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In this note, we introruce an SR-graph and an SR-cycle; we show that certain
SR-graphs have SR-cycles. The class of SR-graphs is a subclass of the class of
two-edge coloured graphs in which an SR-cycle is called an alternating cycle.
We also consider an application of SR-graphs to group algebras; how to prove
primitivity of group algebras of non-noetherian groups.

1 Two-edge coloured graphs

Let G = (V, E) be a simple graph (i.e., an undirected graph with-
out loops or multi-edges) with vertex set V' and edge set F. G is a
two-edge coloured graph if each of the edges is coloured either red
or blue. We call a path alternating if the successive edges in G alter-
nate in colour. For any W C V| we let G[W] denote the subgraph
of G induced by W, ie., GIW] .= (W, {vw € E|v,w € W}); let
G, =GV \ {'U}]
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A cycle in the graph is called an alternating
cycle if its edges belong alternatively to Eand F.
For example, f;e.f, ef;e,
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We let X(G) denote the set of all cut-vertices of G, i.e., the set of
all v € V so that ¢(G,) > ¢(G). For any terminology and notation
which we do not define, we follow [1] (which can also serve as an
introductory text if needed).

The following result is due to Grossman and Haggkvist [3]:

Theorem 1.1. ([3, Theorem]) Let G be a two-edge coloured graph so
that every vertex is incident with at least one edge of each colour.
Then either G has a cut vertex separating colours, or G has an
alternating cycle.

2 SR-graphs

In this section, we define an SR-graph and an SR-cycle; we show
that certain SR-graphs have SR-cycles. We write G = (V, E) to
denote that G is a simple graph (undirected and without loops
or multi-edges) having vertex set V' and edge set E. We denote
{v,w} € E by vw when there is no risk of confusion. We let I(G)
denote the isolated vertices of G, i.e., the set of all v € V' for which
vw ¢ F for all w € V. We denote by C(G) the set of components
of G, i.e., the set of subgraphs of G which partition G, so that in
each subgraph any two vertices are joined by a path, and so that no
vertices which do not lie in the same subgraph are joined by a path
in G; we let ¢(G) := |C(G)|. We say that G is connected if ¢(G) = 1.
We begin with two definitions:

Definition 2.1. Let G := (V,E) and H := (V, F). If every com-
ponent of G is a complete graph, and if EN F = (, then we call
the triple S = (V, E, F') a sprint relay graph, abbreviated SR-graph.
We view S as the graph (V, EUF'), guaranteed simple as ENF = (),
with edges partitioned into E and F'; we denote S by (G, H) rather
than (V) E, F) when convenient.
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Definition 2.2. A cycle in an SR-graph (V| E, F') is called an SR~
cycle if its edges belong alternatively to £ and not to F; more
formally, we call cycle (V', E’) an SR-cycle if there is labeling V' =
{v1,v9,...,v.} and E' = {v1v2, V903, . . . , Ue_1V¢, Vet1 } SO that v;v;41 €
E if and only if ¢ is odd, for some even c.

An SR-graph

E={e, €5 . en }/ F={fpfo sJm },

$ = (V, E, F) is an SR-graph

if every component of &= (V,E) v,

is a complete graph.

The class of SR-graphs is a subclass of the class of two-edge
coloured graphs in which an SR-cycle is simply an alternating cycle
(see the previous section).

For the remainder of this section, fix S = (V, E, F), G = (V, E),
and H = (V,F) so that V # (), every component of G complete,
and S an SR-~graph. Moreover, let H, Hs,...,H, denote the com-
ponents of H with H; = (V;, E;) over ¢ € [n]. We first address the
case in which H; is a complete graph for each i € [n] as follows:

Theorem 2.3. ([4, Theorem 2.3]) If S is connected and each com-
ponent of H is complete, then S has an SR-cycle if and only if
c(G)+c(H) <|V|+1.

