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1. INTRODUCTION

Throughout the report, all manifolds and maps are differentiable of class

C^{\infty} . Let f : M\rightarrow \mathbb{R}^{p} be a map of a closed n‐dimensional manifold M into

\mathbb{R}^{p}(n\geq p) . We denote by S(f) the set of points in M where the rank of the

differential of f is strictly less than p . We say that S(f)\subset M is a sin9^{ular}
set of f and f(S(f))\subset \mathbb{R}^{p} is a contour of f.

Let f : M\rightarrow \mathbb{R}^{3} be a map of a closed connected oriented 3‐dimensional

manifold M into \mathbb{R}^{3} . For any q \in  S(f) of f : M \rightarrow \mathbb{R}^{3}
,

if we can choose

local coordinates ( u_{1} ) u2, u3) centered at q and ( v_{1}, v_{2} , v3) centered at f(q)
respectively such that f has the following form:

(1.1) (v_{1}\circ f, v_{2}\circ f , v3 \circ f ) =(u_{1}, u_{2}, u_{3}^{2}) ,

then we call f a fold map. It is known that if f : M \rightarrow \mathbb{R}^{3} is a fold

map, then S(f) is a closed orientable surface (not necessary connected) and

f|S(f) : S(f)\rightarrow \mathbb{R}^{3} is an immersion. If f|S(f) is an immersion with normal

crossings, we call f a stable fold map.

Eliashberg [2] showed that if a closed surface V splits M into two mani‐

folds M_{1}, M_{2} with \partial M_{1}=\partial M_{2}=V , then there exists a fold map f :  M\rightarrow

\mathbb{R}^{3} such that S(f) = V . Here, M_{1} and M_{2} are not necessary connected.

In this report, we apply Eliashberg�s theorem to a lens space L(p, 1) and

construct a stable fold map f : M\rightarrow \mathbb{R}^{3} such that S(f)=T^{2} is a Heegaard
surface of L(p, 1) (p\geq 2) .
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2. DESCRIPTION OF A STABLE FOLD MAP

In this section, we explain a method to depict a stable fold map f :  M\rightarrow

\mathbb{R}^{3} . In the following, we assume that M is a closed connected oriented

3‐dimensional manifold and that \mathbb{R}^{3} and \mathbb{R}^{2} are oriented.
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For a stable fold map f : M \rightarrow \mathbb{R}^{3} such that S(f) = V and M =

M_{1}\displaystyle \bigcup_{V}M_{2} , we remark that f|M_{1} and f|M_{2} are immersions and extensions

of f|V . We assume that f|M_{1} is an orientation preserving immersion and

f|M_{2} is an orientation reversing immersion. The orientation on M_{1} induces

the orientation on V as follows. For q \in  V ,
let { n_{1}, n_{2} , nt3} be the basis

of T_{q}(M_{1}) which defines the orientation on M_{1} and n_{1} the outward normal

vector. Then the orientation on V=\partial(M_{1}) is defined by \{n_{2}, n3\}.
By Bruce and Kirk�s theorem [1], there exists an orthogonal projection

 $\pi$ : \mathbb{R}^{3}\rightarrow \mathbb{R}^{2} such that  $\pi$ \mathrm{o}f|V:V\rightarrow \mathbb{R}^{2} is a stable map. It is well‐known

that a stable map satisfies the following properties.

Proposition 2.1 ([3]). A smooth map g : N\rightarrow \mathbb{R}^{2} of a closed surface N

into \mathbb{R}^{2} is a stable map if and only if the following conditions are satisfied.

(1) For every q \in  S(g) , there exist local coordinates (u_{1}, u_{2}) and (v_{1}, v_{2})
around q and g(q) respectively such that one of the following holds:

(i) ( v\mathrm{i}\circ g ) v_{2}\circ g ) =(u\mathrm{i}, u_{2}^{2}) , q : fold point,
(ii) ( v\mathrm{i}\circ g ) v_{2}\circ g ) =(u\mathrm{i}, u_{2}^{3}-u\mathrm{i}u_{2}) , q : cusp point.

(2) If q is a cusp point of g , then g^{-1}(g(q))\cap S(g)=\{q\},
(3) 9|S(9)\backslash {set of cusp points of g} is an immersion with normal crossings.

