrow X/\sim \mathrm{i}\mathrm{s} defined by  $\pi$(x)=[x] (the equivalence class of x).

(3) We call a mapping \ell :  X/\sim\rightarrow Q differentiable if the composition  l\circ $\pi$ :  X\rightarrow Q with

the projection  $\pi$ is differentiable in the sense of (2).
(4) We call a mapping  m :  $\Lambda$ \rightarrow  X/\sim differentiable if, for any differentiable mapping

\ell :  X/\sim\rightarrow Q in the sense of (3), the composition \ell \mathrm{o}m :  $\Lambda$\rightarrow Q is a differentiable mapping
between manifolds.

Lemma 5.7 If h: $\Lambda$\rightarrow X is differentiable in the sense of (1),  $\pi$\circ h: $\Lambda$\rightarrow X/\sim is differentiable
in the sense of (4).

Proof: For any differentiable mapping \ell :  X/\sim \rightarrow  Q in the sense of (3), the composition
\ell\circ $\pi$ :  X\rightarrow Q differentiable in the sense of (2). Therefore (\ell 0 $\pi$)\mathrm{o}h=\ell \mathrm{o}( $\pi$ \mathrm{o}h) :  $\Lambda$\rightarrow Q is

differentiable. Hence  $\pi$\circ h differentiable in the sense of (4). \square 

(5) In general, we call a mapping  $\varphi$ :  X/\sim\rightarrow Y/\approx from a mapping space quotient  X/\sim
to another mapping space quotient  Y/\approx\leftarrow Y\subseteq C^{\infty}(L, P) differentiable if  $\varphi$ is a continuous

mapping and, for any differentiable mapping \ell:Y/\approx\rightarrow Q in the sense of (3), the composition
\ell 0 $\varphi$ :  X/\sim\rightarrow Q is differentiable in the sense of (3).

(6) Then we call a mapping  $\varphi$ :  X/\sim\rightarrow \mathrm{Y}/\approx \mathrm{a} diffeomorphism if  $\varphi$ is differentiable in the

sense of (5),  $\varphi$ is a bijection and the inverse mapping  $\varphi$^{-1} : Y/\approx\rightarrow X/\sim \mathrm{i}\mathrm{s} also differentiable

in the sense of (5).
(7) Then we call two mapping space quotients  X/\sim and  Y/\approx diffeomorphic if there exists

a diffeomorphism  $\varphi$ :  X/\sim\rightarrow Y/\approx \mathrm{i}\mathrm{n} the sense of (6).

Lemma 5.8 The following two conditions are equivalent to each other:

(i)  $\varphi$ :  X/\sim\rightarrow Y/\approx is differentiable in the sense of (5).
(ii)  $\varphi$ :  X/\sim \rightarrow \mathrm{y}/\approx \dot{u} a continuous mapping and, for any differentiable mapping m :

 $\Lambda$\rightarrow X/\sim in the sense of (4),  $\varphi$\circ m: $\Lambda$\rightarrow Y/\approx differentiable in the sense of (4).

Proof: (i) \Rightarrow (ii): Let  P:Y/\approx\rightarrow Q be a differentiable mapping in the sense of (3). By (i),
 l\mathrm{o} $\varphi$ :  X/\sim\rightarrow Q differentiable in the sense of (3). Then (P\circ $\varphi$)\mathrm{o}m=P\mathrm{o}( $\varphi$\circ m) :  $\Lambda$\rightarrow Q is

a differentiable mapping. Therefore  $\varphi$ \mathrm{o}m :  $\Lambda$\rightarrow \mathrm{Y}/\approx \mathrm{i}\mathrm{s} a differentiable mapping in the sense

of (4).
(\mathrm{i}\mathrm{i})\Rightarrow (i) : For any differentiable mapping  P:\mathrm{Y}/\approx\rightarrow Q in the sense of (3), we check that

