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CONSTRUCTION OF FOLD MAP OF LENS SPACE L(p,1)
WHERE SINGULAR SET IS A TORUS
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1. INTRODUCTION

Throughout the report, all manifolds and maps are differentiable of class
C®. Let f: M — R? be a map of a closed n-dimensional manifold M into
RP (n > p). We denote by S(f) the set of points in M where the rank of the
differential of f is strictly less than p. We say that S(f) C M is a singular
set of f and f(S(f)) C R? is a contour of f.

Let f : M — R3 be a map of a closed connected oriented 3-dimensional
manifold M into R3. For any q € S(f) of f : M — R3, if we can choose
local coordinates (u1,us2,us) centered at ¢ and (v, ve,v3) centered at f(q)
respectively such that f has the following form:

(11) ('Ulofav2°fav3°f) = (ul,’u2,’“§)a

then we call f a fold map. It is known that if f : M — R3 is a fold
map, then S(f) is a closed orientable surface (not necessary connected) and
FIS(f) : S(f) — R? is an immersion. If f|S(f) is an immersion with normal
crossings, we call f a stable fold map.

Eliashberg [2] showed that if a closed surface V splits M into two mani-
folds My, My with OM; = OMy =V, then there exists a fold map f: M —
R3 such that S(f) = V. Here, M; and M, are not necessary connected.
In this report, we apply Eliashberg’s theorem to a lens space L(p,1) and
construct a stable fold map f : M — R3 such that S(f) = T? is a Heegaard
surface of L(p,1) (p > 2). _
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2. DESCRIPTION OF A STABLE FOLD MAP

In this section, we explain a method to depict a stable fold map f : M —
R3. In the following, we assume that M is a closed connected oriented
3-dimensional manifold and that R® and R? are oriented.
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For a stable fold map f : M — R3 such that S(f) = V and M =
Mj Uy My, we remark that f|M; and f|M> are immersions and extensions
of f|[V. We assume that f|M; is an orientation preserving immersion and
f|M> is an orientation reversing immersion. The orientation on M induces
the orientation on V' as follows. For g € V, let {nj,n2,nts} be the basis
of Tg(M1) which defines the orientation on M; and n; the outward normal
vector. Then the orientation on V = 8(M;) is defined by {n2,ns}.

By Bruce and Kirk’s theorem [1], there exists an orthogonal projection
7 : R3 — R? such that 7o f|[V : V — R? is a stable map. It is well-known
that a stable map satisfies the following properties.

Proposition 2.1 ([3]). 4 smooth map g : N — R? of a closed surface N
into R? is a stable map if and only if the following conditions are satisfied.

(1) For every q € S(g), there exist local coordinates (u1,u2) and (v1,v3)
around q and g(q) respectively such that one of the following holds:
(i) (v10g,v209) = (u1,u3), q: fold point,
(ii) (v109,v209) = (u1,u3 — urus), q: cusp point.
(2) If g s a cusp point of g, then g~'(9(q)) N S(g) = {a},
(3) 91S(g)\{set of cusp points of g} is an immersion with normal crossings.

In the following, we set f; = mo f|V. Let ¢ € V be a cusp point of a
stable map f7 : V — R2. For a sufficiently small neighborhood U of f{(q),
the map fJ|U’ : U’ — U has degree +1, where U’ is the component of
(f5)~1(U) containing g. If the degree of g is +1 (resp. —1), then we should
paint ¢ and f7;(q) red (resp. blue).

For each t € R, a plane {(t,y.2) € R3| y,z € R} is denoted by R?. Then,
for almost all t € R, f(V)NR? consists of immersed circles (or an empty set),
f(M;)NR? consists of immersed surfaces (or an empty set) and f(M;)NR? is
an extension of f(V)NRZ. Therefore, from the pictures f (M1)NRZ, f(M1)N
R?gs sy f(Ml) ﬂR?ﬂ and f(M2) nR%l’ f(M2) nRt223 cee af(M2)n]R¥n, we can
see the immersed 3-dimensional manifold f(Mj), f(M2) and the image of
the stable fold map f(M). Note that the planes ]R%l,]R%z, . ,an can be
chosen from the picture of the contour f3(S(f%)) C R2.

For a fold point ¢ € S(f{;) of f{;, there exist local coordinates (u1,ug2, u3)
and (vy,v2) around ¢ € M and 7 o f(g) € R? such that

(v1o(mof),vmo(mof)) = (u1,uj +ud)

holds. Here, S(f) corresponds to {ug = 0}. If g corresponds to the map
(vio(mo f),v20(mof)) = (u1,u3 +uj) (resp. (vio(mo f),v20(mof)) =
(u1,u4 — u3)), then we should paint ¢ and 7 o f(q) red (resp. blue). From
the local picture around S(f{;), we have the following.

¢ On each connected component of S(f7;) \ {cusp points}, it should be
colored by red or blue.

o If two connected components of S(f{;) \ {cusp points} adjacent to the
same cusp point, then they are painted by the different colors. See Figure 2
of the web version for example.
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3. CONSTRUCTION OF A STABLE FOLD MAP f(1) : L(2,1) — R3

In this section, we construct a stable fold map £ : L(2,1) — R3 such
that S(f>1)) = T? is a Heegaard surface of L(2,1).

