An application of two－edge coloured graphs to group algebras of non－noetherian groups

Tsunekazu Nishinaka＊
University of Hyogo
nishinaka＠econ．u－hyogo．ac．jp
James Alexander
University of Delaware

In this note，we introruce an SR－graph and an SR－cycle；we show that certain SR－graphs have SR－cycles．The class of SR－graphs is a subclass of the class of two－edge coloured graphs in which an SR－cycle is called an alternating cycle． We also consider an application of SR－graphs to group algebras；how to prove primitivity of group algebras of non－noetherian groups．

1 Two－edge coloured graphs

Let $\mathcal{G}=(V, E)$ be a simple graph（i．e．，an undirected graph with－ out loops or multi－edges）with vertex set V and edge set $E . \mathcal{G}$ is a two－edge coloured graph if each of the edges is coloured either red or blue．We call a path alternating if the successive edges in \mathcal{G} alter－ nate in colour．For any $W \subseteq V$ ，we let $\mathcal{G}[W]$ denote the subgraph of \mathcal{G} induced by W ，i．e．， $\mathcal{G}[W]:=(W,\{v w \in E \mid v, w \in W\})$ ；let $\mathcal{G}_{v}:=\mathcal{G}[V \backslash\{v\}]$.

Atwo－edgecolouredgraph

[^0]We let $X(\mathcal{G})$ denote the set of all cut-vertices of \mathcal{G}, i.e., the set of all $v \in V$ so that $c\left(\mathcal{G}_{v}\right)>c(\mathcal{G})$. For any terminology and notation which we do not define, we follow [1] (which can also serve as an introductory text if needed).

The following result is due to Grossman and Häggkvist [3]:
Theorem 1.1. ([3, Theorem]) Let \mathcal{G} be a two-edge coloured graph so that every vertex is incident with at least one edge of each colour. Then either \mathcal{G} has a cut vertex separating colours, or \mathcal{G} has an alternating cycle.

2 SR-graphs

In this section, we define an SR-graph and an SR-cycle; we show that certain SR-graphs have SR-cycles. We write $\mathcal{G}=(V, E)$ to denote that \mathcal{G} is a simple graph (undirected and without loops or multi-edges) having vertex set V and edge set E. We denote $\{v, w\} \in E$ by $v w$ when there is no risk of confusion. We let $I(\mathcal{G})$ denote the isolated vertices of \mathcal{G}, i.e., the set of all $v \in V$ for which $v w \notin E$ for all $w \in V$. We denote by $C(\mathcal{G})$ the set of components of \mathcal{G}, i.e., the set of subgraphs of \mathcal{G} which partition \mathcal{G}, so that in each subgraph any two vertices are joined by a path, and so that no vertices which do not lie in the same subgraph are joined by a path in \mathcal{G}; we let $c(\mathcal{G}):=|C(\mathcal{G})|$. We say that \mathcal{G} is connected if $c(\mathcal{G})=1$. We begin with two definitions:

Definition 2.1. Let $\mathcal{G}:=(V, E)$ and $\mathcal{H}:=(V, F)$. If every component of \mathcal{G} is a complete graph, and if $E \cap F=\emptyset$, then we call the triple $\mathcal{S}=(V, E, F)$ a sprint relay graph, abbreviated SR-graph. We view \mathcal{S} as the graph $(V, E \cup F)$, guaranteed simple as $E \cap F=\emptyset$, with edges partitioned into E and F; we denote \mathcal{S} by $(\mathcal{G}, \mathcal{H})$ rather than (V, E, F) when convenient.

Definition 2.2. A cycle in an SR-graph (V, E, F) is called an SRcycle if its edges belong alternatively to E and not to E; more formally, we call cycle $\left(V^{\prime}, E^{\prime}\right)$ an SR-cycle if there is labeling $V^{\prime}=$ $\left\{v_{1}, v_{2}, \ldots, v_{c}\right\}$ and $E^{\prime}=\left\{v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{c-1} v_{c}, v_{c} v_{1}\right\}$ so that $v_{i} v_{i+1} \in$ E if and only if i is odd, for some even c.