\ell\circ $\varphi$ :  X/\sim \rightarrow  Q is differentiable in the sense of (3), namely that (\ell 0 $\varphi$)0 $\pi$ :  X \rightarrow  Q is

differentiable in the sense of (2). Then we check, for any differentiable h :  $\Lambda$\rightarrow X in the sense

of (1), that ((\ell\circ $\varphi$)\circ $\pi$)\circ h: $\Lambda$\rightarrow Q is differentiable. By 5.7,  $\pi$\circ h: $\Lambda$\rightarrow X/\sim \mathrm{i}\mathrm{s} differentiable

in the sense of (4). Therefore, by (ii), ( $\varphi$\circ $\pi$)\circ h= $\varphi$\circ( $\pi$\circ h) :  $\Lambda$\rightarrow Y/\approx \mathrm{i}\mathrm{s} differentiable in

the sense of (4). Hence \ell \mathrm{o}( $\varphi$ 0 $\pi$)\mathrm{o}h=((\ell 0 $\varphi$)\circ $\pi$)\mathrm{o}h :  $\Lambda$\rightarrow Q is is a differentiable mapping.
Thus  $\varphi$ is differentiable in the sense of (5). \square 
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Lemma 5.9 For C^{\infty} topology on C^{\infty}(N, M) ,
a differentiable mapping h: $\Lambda$\rightarrow X\subseteq C^{\infty}(N, M)

in the sense of (1) \dot{u} a continuous mapping.

Proof: By the assumption, there exists a differentiable mapping H :  $\Lambda$ \times  N \rightarrow  M which

satisfies H( $\lambda$, x)=h( $\lambda$)(x) . Take an open subset of C^{\infty}(N,  $\lambda$ f) of the form W(r, K, U) , where

K\subseteq N is a compact subset and  U\subseteq  J^{r}(N, M) is an open subset.

Suppose, for a $\lambda$_{0} \in  $\Lambda$, h($\lambda$_{0}) = H|_{$\lambda$_{0}\times N} :  N\times  1\mathrm{I}4 belongs to W(r, K.U) . Define jíH :

 $\Lambda$\times N\rightarrow J^{r}(N, M) by jí H( $\lambda$, x)=j^{r}(H|_{ $\lambda$\times N})(x) . Then jí H is a differentiable mapping in

the ordinary sense. In particular it is continuous. From the assumption h($\lambda$_{0})\in W(r, K, U) ,

(jí H)^{-1}(W(r, K, U)) is an open neighbourhood of $\lambda$_{0}\times K . Since K is compact, there exists an

open neighbourhood V of $\lambda$_{0} such that  V\times K\subseteq (jí H)^{-1}(W(r, K, U This means that $\lambda$_{0}\in
 V \subseteq  h^{-1}(W(r, K, U Therefore h^{-1}(W(r, K, U)) is open. Noting that  h^{-1}(W(r, K, U)\cap
 W(r', K', U =h^{-1}(W(r, K, U))\cap h^{-1}(W(r', K', U , h^{-1}(\cup W_{ $\nu$})=\cup h^{-1}(W_{ $\nu$}) , we see h is

continuous. \square 

Remark 5.10 Lemma 5.9 does not hold for Whitney C^{\infty} topology. For example, in X =

C^{\infty}(\mathrm{R}, \mathrm{R}) , consider the differentiable mapping h : \mathrm{R}\rightarrow C^{\infty}(\mathrm{R}, \mathrm{R}) defined by the differen‐

tiable mapping H( $\lambda$, x) := $\lambda$ . Then  h(0) is identically 0 . Its graph is \mathrm{R}\times 0\subset \mathrm{R}\times \mathrm{R} . Then

there exists an open set U containing \mathrm{R}\times 0 such that h^{-1}(W(U))=\{0\} . Then W(U) is an

open subset of C^{\infty}(\mathrm{R}, \mathrm{R}) with respect to Whitney C^{\infty} topology, while h^{-1}(W(U))=\{0\}\subset \mathrm{R}
is not open in R. Therefore h is not continuous in Whitney C^{\infty} topology.

Remark 5.11 In the above definition (2), the continuity of h is not implied from just the

condition that for any differentiable mapping h :  $\Lambda$ \rightarrow  X in the sense (1), the composition
k\circ h: $\Lambda$\rightarrow Q is differentiable.