(Step 1.) Let g : V — R2 be a stable map of a closed connected surface
V to R? such that the contour g(S(g)) and the inverse images g~*(R;,) N
V,..., 0" (Ry,,) NV are depicted in Figure 1. Here, R; is a line defined by
R: = {(t,y) € R?|y € R}.

Since g71(Ry, )NV, ..., g7 (Ry,, )NV can be seen as a sequence of immersed
curves in ]Rfi, we can lift the stable map g : V — R? to a generic immersion
g : V — R such that g = 7 o ¢’. From Figure 1, we can check that V is
a torus. In the following, we consider that the sequence in Figure 1 is the
sequence of immersed circles g'(V)NRZ ,...,¢'(V)NRZ .

(Step 2.) From Figure 1, we construct two kinds of sequences of immersed
surfaces which are extensions of immersed circles ¢'(V) NRZ,...,¢'(V) N
an. Figure 2 represents one sequence of immersed surfaces and Figure 3
represents another sequence.

By combining the immersed surfaces in Figure 2, we have an immersion
f1: M1 — R3 which is one extension of the generic immersion ¢’ : V — R3.
Also, by combining the immersed surfaces in Figure 3, we have an immersion
f2 : My — R3 which is another extension of the generic immersion ¢’ :
V — R3. We define the orientation of M; (resp. M>) so as the immersion
J1 (resp. f2) is an orientation preserving (resp. orientation reversing). In
Figure 2 (resp. Figure 3), green bands explain how each immersed surface
F1(M)NR?, (resp. f2(M2)NR? ) is obtained as the extension of the immersed
circles g'(V) NRZ,. See the web version.

(Step 3) Let C C V be a circle such that C C S(g) and the image g(C) is
depicted as gray thick lines in Figure 4. By a regular homotopy of f2, we can
check that Ms is a solid torus and C' is a meridian circle of Mj. By a regular
homotopy of f1, we can check that M is a solid torus and C is a (2, 1)-curve
of My. That is, C turns twice in the longitude direction and once in the the
meridian direction on M;. Therefore, by attaching these immersions f; and
f2, we obtain a stable fold map f(2'1) = fiUfo: Mj Uy My = L(2,1) - R3
such that S(f1V) = V = T2 is a Heegaard surface.

4. CONSTRUCTION OF A STABLE FOLD MAP f®1 : L(p,1) — R3

In this section, we construct a stable fold map f®1 : L(p,1) — R3 such
that S(f®1) = T? is a Heegaard surface of L(p,1) (p > 2).

(Step 1.) Let ¢’ : V — R3 be a generic immersion of a closed connected
surface V to R3 such that g = mo g’ is a stable map and the contour g(S(g))
is depicted in Figure 5. Let U be a subset of R? depicted in Figure 5. The
image g(V)N(R2\U) of Figure 5 is the same as that of Figure 1. Therefore,
in Figure 6, we only describe a sequence of immersed arcs ¢’(V)N7~1(R;NU).
From Figures 5 and 6, we can check that V is a torus.

(Step 2.) From Figure 6, we construct two kinds of sequences of immersed
surfaces which are extensions of immersed arcs ¢/(V) N7~ 1(R, N U). Fig-
ure 7 represents one sequence of immersed surfaces and Figures 8 represents
another sequence. By combining the immersed surfaces in Figure 7, we have
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FIGURE 1. The contour of g : V — R? and the sequence of
sectional faces of g(V') or ¢'(V).

an immersion f; : M; — R3 which is one extension of the generic immersion
g : V = R3. Also, by combining the immersed surfaces in Figure 8, we
have an immersion fs : My — R3 which is another extension of the generic
immersion g’ : V — R3. We define the orientation of M) (resp. M>) so as the
immersion f; (resp. f) is an orientation preserving (resp. orientation revers-
ing). In Figure 7 (resp. Figure 8), green bands explain how each immersed
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FIGURE 2. The sequence of sectional faces of fi(Mi).

surface fi(M1)Na~ (ReNU) (resp. fo(M2)N7~L(R;NU)) is obtained as the
extension of the immersed arcs ¢'(V) N7~ 1(R; N U). See the web version.
(Step 3) Let C C V be a circle such that C C S(g) and the image g(C)
is depicted as gray thick lines in Figure 9. By a regular homotopy of fo,
we can check that M; is a solid torus and C is a meridian circle of Ma. By
a regular homotopy of f1, we can check that M; is a solid torus and C is
a (p,p — 1)-curve of M;. Therefore, by attaching these immersions f; and
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Fi1GURE 3. The sequence of sectional faces of fo(M3).

f2, we obtain a stable fold map fi U fa : My Uy My = L(p,p — 1) — R3
such that S(f1 U fo) = V = T? is a Heegaard surface. Since L(p,p — 1) is
diffeomorphic to L(p,1), f®1 = f, U f» is a desired stable fold map.
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FIGURE 4. The image of the curve C which is a meridian
circle of Ms.
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FIGURE 6. The sequence of the sectional faces of ¢’(V).
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FIGURE 7. The sequence of sectional faces of f1(My).

