A full-twist inequality for the ν^+ invariant

Kouki Sato¹

School of Science, Tokyo Institute of Technology

1 Back ground

The ν^+ -invariant is a non-negative integer valued knot concordance invariant defined by Hom and Wu [2]. The ν^+ -invariant dominates many concordance invariants derived from Heegaard Floer homology, in terms of obstructions to sliceness, and hence it plays a special role among such knot concordance invariants.

In this section, we give a short review of knot concordance theory and its relationship to Heegaard Floer theory.

1.1 Knot concordance

For two knots K and J in S^3 , let -K denote the orientation reversed mirror image of Jand K # J the connected sum of K and J. We say that K is *concordant* to J if there exists a smooth disk in B^4 with boundary K # (-J), and we denote the relation by $K \underset{\text{conc.}}{\sim} J$. It is well-known that the relation $\underset{\text{conc.}}{\sim}$ is an equivalence relation on the set of knots in S^3 , and connected sum endows the quotient set $\mathcal{C} := \{\text{knots in } S^3\} / \underset{\text{conc.}}{\sim}$ with an abelian group structure. We often call this group \mathcal{C} the *knot concordance group*.

While the knot concordance group has been studied intensively for more than 50 years, the following fundamental problems are still open.

Problem 1. Which two knots are concordant?

Problem 2. Which knots are concordant to the unknot? (Such knots are called slice knots.) Find an algorithm or algebraic criteria for detecting the sliceness.

Problem 3. Determine the group structure of C. (It is known that C has $\mathbb{Z}^{\infty} \oplus (\mathbb{Z}/2\mathbb{Z})^{\infty}$ as a summand.)

 $^{^1\}mathrm{The}$ author was supported by JSPS KAKENHI Grant Number 15J10597.

To attack these problems, we use many kinds of *knot concordance invariants*, i.e. welldefined maps

 $\mathcal{C} \to S$

for some set S.

1.2 Knot concordance invariants from Heegaard Floer theory

Heegaard Floer theory is a Floer homology theory for 3-manifolds established by Ozsváth and Szabó [6, 7]. From Heegaard Floer theory, many knot concordance invariants have been introduced and used to resolve many problems on knot concordance theory. Here we show several such invariants.

- The correction terms d(S³_{p/q}(-), i) : C → Q (p/q ∈ Q, i ∈ Z/pZ) defined by Ozsváth and Szabó [8]. Originally, these are invariants of Dehn surgeries along a knot.
- The τ -invariant $\tau : \mathcal{C} \to \mathbb{Z}$ defined by Ozsváth and Szabó [9]. This is famous as a group homomorphism.
- The V_k -sequence $V_k : \mathcal{C} \to \mathbb{Z}_{\geq 0}$ $(k \in \mathbb{Z}_{\geq 0})$ defined by Ni and Wu [4]. It is known that all correction terms $d(S^3_{p/q}(-), i)$ are determined by the V_k -sequence.
- The ν^+ -invariant $\nu^+ : \mathcal{C} \to \mathbb{Z}_{\geq 0}$ defined by Hom and Wu [2]. This represents a complexity of the V_k -sequence.
- The Upsilon invariant $\Upsilon : \mathcal{C} \to \operatorname{Cont}([0,2],\mathbb{R})$ defined by Ozsváth, Stipsicz and Szabó [5]. Here $\operatorname{Cont}([0,2],\mathbb{R})$ denotes the set of continuous functions on the closed interval [0,2]. This invariant is a group homomorphism whose image contains \mathbb{Z}^{∞} as a subgroup.

Then, how strong are these concordance invariants? Actually, they are invariant under a weaker equivalence relation than $\sim_{\text{conc.}}$, which is defined as follows.

Definition 1. For two elements $x, y \in C$, we say that x is ν^+ -equivalent to y (and denote the relation by $x \underset{\nu^+}{\sim} y$) if the equalities $\nu^+(x-y) = \nu^+(y-x) = 0$ hold.

We can verify that the relation \sim_{ν^+} is an equivalence relation, and Hom proves the following theorem.