In fact set X=\{1/n\}\cup\{0\}\subset \mathrm{R}=C^{\infty}(\{\mathrm{p}\mathrm{t}\}, \mathrm{R}) and \mathrm{Y}=\{0, 1\}=C^{\infty}(\{\mathrm{p}\mathrm{t}\}, \{0,1
Define k:X\rightarrow \mathrm{Y} by k(1/n)=1, k(0)=0 . Then any differentiable mapping h: $\Lambda$\rightarrow X is

locally constant, and so is k oh:  $\Lambda$\rightarrow Y . Then k\circ h is differentiable, while k is not continuous.

Thus, in the definition (2), we need the continuity of k.

5.5 Properties.

Lemma 5.12 Let M be a differentiable manifold. Then M\dot{u} diffeomorphic to C^{\infty}(\{\mathrm{p}\mathrm{t}\}, M) .

Proof: Both  $\varphi$ :  M \rightarrow  C^{\infty}(\{\mathrm{p}\mathrm{t}\}, M) ,  $\varphi$(x)(\mathrm{p}\mathrm{t}) := x , and  $\psi$ :  C^{\infty}(\{\mathrm{p}\mathrm{t}\}, M) \rightarrow  M,  $\psi$(f) :=

f (pt), are differentiable and inverse mappings to each other. \square 

Lemma 5.13 (1) The identity mapping id:  X/\sim \rightarrow X/\sim \dot{u} differentiable.
(2) If f :  X/\sim \rightarrow Y/\approx and g:Y/\approx\rightarrow Z/\equiv are both differentiable, then the composition

g\mathrm{o}f :  X/\sim \rightarrow Z/\equiv is differentiable.

Proof: (1) is clear. (2) Since f and g are continuous, gof is continuous. Let m: $\Lambda$\rightarrow X/\sim \mathrm{b}\mathrm{e}
any differentiable mapping. Then, from the assumption, f\mathrm{o}m :  $\Lambda$\rightarrow \mathrm{Y}/\approx \mathrm{i}\mathrm{s} a differentiable

mapping. Moreover we see g\mathrm{o}(f\mathrm{o}m) = (g\mathrm{o}f)\mathrm{o}m :  $\Lambda$\rightarrow Z/\equiv \mathrm{i}\mathrm{s} differentiable. Therefore

g\mathrm{o}f is differentiable. \square 

Lemma 5.14 (1) The quotient mapping  $\pi$ :  X \rightarrow  X/\sim is differentiable. (2) A mapping
f : X/\sim\rightarrow \mathrm{y}/\approx is differentiable if and only if  f\circ $\pi$ :  X\rightarrow Y/\approx is differentiable.
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Proof: (1) That  $\pi$ is continuous is clear. For any differentiable mapping \ell :  X/\sim \rightarrow  Q,
\ell\circ $\pi$ :  X\rightarrow Q is differentiable. Therefore  $\pi$ is differentiable. (2)  f is continuous if and only if

 f\circ $\pi$ is continuous. If  f is differentiable, then  f\circ $\pi$ is differentiable. Conversely, assume  f\mathrm{o} $\pi$ is

differentiable and take any differentiable mapping \ell : \mathrm{Y}/\approx\rightarrow Q. \ell\circ(f\circ $\pi$)=(P\mathrm{o}f)\circ $\pi$ :  X\rightarrow Q
is differentiable. Hence \ell \mathrm{o}f is differentiable. Thus f is differentiable. \square 

Lemma 5.15 If N and N' are diffeomorp  hic,\cdot and,  M and M' are diffeomorphic, then

C^{\infty}(N, M) and C^{\infty}(N', M') are diffeomorphic.

Example 5.16 Let K \subset \mathrm{R} be a compact subset. Define I : C^{\infty}(\mathrm{R}, \mathrm{R}) \rightarrow \mathrm{R} by I(f) =

\displaystyle \int_{K}f(x)dx . Then the mapping I is differentiable (in the sense of the definition (2)).

5.6 Product space.

For X\subseteq C^{\infty}(N, M) , Y\subseteq C^{\infty}(L, P) , we set

X\times \mathrm{y}=\{F\in C^{\infty} (N \mathrm{I}\mathrm{I} L, M\mathrm{U}P) |F(N)\underline{\subseteq}M, F(L)\underline{\subseteq}P\},

where N II L is the disjoint union of N and L . Then identify  X/\sim \times \mathrm{Y}/\approx with (X\times Y)/\equiv,
where we define (f, g) \equiv (f', g^{j}) by that  f\sim  f' and g \approx g' . Thus the product of mapping
space quotients is regarded as a mapping space quotient.