Recall that X(G) denote the set of all cut-vertices of G. The



83

following result follows from Theorem 1.1:

Lemma 2.4. If S has no SR-cycle, then I(G) U I(H) U X(S) # 0.

Before moving on, let us collect some straightforward observa-

tions:

Remark 2.5. Assume that S, G, and H satisfy the hypotheses of
Theorem 2.3.

(I) If v ¢ X(S), then
(i) v € I(G)UI(H) implies ¢(Gy) + c(Hy) = c(G)+c(H) — 1,
(ii) v ¢ I(G)UI(H) implies ¢(G,) = ¢(G) and c(H,) = c(H).
(II) If v € X(S), then without loss of generality,

(i) Sy isan SR-graph with components (G;, H1) and (Ga, H2);

(i) i (e(Gi) + e(Hi)) = e(G) + c(H) and |V3] + V3| =
|V| — 1, where V; and V; are the vertex sets of (G, H;)
and (Ga, H2), respectively.

We are now ready to prove Theorem 2.3.

Proof of Theorem 2.3. Before entering the heart of this proof, we
show that
() +c(H) < [VI+1, (1)

which holds trivially when |V| = 1. Assume, by way of induction,
that |V| > 1 and that (1) holds for SR-graphs on fewer vertices.
Fix ve V. If v ¢ X(S), then S, is connected and H, has complete
components; thus, ¢(G,) + ¢(H,) < |V| by induction, and so (1)
follows from Remark 2.5(I). If v € X (S), then S, has components
(G1,H1) and (Ga, H2) by Remark 2.5(IT)(i); by induction, ¢(G;) +
c(H;) < |Vi|+1 for i € [2], and thus (1) holds by Remark 2.5(II)(ii).
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We are now ready for the crux of our argument. First, assume that
S has an SR-cycle. We prove by induction on |V| that ¢(G)+c(H) <
V] + 1, noting that we may assume |V| > 4. This holds trivially
if |V| = 4, so assume |V| > 4 and, by way of induction, that the
the result holds for SR-graphs on fewer vertices. This result holds
trivially if S is an SR-cycle, so we may assume that there is C C V
so that S[C] is an SR-cycle.

Consider v € V' \ C. If v ¢ X(S), then we can obtain the de-
sired result with a similar argument to that which we used in the
first paragraph when v ¢ X(S) was assumed. Assume v € X(S§),
in which case S, has components (Gi,H;) and (Gs, H2) by Re-
mark 2.5(I1)(i). Since v € X(S) and G and H have complete compo-
nents, either C' C Vj or C' C Vy; say, without loss of generality, that
C C V1. Then, by our induction hypothesis, ¢(G;)+c(H;) < [Vi|+1.
Also, by (1), c(G2) + c(Hz) < |Va| + 1. Thus, by Remark 2.5(IT)(ii)
that c(G) + ¢(H) < |V|+ 1.

To prove the converse, by (1), it suffices to show that if S has
no SR-cycle, then ¢(G) + ¢(H) = |V| + 1. To that end, assume S
has no SR-cycle. Our proof will again be by induction on |V|. If
X(S) # 0 then we may consider v € X(S) and obtain the result
with a similar argument to that which we used in the first paragraph
when v € X (S) was assumed. Assume X (S) = ). By Lemma 2.4,
there is v € I(G) U I(H). By induction, ¢(G,) + ¢(H,) = |V|. Tt
follows from Remark 2.5(1)(i) that ¢(G) + ¢(H) = |V| + 1. 0

Let I := I(G), W := V\I, W; := V;\ I, and say H|W;] = (W,, F}).