An SR-graph

$$
E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\} \quad \quad F=\left\{f_{v}, f_{2}, \ldots, f_{m}\right\}
$$

The class of SR-graphs is a subclass of the class of two-edge coloured graphs in which an SR-cycle is simply an alternating cycle (see the previous section).
For the remainder of this section, fix $\mathcal{S}=(V, E, F), \mathcal{G}=(V, E)$, and $\mathcal{H}=(V, F)$ so that $V \neq \emptyset$, every component of \mathcal{G} complete, and \mathcal{S} an SR-graph. Moreover, let $\mathcal{H}_{1}, \mathcal{H}_{2}, \ldots, \mathcal{H}_{n}$ denote the components of \mathcal{H} with $\mathcal{H}_{i}=\left(V_{i}, E_{i}\right)$ over $i \in[n]$. We first address the case in which \mathcal{H}_{i} is a complete graph for each $i \in[n]$ as follows:

Theorem 2.3. ([4, Theorem 2.3]) If \mathcal{S} is connected and each component of \mathcal{H} is complete, then \mathcal{S} has an $S R$-cycle if and only if $c(\mathcal{G})+c(\mathcal{H})<|V|+1$.

Recall that $X(\mathcal{G})$ denote the set of all cut-vertices of \mathcal{G}. The
following result follows from Theorem 1.1:
Lemma 2.4. If \mathcal{S} has no $S R$-cycle, then $I(\mathcal{G}) \cup I(\mathcal{H}) \cup X(\mathcal{S}) \neq \emptyset$.

Before moving on, let us collect some straightforward observations:

Remark 2.5. Assume that \mathcal{S}, \mathcal{G}, and \mathcal{H} satisfy the hypotheses of Theorem 2.3.
(I) If $v \notin X(\mathcal{S})$, then
(i) $v \in I(\mathcal{G}) \cup I(\mathcal{H})$ implies $c\left(\mathcal{G}_{v}\right)+c\left(\mathcal{H}_{v}\right)=c(\mathcal{G})+c(\mathcal{H})-1$;
(ii) $v \notin I(\mathcal{G}) \cup I(\mathcal{H})$ implies $c\left(\mathcal{G}_{v}\right)=c(\mathcal{G})$ and $c\left(\mathcal{H}_{v}\right)=c(\mathcal{H})$.
(II) If $v \in X(\mathcal{S})$, then without loss of generality,
(i) \mathcal{S}_{v} is an SR-graph with components $\left(\mathcal{G}_{1}, \mathcal{H}_{1}\right)$ and $\left(\mathcal{G}_{2}, \mathcal{H}_{2}\right)$;
(ii) $\sum_{i=1}^{2}\left(c\left(\mathcal{G}_{i}\right)+c\left(\mathcal{H}_{i}\right)\right)=c(\mathcal{G})+c(\mathcal{H})$ and $\left|V_{1}\right|+\left|V_{2}\right|=$ $|V|-1$, where V_{1} and V_{2} are the vertex sets of $\left(\mathcal{G}_{1}, \mathcal{H}_{1}\right)$ and $\left(\mathcal{G}_{2}, \mathcal{H}_{2}\right)$, respectively.

We are now ready to prove Theorem 2.3.
Proof of Theorem 2.3. Before entering the heart of this proof, we show that

$$
\begin{equation*}
c(\mathcal{G})+c(\mathcal{H}) \leq|V|+1 \tag{1}
\end{equation*}
$$

which holds trivially when $|V|=1$. Assume, by way of induction, that $|V|>1$ and that (1) holds for SR-graphs on fewer vertices. Fix $v \in V$. If $v \notin X(\mathcal{S})$, then \mathcal{S}_{v} is connected and \mathcal{H}_{v} has complete components; thus, $c\left(\mathcal{G}_{v}\right)+c\left(\mathcal{H}_{v}\right) \leq|V|$ by induction, and so (1) follows from Remark 2.5(I). If $v \in X(\mathcal{S})$, then \mathcal{S}_{v} has components $\left(\mathcal{G}_{1}, \mathcal{H}_{1}\right)$ and $\left(\mathcal{G}_{2}, \mathcal{H}_{2}\right)$ by Remark $2.5(\mathrm{II})(\mathrm{i})$; by induction, $c\left(\mathcal{G}_{i}\right)+$ $c\left(\mathcal{H}_{i}\right) \leq\left|V_{i}\right|+1$ for $i \in[2]$, and thus (1) holds by Remark 2.5(II)(ii).