Example 5.17 The mapping C^{\infty}(N, M)\times N\rightarrow M defined by (f, x)\mapsto f(x) is a differentiable

mapping. This means that if f_{n} \rightarrow  f, x_{n} \rightarrow x then f_{n}(x_{n}) \rightarrow  f(x) , (n\rightarrow \infty) and moreover

that f(x) is differentiable both for f and x.

Lemma 5.18 The mapping  $\Phi$ :  C^{\infty}(N, M) \times C^{\infty}(M, L) \rightarrow C^{\infty}(N, L) defined by  $\Phi$(f, g) =

g\circ f is a differentiable mapping.

Proof: By proposition 3.3,  $\Phi$ is continuous. Suppose  h :  $\Lambda$ \rightarrow  C^{\infty}(N, M) \times  C^{\infty}(M, L) is a

differentiable mapping. Suppose a differentiable mapping H :  $\Lambda$\times (  N II M) \rightarrow M\mathrm{U}L defined

the differentiable mapping h . Then we have H( $\Lambda$\times N)\subseteq M, H( $\Lambda$\times M)\subseteq L . Set F :=H|_{ $\Lambda$\times N}
and G := H|_{ $\Lambda$\times M} . Then f_{ $\lambda$}(x) = F( $\lambda$, x) and g_{ $\lambda$}(f_{ $\lambda$}(x)) = g_{ $\lambda$}(F(x,  $\lambda$) = G( $\lambda$, F( $\lambda$, x)) is

differentiable. \square 

6 Examples

We give several examples as the applications of our theory.

6.1 The space of triangles.

Let N=\{ $\alpha$,  $\beta,\ \gamma$\} be a 0‐dimensional manifold consisting of three points, endowed with the

discrete topology. Set M= \mathrm{R}^{2} . The mapping space C^{\infty}(\dot{N}, M) is diffeomorphic to \mathrm{R}^{6} by
the correspondence f\mapsto(f( $\alpha$), f( $\beta$), f( $\gamma$)) . Set

T:= { f\in C^{\infty}(N, M) |f( $\alpha$) , f( $\beta$) , f( $\gamma$) is not collinear}.
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Then T is the �space of triangles which is identified with the open subset of \mathrm{R}^{6}

\{(a\mathrm{i}, a_{2};b_{\mathrm{i}}, b_{2;} \mathrm{c}\mathrm{i}, c_{2})\in \mathrm{R}^{6}\Vert a_{2}a_{1}1 b_{2}b_{1}1 c_{2}c_{1}1 \neq 0\}
Now we are going to classify triangles by congruences. We set on \mathrm{R}^{2} the Euclidean metric.

Then we denote the group of motions on \mathrm{R}^{2} by Euclid(R2):

Euclid (\mathrm{R}^{2}) := { \left(\begin{array}{lll}
1 & 0 & 0\\
P & a & b\\
Q & c & d
\end{array}\right) (P, Q)\in \mathrm{R}^{2}, \left(\begin{array}{ll}
a & b\\
c & d
\end{array}\right) is a orthogonal matriX}.
Here we assume the reflections are contained in Euclid(R2).

For A=(x_{1}, x_{2})\in R^{2},

\left(\begin{array}{lll}
\mathrm{l} & 0 & 0\\
P & a & b\\
Q & c & d
\end{array}\right) \left(\begin{array}{l}
\mathrm{l}\\
x_{1}\\
x_{2}
\end{array}\right) = \left(\begin{array}{l}
\mathrm{l}\\
ax_{1}+bx_{2}+P\\
cx_{1}+dx_{2}+Q
\end{array}\right)
Namely g(A) =g(x_{12}x) = (ax_{1}+bx2+P, \mathrm{c}x_{1}+dx_{2}+Q) . Now set G=S_{3}\times \mathrm{E}\mathrm{u}\mathrm{c}\mathrm{l}\mathrm{i}\mathrm{d}(\mathrm{R}^{2}) ,
where S3 is the symmetry group of order three, which is equal to \mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}(N) in this case. We

define the action of G on C^{\infty}(N, M)\cong \mathrm{R}^{6} by

( $\sigma$,g)(A, B, C)= $\sigma$(g(A),g(B), g(C))

the permutation by  $\sigma$
, for (A, B, C)\in \mathrm{R}^{6} . Then T\subset C^{\infty}(N, M) is G‐invariant. The quotient

space T/G is the space of congruence classes of triangles.