In the following, we set f_{V}^{ $\pi$} = $\pi$\circ f|V . Let q \in  V be a cusp point of a

stable map f_{V}^{ $\pi$} : V\rightarrow \mathbb{R}^{2} . For a sufficiently small neighborhood U of f_{V}^{ $\pi$}(q) ,

the map f_{V}^{ $\pi$}|U' : U' \rightarrow  U has degree \pm 1
, where U' is the component of

(f_{V}^{ $\pi$})^{-1}(U) containing q . If the degree of q is +1 (resp. -1 ), then we should

paint q and f_{V}^{ $\pi$}(q) red (resp. blue).
For each t\in \mathbb{R} , a plane \{(t, y.z)\in \mathbb{R}^{3}| y, z\in \mathbb{R}\} is denoted by \mathbb{R}_{t}^{2} . Then,

for almost all t\in \mathbb{R}, f(V)\cap \mathbb{R}_{t}^{2} consists of immersed circles (or an empty set),
f(M_{i})\cap \mathbb{R}_{t}^{2} consists of immersed surfaces (or an empty set) and f(M_{i})\cap \mathbb{R}_{t}^{2} is

an extension of f(V)\cap \mathbb{R}_{t}^{2} . Therefore, from the pictures f(M_{1})\cap \mathbb{R}_{t_{1}}^{2},  f(M_{1})\cap
\mathbb{R}_{t_{2}}^{2} , . . .

, f(M\mathrm{i})\cap \mathbb{R}_{t_{n}}^{2} and f(M_{2})\cap \mathbb{R}_{t_{1}}^{2}, f(M_{2})\cap \mathbb{R}_{t_{2}\text{）}}^{2}\ldots, f(M_{2})\cap \mathbb{R}_{t_{n}}^{2} , we can

see the immersed 3‐dimensional manifold f (M1), f(M_{2}) and the image of

the stable fold map f(M) . Note that the planes \mathbb{R}_{t_{1}}^{2}, \mathbb{R}_{t_{2}}^{2} , . . . , \mathbb{R}_{t_{n}}^{2} can be

chosen from the picture of the contour f_{V}^{ $\pi$}(S(f_{V}^{ $\pi$}))\subset \mathbb{R}^{2}.
For a fold point q\in S(f_{V}^{ $\pi$}) of f_{V}^{ $\pi$} ,

there exist local coordinates (u_{1}, u_{2}, u3)
and (v_{1}, v_{2}) around q\in M and  $\pi$\circ f(q)\in \mathbb{R}^{2} such that

(v_{1}\circ( $\pi$\circ f), v_{2}\circ( $\pi$\circ f))=(u_{1_{\rangle}}u_{2}^{2}\pm u_{3}^{2})

holds. Here, S(f) corresponds to \{u3 =0\} . If q corresponds to the map

(v\mathrm{i}^{\mathrm{O}}( $\pi$\circ f), v_{2}\mathrm{o}( $\pi$\circ f)) = (u\mathrm{i}, u_{2}^{2}+u_{3}^{2}) (resp. ( v\mathrm{i}^{\mathrm{O}}( $\pi$\circ f) ) v_{2}\mathrm{o}( $\pi$\circ f) ) =

(u_{1}, u_{2}^{2}-u_{3}^{2} then we should paint q and  $\pi$\circ f(q) red (resp. blue). \mathrm{F}\mathrm{h} om

the local picture around S(f_{V}^{ $\pi$}) , we have the following.
\bullet On each connected component of  S(f_{V}^{ $\pi$})\backslash {cusp points}, it should be

colored by red or blue.
\bullet If two connected components of  S(f_{V}^{ $\pi$})\backslash {cusp points} adjacent to the

same cusp point, then they are painted by the different colors. See Figure 2

of the web version for example.
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3. CONSTRUCTION OF A STABLE F0LD MAP f^{(2,1)} : L(2,1)\rightarrow \mathbb{R}^{3}
In this section, we construct a stable fold map f^{(2,1} ) : L(2,1)\rightarrow \mathbb{R}^{3} such

that S(f^{(2,1)})=T^{2} is a Heegaard surface of L (2 ) 1).
(Step 1.) Let g : V\rightarrow \mathbb{R}^{2} be a stable map of a closed connected surface

V to \mathbb{R}^{2} such that the contour g(S(g)) and the inverse images  g^{-1}(\mathbb{R}_{t_{1}})\cap
 V,

.. .