For any my, ma,...,my; € N, we let Ky, m, .. m, denote the complete

multipartite graph with partite sets of size mq, mao, ..., my, i.e., the
graph (V'  E') so that V' can be partitioned into sets Pi, P,,. .., B
called partite sets, with | P;| = m; and vw € E’ if and only if v and w
are in different partite sets for all v, w € V.. Welet u(Km, ms,...m,) ==

max;ex {m;}. We now handle the case in which each component of
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‘H is complete multipartite. We can then get the following theorem:

Theorem 2.6. ([4, Theorem 2.6]) Assume that H; is a complete
multipartite graph for each i € [n]. If |I| < n and |Vi| > 2u(H;) for
each i € [n], then S has an SR-cycle. :

In order to build to a proof of Theorem 2.6, we need two lemmas
(see [4]).

Lemma 2.7. Let U CV withUNI =0, and let U' :== V\U. Then,
INU| < |[IGU| < [ InU'|+ U]

Lemma 2.8. If H[W;] # K1 for all m > 2 and I(H[W]) = 0,
then S has an SR-cycle.

We are now read to prove Theorem 2.6.

Proof of Theorem 2.6. Our proof is by induction on n. Assume
n = 1, and say H; has partite sets P, P,...,P,. We note that
if there are distinct 4,5 € [p], and v;, w; € P; and vj, w; € P; with
viw;, v;w; € E, then S[{v;, w;,v;, w;}] is an SR-cycle by definition.
So, we my assume, without loss of generality, that elements of F
join only vertices of P; (and thus, that P; C I for ¢ # 1). However,
as |Vi| > 2|Py|, this implies that [I| > |V; \ P,| > 1, so this case
cannot occur, and thus the desired result holds when n = 1. As-
sume, by way of induction, that this result holds for all SR-graphs
(V', E', F") satisfying analogous hypotheses, if (V’, F”) has less than
n components.

Suppose that there is ¢ € [n] with H[W;] ~ K, for some m > 2.
Since |W;| = |Vi| — |[I NV} by definition, and since |W;| = m + 1 by
assumption, it follows from our hypotheses that

m+1>2u(H;) —|IN0V;| >2m —|I NV, (2)
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since u(H;) > p(H[W;]) = m. Let Py, P, ..., P be the partite sets
of H;, and let Q1 = {wo} and Q2 = {wy, ws, ..., wy} be the partite
sets of H[W;]; without loss of generality, say Q; C P; and Q2 C Ps.
Now, since |V;| > 2u(H;), k > 3; since H[W;] >~ K} ,,, this implies
that there is v € PsN 1. Let V' be obtained from V by replacing
V; with V' := {wo, w1, v}, and consider S[V’]. Since H[V/] ~ K; 1.,
we have |V/| > 2u(H[V]]). Moreover, if the vertices in Q3 \ {w;}
are removed from V, then the number of additional isolated vertices
caused by the removing of those vertices is at most |Q2 \ {w1}| by
Lemma 2.7. Moreover |(I NV;)| > m by (2), and so it holds that
IGIVD <111 = 1AV {0}l + 1@\ fun}
<n—-(m-1)+(m-1)=n.

Therefore, S[V"] still satisfies the hypotheses of our theorem, and
clearly, if S[V’] has an SR-cycle then so must §. Moreover, by
considering corresponding W] = {wq,w;}, we see that H[W]] ~
K, (and, in particular, no longer isomorphic to K, for any m >
2). Thus, we may assume that H[W;] # Ki,, (by applying this
procedure to any component of H if necessary).

Since H[W;] # Ky, for any m > 2, if F; # () for all i € [n]
(as this is equivalent to I(H[W]) = 0 in this case), then we obtain
the desired result by Lemma 2.8. So, it remains to assume that
H[W;] # K1 m, but that F; = () for some 7. Let V' := V'\ V; and say
S[V'] = (V', E', F"). Since the number of components of (V’, F”) is
n — 1, we may apply our induction hypothesis and prove this result
if |I(G[V'])] < m — 1; we show that this must be the case. Let
m = |W;|. Since H; is a complete k-partite graph and F; = 0, W;
is contained in a partition of #;, and so |V;| > 2m by assumption;
thus, [INV;| = |Vi]—m > m. Since INV' =T\ (INV;) and |I| < n,
we have [INV’| <n—m — 1. On the other hand, by Lemma 2.7,
[I(G[V'])| — I NV'| < m. Hence,

m =[GV = InV| Z [I(GV']))] = (n —m —1),
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and thus [I(G[V'])| <n — 1. O