Theorem 6.1 The space of T/G of congruence classes of triangles is diffeomorphic to \mathrm{R}>0\times
 C , where

C:=\{(x, y)\in \mathrm{R}^{2}|x^{2}-y^{3}\leq 0\}
is the narrower domain defined by the cusp curve. In particular the space ofT/G of congruence
classes of triangles is homeomorphic to \mathrm{R}^{2}\times \mathrm{R}_{\geq 0}=\{(x, y, z) |z\geq 0\}.

The part \mathrm{R}>0 from \mathrm{R}>0 \times C represents the parameter of similarity. The summit of C

corresponds to the congruence classes of equilateral triangles, while the edge corresponds to

the congruence classes of isosceles triangles.

Proof of Theorem 6.1:

The mapping
\mathrm{R}^{6}\supset T\ni(A, B, C)\mapsto(BC, CA, AB)\in (\mathrm{R}>0)^{3}

induces a mapping $\Phi$_{1} : T/G \rightarrow (\mathrm{R}_{>0})^{3}/S_{3} . Define V : (\mathrm{R}_{>0})^{3} \rightarrow (\mathrm{R}_{>0})^{3} by V(a, b, c) :=

(a+b+c, ab+bc+ca, abc) . Then V induces \overline{V} : (\mathrm{R}>0)^{3}/S_{3}\rightarrow(\mathrm{R}>0)^{3} . Let X be the image
of \overline{V} . Then we see that  $\Phi$ :=\overline{V}0$\Phi$_{1} : T/G\rightarrow X is a diffeomorphism. Moreover we see that

X is diffeomorphic to \mathrm{R}>0\times C. \square 
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6.2 Diffeomorphism groups.

Let N be a compact manifold without boundary. Then the group \mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}^{\infty}(N) of diffeomorphisms
on N is a topological group in the  c\infty topology. Moreover the composition  m:\mathrm{D}\mathrm{i}\mathrm{f}\mathrm{l}^{\infty}(N)\times
\mathrm{D}\mathrm{i}\mathrm{f}\mathrm{l}^{\infty}(N)\rightarrow \mathrm{D}\mathrm{i}\mathrm{f}\mathrm{l}^{\infty}(N) ,  m( $\varphi$,  $\psi$)= $\psi$\circ $\varphi$ and the inverse  i:\mathrm{D}\mathrm{i}\^{E}^{\infty}(N)\rightarrow \mathrm{D}\mathrm{i}\mathrm{f}\mathrm{l}^{\infty}(N) , i( $\varphi$)=$\varphi$^{-1}
are differentiable. Thus, in this sense, \mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}^{\infty}(N) is regarded as an infinite dimensional Lie

group.

6.3 The space of knots.

The space \mathrm{E}\mathrm{m}\mathrm{b}(S^{1}, \mathrm{R}^{3}) \subset C^{\infty}(S^{1}, \mathrm{R}^{3}) is an open subset. Set G :=\mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}^{\infty}(S^{1}) \times \mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}^{\infty}(\mathrm{R}^{3}) .
Then the group G acts on C^{\infty}(S^{1}, \mathrm{R}^{3}) by ( $\sigma$,  $\tau$)f :=Tofo $\sigma$^{-1} . Then \mathrm{E}\mathrm{m}\mathrm{b}(S^{1},\mathrm{R}^{3}) is

G‐invariant. Thus G acts also on \mathrm{E}\mathrm{m}\mathrm{b}(S^{1}, \mathrm{R}^{3}) .

Proposition 6.2 The quotient space \mathrm{E}\mathrm{m}\mathrm{b}(S^{1}, \mathrm{R}^{3})/G is diffeomorphic to the countably infi‐
nite discrete space.

We might claim that all knots are equal, from the viewpoint of differentiable structure; we

need a global and concrete condition to define the �trivial knot�such as being the boundary
of an embedded disk.