, 9^{-1}(\mathbb{R}_{t_{11}})\cap V are depicted in Figure 1. Here, \mathbb{R}_{t} is a line defined by
\mathbb{R}_{t}=\{(t, y)\in \mathbb{R}^{2}|y\in \mathbb{R}\}.

Since g^{-1}(\mathbb{R}_{t_{1}})\cap V_{\text{）}}\ldots,g^{-1}(\mathbb{R}_{t_{11}})\cap V can be seen as a sequence of immersed

curves in \mathbb{R}_{t_{i}}^{2} , we can lift the stable map g : V\rightarrow \mathbb{R}^{2} to a generic immersion

g' : V\rightarrow \mathbb{R}^{3} such that g= $\pi$\circ g' . From Figure 1, we can check that V is

a torus. In the following, we consider that the sequence in Figure 1 is the

sequence of immersed circles g'(V)\cap \mathbb{R}_{t_{1}}^{2} ,
. . .

, g'(V)\cap \mathbb{R}_{t_{11}}^{2}.
(Step 2.) Fkom Figure 1, we construct two kinds of sequences of immersed

surfaces which are extensions of immersed circles g'(V)\cap \mathbb{R}_{t_{1}}^{2} , . . .

,  g'(V)\cap
\mathbb{R}_{t_{11}}^{2} . Figure 2 represents one sequence of immersed surfaces and Figure 3

represents another sequence.

By combining the immersed surfaces in Figure 2, we have an immersion

f_{1} : M_{1}\rightarrow \mathbb{R}^{3} which is one extension of the generic immersion 9� : V\rightarrow \mathbb{R}^{3}.

Also, by combining the immersed surfaces in Figure 3, we have an immersion

f_{2} : M_{2} \rightarrow \mathbb{R}^{3} which is another extension of the generic immersion g' :

V\rightarrow \mathbb{R}^{3} . We define the orientation of M_{1} (resp. M_{2} ) so as the immersion

f_{1} (resp. f_{2} ) is an orientation preserving (resp. orientation reversing). In

Figure 2 (resp. Figure 3), green bands explain how each immersed surface

f_{1}(M_{1})\cap \mathbb{R}_{t_{i}}^{2} (resp. f_{2}(M_{2})\cap \mathbb{R}_{t_{i}}^{2} ) is obtained as the extension of the immersed

circles g'(V)\cap \mathbb{R}_{t_{i}}^{2} . See the web version.

(Step 3) Let C\subset V be a circle such that C\subset S(g) and the image g(C) is

depicted as gray thick lines in Figure 4. By a regular homotopy of f_{2} , we can

check that M_{2} is a solid torus and C is a meridian circle of M_{2} . By a regular
homotopy of f_{1} , we can check that M_{1} is a solid torus and C is \mathrm{a}(2,1) ‐curve

of M_{1} . That is, C turns twice in the longitude direction and once in the the

meridian direction on M_{1} . Therefore, by attaching these immersions f_{1} and

f_{2} , we obtain a stable fold map f^{(2,1)}=f_{1}\displaystyle \cup f_{2}:M_{1}\bigcup_{V}M_{2}=L(2,1)\rightarrow \mathbb{R}^{3}
such that S(f^{(2,1)})=V=T^{2} is a Heegaard surface.

4. CONSTRUCTION OF A STABLE FOLD MAP f^{(p,1)} : L(p, 1) \rightarrow \mathbb{R}^{3}

In this section, we construct a stable fold map f^{(p,1)} : L(p, 1)\rightarrow \mathbb{R}^{3} such

that S(f^{(p,1)})=T^{2} is a Heegaard surface of L(p, 1) (p\geq 2) .

(Step 1.) Let 9� : V\rightarrow \mathbb{R}^{3} be a generic immersion of a closed connected

surface V to \mathbb{R}^{3} such that g= $\pi$\circ g' is a stable map and the contour g(S(g))
is depicted in Figure 5. Let U be a subset of \mathbb{R}^{2} depicted in Figure 5. The

image g(V)\cap(\mathbb{R}^{2}\backslash U) of Figure 5 is the same as that of Figure 1. Therefore,
in Figure 6, we only describe a sequence of immersed arcs g'(V)\cap$\pi$^{-1}(\mathbb{R}_{t}\cap U) .