3 How to apply SR-graph theory to algebras

In order to prove the group algebra R = KG of a group G over a
field K to be primitive, according to the method of Formanek [2],
it suffices to show that for each non-zero a € R, there exists an
element £(a) in the ideal RaR generated by a such that the right
ideal p = 3 cp (01(€(a) + 1)R is proper. The main difficulty here
is how to choose elements £(a)’s so as to make p be proper. Now, p
is proper if and only if » # 1 for all r € p. Since p is generated by
the elements of form (¢(a) 4+ 1) with a # 0, r has the presentation,
r = (apen(e(a) +1)b, where Il is a subset of R x R consisting of a
finite number of elements both of whose components are non-zero.
Moreover, since €(a) and b are linear combinations of elements of
G, r is presented as follows:

r= > Y (agBgh+Bh), (3)

(a,b)€ll €8, ,heTy

where S, and T} are the support of £(a) and b respectively and both
ag and [, are elements in K. In the above presentation (3), if there
exists gh such that gh # 1 and does not coincide with the other
gh’s and h’s, then r # 1 holds.

On the contrary, if 7 = 1, then for each gh in (3) with gh # 1,
there exists another ¢g’h’ or b’ in (3) such that either gh = ¢'h’
or gh = h' holds. Suppose here that there exist (go;_1,h;) and
(92, hiv1) (i = 1,---,m) in V = U(a,b)en S, x Ty such that the



following equations hold:

gihi = goho,
g3ha = gshs,
. (4)

g2m—1hm = g2mhm+1 and  Api1 = hy.

g:hy

gzmhz
/" g:h,
Gomiht

y Ol T 8192 Gam-182m =1

A

Eliminating h;’s in the above, we can see that (4) above implies
the equation g;'gs - - - gor 1g2m = 1. If we can choose £(a)’s so that
their supports g;’s never satisfy such an equation, then we can prove
that 7 # 1 holds by contradiction. We need therefore only to see
when supports ¢’s of £(a)’s satisfy equations as described in (4)
provided r = 1 holds.

In order to see this, we consider a graph which has two distinct
edge sets I/ and F' on the same vertex set V; an SR-graph § =
(V, E, F). Roughly speaking, we regard V = U(a,b)en Sa x Ty above
as the set of vertices and for v = (g,h) and w = (¢, ') in V, we
take an element vw as an edge in E provided gh = ¢’h’ in G, and
take vw as an edge in F provided g # ¢ and h = A’ in G. In
this situation, if there exists an SR-cycle viw vows, - - ,vpwpv; in
the SR-graph (V, E, F'), then there exist (g;, h;)’s in V satisfying
the desired equations as described in (4). Thus the problem can be
reduced to find an SR~cycle in a given SR-graph.
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In fact, by making use of the method described above, we can
show primitivity of group algebras of groups which belong to many
classes of non-noetherian groups, including free groups, locally free
groups, free products, amalgamated free products, HNN-extensions
and one relator groups.

References

[1] J. A. Boundy and U. S. R. Murty, Graph Theory with Applica-
tion, Macmillan, London, Elsevier, New York, 1979.

[2] E. Formanek, Group rings of free products are primitive, J. Al-
gebra, 26(1973), 508-511

[3] J. Grossman and R. Haggkvist, Alternating cycles in edge-
partitioned graphs, J. Combin. Theory Ser. B, 34(1983), 77-81

[4] J. Alexander and T. Nishinaka, Non-noetherian groups and
primitivity of their group algebras, J. Algebra 473 (2017), 221-
246