We are now ready for the crux of our argument. First, assume that \mathcal{S} has an SR-cycle. We prove by induction on $|V|$ that $c(\mathcal{G})+c(\mathcal{H})<$ $|V|+1$, noting that we may assume $|V| \geq 4$. This holds trivially if $|V|=4$, so assume $|V|>4$ and, by way of induction, that the the result holds for SR-graphs on fewer vertices. This result holds trivially if \mathcal{S} is an SR-cycle, so we may assume that there is $C \subsetneq V$ so that $\mathcal{S}[C]$ is an SR-cycle.

Consider $v \in V \backslash C$. If $v \notin X(\mathcal{S})$, then we can obtain the desired result with a similar argument to that which we used in the first paragraph when $v \notin X(\mathcal{S})$ was assumed. Assume $v \in X(\mathcal{S})$, in which case \mathcal{S}_{v} has components $\left(\mathcal{G}_{1}, \mathcal{H}_{1}\right)$ and $\left(\mathcal{G}_{2}, \mathcal{H}_{2}\right)$ by Remark 2.5(II)(i). Since $v \in X(\mathcal{S})$ and \mathcal{G} and \mathcal{H} have complete components, either $C \subseteq V_{1}$ or $C \subseteq V_{2}$; say, without loss of generality, that $C \subseteq V_{1}$. Then, by our induction hypothesis, $c\left(\mathcal{G}_{1}\right)+c\left(\mathcal{H}_{1}\right)<\left|V_{1}\right|+1$. Also, by (1), $c\left(\mathcal{G}_{2}\right)+c\left(\mathcal{H}_{2}\right) \leq\left|V_{2}\right|+1$. Thus, by Remark 2.5(II)(ii) that $c(\mathcal{G})+c(\mathcal{H})<|V|+1$.
To prove the converse, by (1), it suffices to show that if \mathcal{S} has no SR-cycle, then $c(\mathcal{G})+c(\mathcal{H})=|V|+1$. To that end, assume \mathcal{S} has no SR-cycle. Our proof will again be by induction on $|V|$. If $X(\mathcal{S}) \neq \emptyset$ then we may consider $v \in X(\mathcal{S})$ and obtain the result with a similar argument to that which we used in the first paragraph when $v \in X(\mathcal{S})$ was assumed. Assume $X(\mathcal{S})=\emptyset$. By Lemma 2.4, there is $v \in I(\mathcal{G}) \cup I(\mathcal{H})$. By induction, $c\left(\mathcal{G}_{v}\right)+c\left(\mathcal{H}_{v}\right)=|V|$. It follows from Remark 2.5(I)(i) that $c(\mathcal{G})+c(\mathcal{H})=|V|+1$.

Let $I:=I(\mathcal{G}), W:=V \backslash I, W_{i}:=V_{i} \backslash I$, and say $\mathcal{H}\left[W_{i}\right]=\left(W_{i}, F_{i}\right)$. For any $m_{1}, m_{2}, \ldots, m_{k} \in \mathbb{N}$, we let $K_{m_{1}, m_{2}, \ldots, m_{k}}$ denote the complete multipartite graph with partite sets of size $m_{1}, m_{2}, \ldots, m_{k}$, i.e., the graph $\left(V^{\prime}, E^{\prime}\right)$ so that V^{\prime} can be partitioned into sets $P_{1}, P_{2}, \ldots, P_{k}$ called partite sets, with $\left|P_{i}\right|=m_{i}$ and $v w \in E^{\prime}$ if and only if v and w are in different partite sets for all $v, w \in V$. We let $\mu\left(K_{m_{1}, m_{2}, \ldots, m_{k}}\right):=$ $\max _{i \in[k]}\left\{m_{i}\right\}$. We now handle the case in which each component of
\mathcal{H} is complete multipartite. We can then get the following theorem:
Theorem 2.6. ([4, Theorem 2.6]) Assume that \mathcal{H}_{i} is a complete multipartite graph for each $i \in[n]$. If $|I| \leq n$ and $\left|V_{i}\right|>2 \mu\left(\mathcal{H}_{i}\right)$ for each $i \in[n]$, then \mathcal{S} has an SR-cycle.