From Figures 5 and 6, we can check that V is a torus.

(Step 2.) From Figure 6, we construct two kinds of sequences of immersed

surfaces which are extensions of immersed arcs g'(V)\cap$\pi$^{-1}(\mathbb{R}_{t}\cap U) . Fig‐
ure 7 represents one sequence of immersed surfaces and Figures 8 represents
another sequence. By combining the immersed surfaces in Figure 7, we have
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q\langle S(\backslash \backslash 

g^{-1}(\mathbb{R}_{1_{2}})\cap V g^{-1}\langle \mathbb{R}_{t_{4}})\cap V g^{-1}(\mathbb{R}_{t_{6}})\cap V g^{-1}\langle \mathbb{R}_{l_{8}})\cap V

g^{-1}(\mathbb{R}_{t_{1}})\cap V g^{-1}(\mathbb{R}_{t_{3}})\cap V g^{-1}(\mathbb{R}_{t_{5}})\cap V g^{-1}(\mathbb{R}_{\mathrm{t}-})\cap V g^{-1}(\mathbb{R}_{t_{9}})\cap V g^{-1}(\mathbb{R}_{t_{11}})\cap V

FIGURE 1. The contour of g : V\rightarrow \mathbb{R}^{2} and the sequence of

sectional faces of g(V) or g'(V) .

an immersion f_{1} : M_{1} \rightarrow \mathbb{R}^{3} which is one extension of the generic immersion

g' : V \rightarrow \mathbb{R}^{3} . Also, by combining the immersed surfaces in Figure 8) we

have an immersion f_{2} : M_{2}\rightarrow \mathbb{R}^{3} which is another extension of the generic
immersion g' : V\rightarrow \mathbb{R}^{3} . We define the orientation of M_{1} (resp. M_{2} ) so as the

immersion f_{1} (resp. f_{2} ) is an orientation preserving (resp. orientation revers‐

ing). In Figure 7 (resp. Figure 8), green bands explain how each immersed
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g (S(
.

f_{1(M_{1})\cap \mathbb{R}_{\mathrm{z}_{2}}^{2}} f_{1}(M\mathrm{J})\cap \mathbb{R}_{1_{4}}^{2} f\mathrm{l}(M_{1})\cap \mathbb{R}_{t_{6}}^{2} f_{1(M_{1})\cap \mathbb{R}_{t_{8}}^{2}} -0

f_{1(M_{1})\cap \mathbb{R}_{t_{1}}^{2}} f_{\mathrm{I}(M_{1})\cap \mathbb{R}_{\mathrm{t}_{3}}^{2}} f_{1} (A I_{1} ) \cap \mathbb{R}_{t_{5}}^{2} f_{1}(_{A}\mathfrak{h}I_{1})\cap \mathbb{R}_{\mathrm{t}_{7}}^{2} f_{1(M_{1})\cap \mathbb{R}_{t_{9}}^{2}} f_{1(\mathrm{A}f_{1})\cap \mathbb{R}_{\mathrm{t}_{11}}^{2}}.

FIGURE 2. The sequence of sectional faces of f_{1} (M1).

surface f_{1}(M_{1})\cap$\pi$^{-1}(\mathbb{R}_{t}\cap U) (resp. f_{2}(M_{2})\cap$\pi$^{-1}(\mathbb{R}_{t}\cap U) ) is obtained as the

extension of the immersed arcs g'(V)\cap$\pi$^{-1}(\mathbb{R}_{t}\cap U) . See the web version.