If we take the space \mathrm{I}\mathrm{m}\mathrm{m}(S^{1}, \mathrm{R}^{3}) of immersions, instead of the space of embeddings, then

the quotient space \mathrm{I}\mathrm{m}\mathrm{m}(S^{1}, \mathrm{R}^{3})/G is not a discrete space. The Vassiliev invariant ([28][29])
of knots can be understood as an invariant constructed from the embedding of the discrete

space \mathrm{E}\mathrm{m}\mathrm{b}(S^{1}, \mathrm{R}^{3})/G into the non‐discrete space \mathrm{I}\mathrm{m}\mathrm{m}(S^{1}, \mathrm{R}^{3})/G.
By the same idea, consider the open subset

Gen (S^{1}, \mathrm{R}^{2}) := { f\in C^{\infty}(S^{1},\mathrm{R}^{2})|fis generic}

of the space C^{\infty}(S^{1}, \mathrm{R}^{2}) of parametric plane curves. Here a plane curve f : S^{1}\rightarrow \mathrm{R}^{2} is called

generic if f is an immersion and its self‐intersections are only transversal intersections. Then

the group G :=\mathrm{D}\mathrm{i}\mathrm{f}\mathrm{l}^{\infty}(S^{1})\times \mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}^{\infty}(\mathrm{R}^{2}) acts on C^{\infty}(S^{1}, \mathrm{R}^{2}) and Gen (S^{1}, \mathrm{R}^{2}) is G‐invariant.

Proposition 6.3 The quotient space Gen (S^{1}, \mathrm{R}^{2})/G is diffeomorphic to the countably infinite
discrete space.

Contrarily \mathrm{I}\mathrm{m}\mathrm{m}(S^{1}, \mathrm{R}^{2})/G is not discrete. The Arnol�d invariant [2] can be understood

an invariant constructed by means of the embedding of the discrete space Gen (S^{1}, \mathrm{R}^{2})/G
into the non‐discrete space \mathrm{I}\mathrm{m}\mathrm{m}(S^{1}, \mathrm{R}^{2})/G.

6.4 Superspace of Riemannian structures.

Let N be a differentiable manifold of dimension n . The space

\mathcal{R}_{N} := {the Riemannian metrics on N}

can be regarded as a mapping space. In fact, a Riemannian metric on N determines, by
definition, to each point x\in N a positive definite symmetric bilinear form g_{x} : T_{x}N\times T_{x}N\rightarrow \mathrm{R}
depending on x in a differentiable way. It is given by a differentiable section g : N \rightarrow

 T^{*}NT^{*}N which possesses the positivity. Thus we can regard as R_{N}\subset C^{\infty}(N, T^{*}NT^{*}N) ,

where T^{*}NT^{*}N means the tensor product of cotangent bundle T^{*}N over N.
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Now the diffeomorphism group \mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}(N) acts on \mathcal{R}_{N} naturally. The quotient space (orbit
space)

S_{N}:=\mathcal{R}_{N}/\mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}(N)
is the space of isometry classes of Riemannian structures on N and is called the super space

of N ([12][6]).
The projection  $\pi$ : \mathcal{R}_{N}\rightarrow \mathcal{S}_{N} is differentiable. For each isometry class [g] \in \mathcal{S}_{N} ,

the fibre

$\pi$^{-1}([g]) is diffeomorphic to the quotient space \mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}(N)/\mathrm{I}\mathrm{s}\mathrm{o}\mathrm{m}(N,g) of \mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}(N) by the isometry
group Isom (N, g) of (N, g) .

Theorem 6.4 Let N=S^{1} . Then S_{S^{1}} is diffeomorphic to \mathrm{R}>0 and therefore to R. The space

\mathrm{R}_{>0} corresponds to the total lengths of the one‐dimensional Riemannian manifolds (S^{1}, g) .