In order to build to a proof of Theorem 2.6, we need two lemmas (see [4]).

Lemma 2.7. Let $U \subseteq V$ with $U \cap I=\emptyset$, and let $U^{\prime}:=V \backslash U$. Then, $\left|I \cap U^{\prime}\right| \leq\left|I\left(\mathcal{G}\left[U^{\prime}\right]\right)\right| \leq\left|I \cap U^{\prime}\right|+|U|$.

Lemma 2.8. If $\mathcal{H}\left[W_{i}\right] \not \not K_{1, m}$ for all $m \geq 2$ and $I(\mathcal{H}[W])=\emptyset$, then \mathcal{S} has an SR-cycle.

We are now read to prove Theorem 2.6.
Proof of Theorem 2.6. Our proof is by induction on n. Assume $n=1$, and say \mathcal{H}_{1} has partite sets $P_{1}, P_{2}, \ldots, P_{p}$. We note that if there are distinct $i, j \in[p]$, and $v_{i}, w_{i} \in P_{i}$ and $v_{j}, w_{j} \in P_{j}$ with $v_{i} w_{i}, v_{j} w_{j} \in E$, then $\mathcal{S}\left[\left\{v_{i}, w_{i}, v_{j}, w_{j}\right\}\right]$ is an SR-cycle by definition. So, we my assume, without loss of generality, that elements of E join only vertices of P_{1} (and thus, that $P_{i} \subseteq I$ for $i \neq 1$). However, as $\left|V_{1}\right|>2\left|\dot{P}_{1}\right|$, this implies that $|I| \geq\left|V_{1} \backslash P_{1}\right|>1$, so this case cannot occur, and thus the desired result holds when $n=1$. Assume, by way of induction, that this result holds for all SR-graphs ($V^{\prime}, E^{\prime}, F^{\prime}$) satisfying analogous hypotheses, if $\left(V^{\prime}, F^{\prime}\right)$ has less than n components.

Suppose that there is $i \in[n]$ with $\mathcal{H}\left[W_{i}\right] \simeq K_{1, m}$ for some $m \geq 2$. Since $\left|W_{i}\right|=\left|V_{i}\right|-\left|I \cap V_{i}\right|$ by definition, and since $\left|W_{i}\right|=m+1$ by assumption, it follows from our hypotheses that

$$
\begin{equation*}
m+1>2 \mu\left(\mathcal{H}_{i}\right)-\left|I \cap V_{i}\right| \geq 2 m-\left|I \cap V_{i}\right| \tag{2}
\end{equation*}
$$

since $\mu\left(\mathcal{H}_{i}\right) \geq \mu\left(\mathcal{H}\left[W_{i}\right]\right)=m$. Let $P_{1}, P_{2}, \ldots, P_{k}$ be the partite sets of \mathcal{H}_{i}, and let $Q_{1}=\left\{w_{0}\right\}$ and $Q_{2}=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ be the partite sets of $\mathcal{H}\left[W_{i}\right]$; without loss of generality, say $Q_{1} \subseteq P_{1}$ and $Q_{2} \subseteq P_{2}$. Now, since $\left|V_{i}\right|>2 \mu\left(\mathcal{H}_{i}\right), k \geq 3$; since $\mathcal{H}\left[W_{i}\right] \simeq K_{1, m}$, this implies that there is $v \in P_{3} \cap I$. Let V^{\prime} be obtained from V by replacing V_{i} with $V_{i}^{\prime}:=\left\{w_{0}, w_{1}, v\right\}$, and consider $\mathcal{S}\left[V^{\prime}\right]$. Since $\mathcal{H}\left[V_{i}^{\prime}\right] \simeq K_{1,1,1}$, we have $\left|V_{i}^{\prime}\right|>2 \mu\left(\mathcal{H}\left[V_{i}^{\prime}\right]\right)$. Moreover, if the vertices in $Q_{2} \backslash\left\{w_{1}\right\}$ are removed from V, then the number of additional isolated vertices caused by the removing of those vertices is at most $\left|Q_{2} \backslash\left\{w_{1}\right\}\right|$ by Lemma 2.7. Moreover $\left|\left(I \cap V_{i}\right)\right| \geq m$ by (2), and so it holds that