(Step 3) Let C\subset V be a circle such that C\subset S(g) and the image g(C)
is depicted as gray thick lines in Figure 9. By a regular homotopy of f_{2},
we can check that M_{2} is a solid torus and C is a meridian circle of M_{2} . By
a regular homotopy of f_{1} , we can check that M_{1} is a solid torus and C is

\mathrm{a} (p,p-1)‐curve of M_{1} . Therefore, by attaching these immersions f_{1} and
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g(S(.
\cdot\cdot

 f_{2( $\lambda$\prime 1_{2})\cap \mathbb{R}_{t_{2}}^{2}} f_{2(1\mathrm{I}1_{2})\cap \mathbb{R}_{t_{4}}^{2}} f_{2(114_{2})\cap \mathbb{R}_{\ell_{6}}^{2}} f_{2(11f_{2})\cap \mathbb{R}_{t_{8}}^{2}} ‐o

f_{2( $\Lambda$ l_{2})\cap \mathbb{R}_{t_{1}}^{2}} f_{2(M_{2})\cap \mathbb{R}_{t_{ $\theta$}}^{2}} f_{2( $\Lambda$ I_{2})\cap \mathbb{R}_{t_{5}}^{2}} f_{2(M_{2})\cap \mathbb{R}_{t_{7}}^{2}} f_{2(M_{2})\cap \mathbb{R}_{t_{9}}^{2}} f_{2(M_{2})\cap \mathbb{R}_{t_{11}}^{2}}

FIGURE 3. The sequence of sectional faces of f_{2} (M2).

f_{2} , we obtain a stable fold map f_{1}\cup f_{2} : M_{1}\displaystyle \bigcup_{V}M_{2} = L(p,p-1) \rightarrow \mathbb{R}^{3}
such that S(f_{1}\cup f_{2}) =V=T^{2} is a Heegaard surface. Since L(p,p-1) is

diffeomorphic to L(p, 1) , f^{(p,1)}=f_{1}\cup f_{2} is a desired stable fold map.
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)

FIGURE 4. The image of the curve C which is a meridian

circle of M_{2}.

p-1 (p is even)
.-9 ..

FIGURE 5. The contour of g:V\rightarrow \mathbb{R}^{2}.

\Vert \Vert
\Vert \Vert

FIGURE 6. The sequence of the sectional faces of  g'(V) .
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FIGURE 7. The sequence of sectional faces of f_{1} (M1).

5. REMARKS AND PROBLEMS

In Sections 3 and 4, we only construct a stable fold map of L(p, 1) whose

singular set is a genus one Heegaard surface. Therefore, we have a following
problem.

Problem 5.1. Construct a stable fold map f^{(p,q)} : L(p, q)\rightarrow \mathbb{R}^{3} such that

S(f^{(p,q)}) is a genus one Heegaard surface (p-1>q>1) .

For the stable fold map f^{(2,1\rangle} : L(2,1)\rightarrow \mathbb{R}^{3} of Section 3, we can check

that (f^{(2,1)})^{-1} ( f^{(2,1)} (L (2) 1))\cap \mathbb{R}_{t_{6}}^{2} ) is a torus in L(2,1) . Let \mathbb{R}_{(-\infty,t_{6}]}^{3} and
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FIGURE 8. The sequence of sectional faces of f_{2} (M2).

\mathbb{R}_{[\mathrm{t}_{6},\infty)}^{3} be half spaces defined by \mathbb{R}_{(-\infty,t_{6}]}^{3} =\{(x, y, z) \in \mathbb{R}^{3} | x\in (-\infty, t_{6}]\}
and \mathbb{R}_{[t_{6},\infty)}^{3}=\{ (x, y, z)\in \mathbb{R}^{3} |x\in[t_{6} ) \infty Let Ni and  N_{2} be submanifolds

of L(2,1) defined by N_{1}=L(2,1)\cap(f^{(2,1)})^{-1}(\mathbb{R}_{(-\infty,t_{6}]}^{3}) and  N_{2}=L(2,1)\cap

(f^{(2,1)})^{-1}(\mathbb{R}_{[t_{6},\infty,t_{6})}^{3}) . We have a following problem.

Problem 5.2. Does the decomposition N_{1}\displaystyle \bigcup_{T^{2}}N_{2} represent a genus one

Heegaard splitting of L(2,1) ?

Let S^{3}=D_{1}^{3}\displaystyle \bigcup_{S_{1}^{2}}S^{2}\times I\bigcup_{S_{2}^{2}}D_{2}^{3} be a decomposition of S^{3} and e : S^{3}\rightarrow \mathbb{R}^{3} be

a stable fold map such that S(e)=S_{1}^{2}\cup S_{2}^{2} and e|D_{1}^{3} and e|D_{2}^{3} are orientation
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FIGURE 9. The image of the curve C which is a meridian

circle of M_{2}.

preserving immersions and e|S^{2} \times I is an orientation reversing immersion.