Theorem 1.1 (Hom [1]). The quotient $C_{\nu^+} := C/_{\nu^+}$ becomes a quotient group of C. Moreover, the invariants $d(S^3_{p/q}(-), i), \tau, V_k, \nu^+$ and Υ are invariant under $\underset{\nu^+}{\sim}$. In other words, these invariants can be seen as maps on C_{ν^+} . Theorem 1.1 implies that all the above invariants are determined by the ν^+ -equivalence class of knots. Hence, it is an important problem to understand \sim_{ν^+} and C_{ν^+} .

Furthermore, ν^+ -equivalence is meaningful for Heegaard Floer theory, too. In [6], Ozsváth and Szabó associated to a knot a " $\mathbb{Z} \oplus \mathbb{Z}$ -filtered" chain complex CFK^{∞} . The $\mathbb{Z} \oplus \mathbb{Z}$ -filtered chain homotopy equivalence class of CFK^{∞} is a knot invariant, and we can compute various kinds of Floer homology groups from CFK^{∞} ; indeed, we can compute

- the knot Floer homology \widehat{HFK} (and hence we can detect the knot genus and fiberedness as a result), and
- the (all original) Heegaard Floer homology groups \widehat{HF} , HF^{∞} , HF^{\pm} of ALL Dehn surgeries.

In [1], Hom also proves that the ν^+ -equivalence can be translated into an equivalence relation with respect to CFK^{∞} . Let [K] denote the concordance class of a knot K.

Theorem 1.2 (Hom [1]). Two knot concordance classes [K] and [J] are ν^+ -equivalent if and only if there exists a $\mathbb{Z} \oplus \mathbb{Z}$ -filtered chain homotopy equivalence

$$CFK^{\infty}(K) \oplus A_1 \simeq CFK^{\infty}(J) \oplus A_2,$$

where A_1 and A_2 are $\mathbb{Z} \oplus \mathbb{Z}$ -filtered chain complexes with $H_*(A_1) = H_*(A_2) = 0$.

Now, it seems natural to ask the following problems.

Problem 4. Determine the group structure of C_{ν^+} .

Problem 5. Find geometrical meaning of \sim_{μ^+} .

In contrast to the case of C, we can conclude whether a given knot is ν^+ -equivalent to the unknot by using ν^+ . In this work, we mainly consider Problem 5. In particular, we study effects of *full-twist operations* on ν^+ -invariant.

2 Full-twist inequalities for the ν^+ -invariant

As main results of this work, we obtained full-twist inequalities for the ν^+ -invariant. To state the inequalities, we first describe *full-twist operations*. Let K be a knot in S^3 and D a disk in S^3 which intersects K in its interior. By performing (-1)-surgery along ∂D , we obtain a new knot J in S^3 from K. Let $n = \text{lk}(K, \partial D)$. Since reversing the orientation of D does not affect the result, we may assume that $n \ge 0$. Then we say that K is deformed into J by a *positive full-twist with n-linking*, and call such an operation a *full-twist operation*. The main theorem of this paper is stated as follows. **Theorem 2.1.** Suppose that a knot K is deformed into a knot J by a positive full-twist with n-linking. If n = 0, then $\nu^+(J\#(-K)) = 0$. Otherwise, we have

$$\frac{(n-1)(n-2)}{2} \le \nu^+ (J\#(-K)) \le \frac{n(n-1)}{2}.$$

Remark 1. For any coprime p, q > 0, let $T_{p,q}$ denote the (p,q)-torus knot. Then we note that $\nu^+(T_{p,q}) = (p-1)(q-1)/2$ [2, 9], and hence the inequality in Theorem 2.1 implies

$$\nu^+(T_{n,n-1}\#K\#(-K)) \le \nu^+(J\#(-K)) \le \nu^+(T_{n,n+1}\#K\#(-K)).$$

Since both $T_{n,n-1}#K$ and $T_{n,n+1}#K$ are obtained from K by a positive full-twist with *n*-linking, the inequalities are best possible for any K.

Here we note that Theorem 2.1 gives an inequality for J#(-K) rather than J and K. However, by subadditivity of ν^+ , we also have the following result for J and K.