$$
\begin{aligned}
\left|I\left(\mathcal{G}\left[V^{\prime}\right]\right)\right| & \leq|I|-\left|\left(I \cap V_{i}\right) \backslash\{v\}\right|+\left|Q_{2} \backslash\left\{w_{1}\right\}\right| \\
& \leq n-(m-1)+(m-1)=n .
\end{aligned}
$$

Therefore, $\mathcal{S}\left[V^{\prime}\right]$ still satisfies the hypotheses of our theorem, and clearly, if $\mathcal{S}\left[V^{\prime}\right]$ has an SR -cycle then so must \mathcal{S}. Moreover, by considering corresponding $W_{i}^{\prime}=\left\{w_{0}, w_{1}\right\}$, we see that $\mathcal{H}\left[W_{i}^{\prime}\right] \simeq$ $K_{1,1}$ (and, in particular, no longer isomorphic to $K_{1, m}$ for any $m \geq$ 2). Thus, we may assume that $\mathcal{H}\left[W_{i}\right] \not \not ㇒ K_{1, m}$ (by applying this procedure to any component of \mathcal{H} if necessary).
Since $\mathcal{H}\left[W_{i}\right] \not \not K_{1, m}$ for any $m \geq 2$, if $F_{i} \neq \emptyset$ for all $i \in[n]$ (as this is equivalent to $I(\mathcal{H}[W])=\emptyset$ in this case), then we obtain the desired result by Lemma 2.8. So, it remains to assume that $\mathcal{H}\left[W_{i}\right] \not \approx K_{1, m}$, but that $F_{i}=\emptyset$ for some i. Let $V^{\prime}:=V \backslash V_{i}$ and say $\mathcal{S}\left[V^{\prime}\right]=\left(V^{\prime}, E^{\prime}, F^{\prime}\right)$. Since the number of components of $\left(V^{\prime}, F^{\prime}\right)$ is $n-1$, we may apply our induction hypothesis and prove this result if $\left|I\left(\mathcal{G}\left[V^{\prime}\right]\right)\right| \leq n-1$; we show that this must be the case. Let $m:=\left|W_{i}\right|$. Since \mathcal{H}_{i} is a complete k-partite graph and $F_{i}=\emptyset, W_{i}$ is contained in a partition of \mathcal{H}_{i}, and so $\left|V_{i}\right|>2 m$ by assumption; thus, $\left|I \cap V_{i}\right|=\left|V_{i}\right|-m>m$. Since $I \cap V^{\prime}=I \backslash\left(I \cap V_{i}\right)$ and $|I| \leq n$, we have $\left|I \cap V^{\prime}\right| \leq n-m-1$. On the other hand, by Lemma 2.7, $\left|I\left(\mathcal{G}\left[V^{\prime}\right]\right)\right|-\left|I \cap V^{\prime}\right| \leq m$. Hence,

$$
m \geq\left|I\left(\mathcal{G}\left[V^{\prime}\right]\right)\right|-\left|I \cap V^{\prime}\right| \geq\left|I\left(\mathcal{G}\left[V^{\prime}\right]\right)\right|-(n-m-1)
$$

and thus $\left|I\left(\mathcal{G}\left[V^{\prime}\right]\right)\right| \leq n-1$.