Figure 10 represents the contour of the stable map e_{S_{1}^{2}\cup S_{2}^{2}}^{ $\pi$} : S_{1}^{2}\cup S_{2}^{2}\rightarrow \mathbb{R}^{2} and

the sequence of the sectional faces of e(S_{1}^{2}\cup S_{2}^{2}) . Figure 11 (resp. Figure 12)
represents the sequence of the sectional faces of e(D_{1}^{3}) (resp. e(D_{2}^{3}) and

Figure 13 represents the sequence of the sectional faces of e(S^{2}\times I) .

FIGURE 10. The contour of e_{S_{1}^{2}\cup S_{2}^{2}}^{ $\pi$} : S_{1}^{2}\cup S_{2}^{2}\rightarrow \mathbb{R}^{2} and the

sequence of the sectional faces of e(S_{1}^{2}\cup S_{2}^{2}) .

By a connected sum of the two stable fold maps f^{(p,1)}\# e and the Eliash‐

berg�s trick which is introduced in [2], we have a stable fold map f_{2}^{(p,1)} :

L(p, 1)\rightarrow \mathbb{R}^{3} such that S(f_{2}^{(p,1)})=T^{2}\# T^{2} is a genus two Heegaard surface

(p\geq 2) . The contour of  $\pi$\circ f_{2}^{(p,1)}|S(f_{2}^{(p,1)}) is depicted in Figure 14. By re‐

peating the above operation, we have a stable fold map f_{k}^{(p,1)} : L(p, 1)\rightarrow \mathbb{R}^{3}
such that S(f_{k}^{(p,1)})=k\# T^{2} is a genus k Heegaard surface (p\geq 2) .
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FIGURE 11. The sequence of the sectional faces of e(D_{1}^{3}) .

FIGURE 12. The sequence of the sectional faces of e(D_{2}^{3}) .

FIGURE 13. The sequence of the sectional faces of e(S^{2}\times I) .
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FIGURE 14. The contour of  $\pi$\circ f_{2}^{(p,1)}|S(f_{2}^{(p,1)}) .

If we use the Eliashberg�s trick for the stable fold map e : S^{3} \rightarrow \mathbb{R}^{3} )

we have a stable fold map f^{(1,0)} : S^{3} \rightarrow \mathbb{R}^{3} such that S(f^{(1,0)}) = T^{2} is

a genus one Heegaard surface. Therefore, we also have a stable fold map

f_{k}^{(1,0)} : S^{3} \rightarrow \mathbb{R}^{3} such that S(f_{k}^{(1,0)}) =k\# T^{2} is a genus k Heegaard surface.

We have a following problem.

Problem 5.3. Construct a nontrivial stable fold map f : L (p ) p-1 ) \rightarrow \mathbb{R}^{3}
such that S(f) is a genus k Heegaard surface (p\geq 1, k\geq 2) .

Let SI(3,1) be the group of oriented bordism classes of immersions of

closed oriented 3‐dimensional manifolds in \mathbb{R}^{4} and SFold (3, 0) the group of

oriented fold cobordism classes of fold maps of closed oriented 3‐dimensional

manifolds into \mathbb{R}^{3} . Let K : S^{3}\rightarrow \mathbb{R}^{4} be an immersion which is constructed

from the track of the standard Froissart‐Morin�s eversion S^{2} \times I \rightarrow \mathbb{R}^{4}.

Hughes [5] showed that the immersion K is a generator of SI(3,1) . Hirato‐

Takase [4] showed that the homomorphisim \mathrm{m} : \mathrm{S} $\Gamma$ \mathrm{o}\mathrm{l}\mathrm{d}(3,0)\rightarrow \mathrm{S}\mathrm{I}(3,1) is an

isomorphism. Since we can check that e and f^{(1,0)} : S^{3}\rightarrow \mathbb{R}^{3} are oriented

fold cobordant, and that the bordism class of K is equal to \mathrm{m}(e) , the stable

fold map f^{(1,0)} : S^{3}\rightarrow \mathbb{R}^{3} is a generator of SFold (3, 0) . This also shows that

f^{(1,0)} : S^{3}\rightarrow \mathbb{R}^{3} is a generator of the third stable stem $\pi$_{3}^{S}.
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