One of interesting problem is to determine the superspace \mathcal{S}_{N} for a general N . In the

case \dim N\geq 2 , the space S_{N} turns out to be infinite dimensional. For example, in the case

\dim N=2 , the Gaussian curvature K:N\rightarrow \mathrm{R} on N gives a functional moduli on S_{N}.
By the way, among the Riemannian metrics on N= S^{2} , the round sphere, namely, the

round sphere in the Euclidean \mathrm{R}^{3} seems to be distinguished. Then we are led to the following
conjecture:

For the standard metric g_{0} on S^{2} , if (S_{S^{2}}, [g0]) and another (\mathcal{S}_{S^{2}}, [g]) are locally diffeo‐
morphic, then [g_{0}]=[g] , namely g is isometric to the standard metric g_{0}.

6.5 The symplectic moduli space of plane curves.

Let \mathrm{E}\mathrm{m}\mathrm{b}(S^{1},\mathrm{R}^{2}) \subset  C^{\infty}(S^{1}, \mathrm{R}^{2}) be the space of differentiable simple closed curves on the

plane.
Let Symp (\mathrm{R}^{2}) be the group of diffeomorphisms preserving the standard symplectic struc‐

ture $\omega$_{0}=dx\wedge dy.
The group H=\mathrm{D}\mathrm{f}\mathrm{f}\mathrm{i}(S^{1})\times \mathrm{S}\mathrm{y}\mathrm{m}\mathrm{p}(\mathrm{R}^{2}) acts on the space Emb (S^{1}, \mathrm{R}^{2}) in the natural way,

namely, by ( $\sigma$,  $\tau$)f := $\tau$ \mathrm{o}f\mathrm{o}$\sigma$^{-1} . The quotient space \mathrm{E}\mathrm{m}\mathrm{b}(S^{1}, \mathrm{R}^{2})/H is regarded as the space
of symplectomorphism classes of simple closed curves.

Proposition Ớ.5 The quotient space \mathrm{E}\mathrm{m}\mathrm{b}(S^{1},\mathrm{R}^{2})/H is diffeomorphic to \mathrm{R}_{\geq 0} . The space

\mathrm{R}_{>0} corresponds to the area surrounded by curves.

We consider again the open subset in C^{\infty}(S^{1}, \mathrm{R}^{2}) :

Gen (S^{1}, \mathrm{R}^{2}) := { f\in C^{\infty}(S^{1}, \mathrm{R}^{2}) |f is generic}.

The group H=\mathrm{D}\mathrm{f}\mathrm{f}\mathrm{i}(S^{1})\times \mathrm{S}\mathrm{y}\mathrm{m}\mathrm{p}(\mathrm{R}^{2}) acts also on Gen (S^{1}, \mathrm{R}^{2}) .

Also another group G=\mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}(S^{1}) \times \mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}^{+}(\mathrm{R}^{2}) acts on Gen (S^{1}, \mathrm{R}^{2}) , where \mathrm{D}\mathrm{i}\mathrm{f}\mathrm{f}^{+}(\mathrm{R}^{2}) is

the group consisting of orientation preserving diffeomorphisms on \mathrm{R}^{2}.
For an  f\in \mathrm{G}\mathrm{e}\mathrm{n}(S^{1}, \mathrm{R}^{2}) consider the G‐orbit G\cdot f through f . The group acts on G\cdot f.

The image f(S^{1}) of a generic mapping f : S^{1}\rightarrow \mathrm{R}^{2} divides \mathrm{R}^{2} into several regions. We put
labels on bounded regions (Figure 3). Then for each f'\in G\cdot f , the bounded regions divided

by g'(S1) have induced labels.

Then we define, for f', f''\in G\cdot f, f'\sim f'' if there exists ( $\sigma$,  $\tau$)\in H such that f''= $\tau$\circ f'\circ$\sigma$^{-1}
and that  $\tau$ preserves the labellings.

We call the quotient space A4(f) :=(G\cdot f)/\sim the symplectic moduli space of the plane
curve  f.
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Figure 3: Labelling

Proposition 6.6 The symplectic moduli space \mathcal{M}(f) = (G\cdot f)/\sim of a generic plane curve

f is diffeomorphic to (\mathrm{R}>0)^{r} , therefore it is diffeomorphic to \mathrm{R}^{r} , where r is the number of
bounded regions surrounded by f(S^{1}) .

The space (\mathrm{R}_{>0})^{r} corresponds to areas of bounded domains. The structure of symplectic
moduli spaces for more singular curves is studied in [18].
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