3 How to apply SR-graph theory to algebras

In order to prove the group algebra $R=K G$ of a group G over a field K to be primitive, according to the method of Formanek [2], it suffices to show that for each non-zero $a \in R$, there exists an element $\varepsilon(a)$ in the ideal $R a R$ generated by a such that the right ideal $\rho=\sum_{a \in R \backslash\{0\}}(\varepsilon(a)+1) R$ is proper. The main difficulty here is how to choose elements $\varepsilon(a)$'s so as to make ρ be proper. Now, ρ is proper if and only if $r \neq 1$ for all $r \in \rho$. Since ρ is generated by the elements of form $(\varepsilon(a)+1)$ with $a \neq 0, r$ has the presentation, $r=\sum_{(a, b) \in \mathrm{II}}(\varepsilon(a)+1) b$, where Π is a subset of $R \times R$ consisting of a finite number of elements both of whose components are non-zero. Moreover, since $\varepsilon(a)$ and b are linear combinations of elements of G, r is presented as follows:

$$
\begin{equation*}
r=\sum_{(a, b) \in \Pi} \sum_{g \in S_{a}, h \in T_{b}}\left(\alpha_{g} \beta_{h} g h+\beta_{h} h\right) \tag{3}
\end{equation*}
$$

where S_{a} and T_{b} are the support of $\varepsilon(a)$ and b respectively and both α_{g} and β_{h} are elements in K. In the above presentation (3), if there exists $g h$ such that $g h \neq 1$ and does not coincide with the other $g h$'s and h 's, then $r \neq 1$ holds.
On the contrary, if $r=1$, then for each $g h$ in (3) with $g h \neq 1$, there exists another $g^{\prime} h^{\prime}$ or h^{\prime} in (3) such that either $g h=g^{\prime} h^{\prime}$ or $g h=h^{\prime}$ holds. Suppose here that there exist $\left(g_{2 i-1}, h_{i}\right)$ and $\left(g_{2 i}, h_{i+1}\right)(i=1, \cdots, m)$ in $V=\bigcup_{(a, b) \in \Pi} S_{a} \times T_{b}$ such that the
following equations hold:

$$
\begin{align*}
g_{1} h_{1}= & g_{2} h_{2}, \\
& g_{3} h_{2}=g_{4} h_{3}, \tag{4}
\end{align*}
$$

$$
g_{2 m-1} h_{m}=g_{2 m} h_{m+1} \quad \text { and } \quad h_{m+1}=h_{1} .
$$

Eliminating h_{i} 's in the above, we can see that (4) above implies the equation $g_{1}^{-1} g_{2} \cdots g_{2 m-1}^{-1} g_{2 m}=1$. If we can choose $\varepsilon(a)$'s so that their supports g_{i} 's never satisfy such an equation, then we can prove that $r \neq 1$ holds by contradiction. We need therefore only to see when supports g 's of $\varepsilon(a)$'s satisfy equations as described in (4) provided $r=1$ holds.

In order to see this, we consider a graph which has two distinct edge sets E and F on the same vertex set V; an SR-graph $\mathcal{S}=$ (V, E, F). Roughly speaking, we regard $V=\bigcup_{(a, b) \in \Pi} S_{a} \times T_{b}$ above as the set of vertices and for $v=(g, h)$ and $w=\left(g^{\prime}, h^{\prime}\right)$ in V, we take an element $v w$ as an edge in E provided $g h=g^{\prime} h^{\prime}$ in G, and take $v w$ as an edge in F provided $g \neq g^{\prime}$ and $h=h^{\prime}$ in G. In this situation, if there exists an SR-cycle $v_{1} w_{1} v_{2} w_{2}, \cdots, v_{p} w_{p} v_{1}$ in the SR-graph (V, E, F), then there exist $\left(g_{i}, h_{j}\right)$'s in V satisfying the desired equations as described in (4). Thus the problem can be reduced to find an SR-cycle in a given SR-graph.

In fact, by making use of the method described above, we can show primitivity of group algebras of groups which belong to many classes of non-noetherian groups, including free groups, locally free groups, free products, amalgamated free products, HNN-extensions and one relator groups.

References

[1] J. A. Boundy and U. S. R. Murty, Graph Theory with Application, Macmillan, London, Elsevier, New York, 1979.
[2] E. Formanek, Group rings of free products are primitive, J. Algebra, 26(1973), 508-511
[3] J. Grossman and R. Häggkvist, Alternating cycles in edgepartitioned graphs, J. Combin. Theory Ser. B, 34(1983), 77-81
[4] J. Alexander and T. Nishinaka, Non-noetherian groups and primitivity of their group algebras, J. Algebra 473 (2017), 221246

[^0]: ＊Partially supported by Grants－in－Aid for Scientific Research under grant no． 26400055