5. REMARKS AND PROBLEMS

In Sections 3 and 4, we only construct a stable fold map of L(p, 1) whose
singular set is a genus one Heegaard surface. Therefore, we have a following
problem.

Problem 5.1. Construct a stable fold map f®% : L(p,q) — R3 such that
S(f®9) is a genus one Heegaard surface (p — 1 > ¢ > 1).

For the stable fold map f@1 : L(2,1) — R3 of Section 3, we can check
that (f3)~1 (f&D(L(2,1)) NRE) is a torus in L(2,1). Let R  and

(—°°th
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FIGURE 8. The sequence of sectional faces of fa(Ms).
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R:[item) be half spaces defined by ]R?_oo’ts] ={(z,y,2) € R® | z € (—o0, ¢}
and Rﬁts,oo) = {(z,y,2) € R® | z € [tg,0)}. Let N1 and N, be submanifolds
of L(2,1) defined by Ny = L(2,1) N (f&1)~ (R} oote) 80d N2 = L(2,1) N

(f@EDY-1(R3 )). We have a following problem.

[t61°°1t6
Problem 5.2. Does the decomposition N7 Up2 Nz represent a genus one
Heegaard splitting of L(2,1)?

Let $3 = D?Usf s2 xIUgs D3 be a decomposition of S® and e : S — R3 be
a stable fold map such that S(e) = S7US? and e|D? and e|Dj are orientation
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FIGURE 9. The image of the curve C which is a meridian
circle of Ms. '

preserving immersions and e|S? x I is an orientation reversing immersion.
Figure 10 represents the contour of the stable map e§§us§ : S2US2 — R? and

the sequence of the sectional faces of e(S? U S2). Figure 11 (resp. Figure 12)
represents the sequence of the sectional faces of e(D3) (resp. e(Dj) and
Figure 13 represents the sequence of the sectional faces of e(S? x I).

COEEGOE

FIGURE 10. The contour of e, o, : 52U S2 — R? and the
1 2

sequence of the sectional faces of e(S? U 532).

By a connected sum of the two stable fold maps f®fe and the Eliash-
berg’s trick which is introduced in [2], we have a stable fold map fz(p’l) :
L(p,1) — R3 such that S( f2(p ’1)) = T4T? is a genus two Heegaard surface
(p > 2). The contour of 7o fy ’I)IS(fz ’1)) is depicted in Figure 14. By re-
peating the above operation, we have a stable fold map f o L(p,1) - R3

k .
such that S( f,gp ’1)) = §7T? is a genus k Heegaard surface (p > 2).
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FIGURE 11. The sequence of the sectional faces of e(D3).

FIGURE 12. The sequence of the sectional faces of e(D3).
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FIGURE 13. The sequence of the sectional faces of e(S2 x I).
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FIGURE 14. The contour of 7 o fz(”’l)|S(f2(p’l)).

If we use the Eliashberg’s trick for the stable fold map e : §3 — R3,
we have a stable fold map f(10 : §3 — R3 such that S(f(1:9)) = T2 is
a genus one Heegaard surface. Therefore, we also have a stable fold map

k
f,gl’o) : 8% — R3 such that S( f,gl’o)) = #T? is a genus k Heegaard surface.
We have a following problem.

Problem 5.3. Construct a nontrivial stable fold map f : L(p,p — 1) — R3
such that S(f) is a genus k& Heegaard surface (p > 1,k > 2).

Let SI(3,1) be the group of oriented bordism classes of immersions of
closed oriented 3-dimensional manifolds in R* and SFold(3,0) the group of
oriented fold cobordism classes of fold maps of closed oriented 3-dimensional
manifolds into R3. Let K : $2 — R* be an immersion which is constructed
from the track of the standard Froissart-Morin’s eversion §2 x I — R%.
Hughes [5] showed that the immersion K is a generator of SI(3,1). Hirato-
Takase [4] showed that the homomorphisim m : SFold(3,0) — SI(3,1) is an
isomorphism. Since we can check that e and f(10) : §3 — R3 are oriented
fold cobordant, and that the bordism class of K is equal to m(e), the stable
fold map f(19) : §3 — R3 is a generator of SFold(3,0). This also shows that
f10) . §3 5 R3 is a generator of the third stable stem 5.

REFERENCES

[1] J. W. Bruce and N. P. Kirk, Generic projections of stable mappings, Bull.
London Math. Soc. 32 (2000), 718-728.

[2] Y. Eliashberg, On singularities of folding type, Math. USSR Izavestija 4 (1970),
1119-1134.

[3] M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Grad-
uate Texts in Mathematics, Vol. 14, Springer-Verlag, New York, Heidelberg,
1973.

[4] Y. Hirato and M. Takase, Compositions of equi-dimensional fold maps, Fund.
Math. 216 (2012), 119-128.

[5] J. F. Hughes, Bordism and regular homotopy of low-dimensional immersions,
Pacific J. Math. 156 (1992), 155-184.

56