Theorem 2.2. Suppose that K is deformed into J by a positive full-twist with n-linking. If n = 0, then $\nu^+(J) \leq \nu^+(K)$. Otherwise, we have

$$\frac{(n-1)(n-2)}{2} - \nu^+(-K) \le \nu^+(J) \le \frac{n(n-1)}{2} + \nu^+(K).$$

3 Applications

In this section, we show two applications of our full-twist inequalities.

3.1 ν^+ -invariant for cable knots

As an application of Theorem 2.2, we gave a lower bound for the ν^+ -invariant of all cable knots.

Theorem 3.1. For any knot K and coprime integers p, q with p > 0, we have

$$\nu^+(K_{p,q}) \ge p\nu^+(K) + \frac{(p-1)(q-1)}{2},$$

where $K_{p,q}$ denotes the the (p,q)-cable of K.

Note that Wu proves in [10] that the equality holds in the case where p, q > 0 and $q \ge (2\nu^+(K) - 1)p - 1$. Hence Theorem 3.1 extends his result to arbitrary cables in the form of inequality. Furthermore, Theorem 3.1 also enables us to extend Wu's 4-ball genus bound for particular positive cable knots to all positive cable knots.

Corollary 3.2. If $\nu^+(K) = g_4(K)$, then for any coprime p, q > 0, we have

$$\nu^+(K_{p,q}) = g_4(K_{p,q}) = pg_4(K) + \frac{(p-1)(q-1)}{2}.$$

As an application of Corollary 3.2, for instance, we can determine the 4-ball genus for all positive cables of the knot $T_{2,5}\#T_{2,3}\#T_{2,3}\#(-(T_{2,3})_{2,5})$. This example is used in [2] to show that $\nu^+ \neq \tau$. Remark that the τ -invariant cannot determine the 4-ball genus for any positive cable of the knot. Also note that this generalizes [2, Proposition 3.5] and Wu's result in the introduction of [10].

3.2 A partial order on ν^+ -equivalence classes

As another application, we introduced a partial order on C_{ν^+} and studied its relationship to full-twists by using Theorem 2.1. Our partial order is defined as follows.

Definition 2. For two elements $x, y \in \mathcal{C}_{\nu^+}$, we write $x \leq y$ if $\nu^+(x-y) = 0$.

Note that the equality in the above definition is one of the equalities in the definition of ν^+ -equivalence, and so this partial order seems to be very natural. In fact, we can prove the following proposition.

Proposition 3.3. The relation \leq is a partial order on C_{ν^+} with the following properties;

- 1. For elements $x, y, z \in C_{\nu^+}$, if $x \leq y$, then $x + z \leq y + z$.
- 2. For elements $x, y \in C_{\nu^+}$, if $x \leq y$, then $-y \leq -x$.
- 3. For coprime integers p, q > 0, $k \in \mathbb{Z}_{\geq 0}$ and $0 \leq i \leq p-1$, all of $-d(S^3_{p/q}(\cdot), i)$, τ , V_k , ν^+ and $-\Upsilon$ preserve the partial order.

Here the third assertion in Proposition 3.3 implies that there are many algebraic obstructions to one element of C_{ν^+} being less than another. On the other hand, the following theorem establishes similar obstructions in terms of geometric deformations.

Theorem 3.4. Suppose that K is deformed into J by a positive full-twist with n-linking.

- 1. If n = 0 or 1, then $[J]_{\nu^+} \leq [K]_{\nu^+}$.
- 2. If $n \ge 3$, then $[J]_{\nu^+} \nleq [K]_{\nu^+}$. In particular, if the geometric intersection number between K and D is equal to n, then $[J]_{\nu^+} > [K]_{\nu^+}$.

Here $[K]_{\nu^+}$ denotes the ν^+ -equivalence class of a knot K, and the symbol > means $x \ge y$ and $x \ne y$ for elements $x, y \in C_{\nu^+}$.

In the above theorem, we can see that only the case of n = 2 tells us nothing about the partial order. This follows from the fact that Theorem 2.1 gives $0 \le \nu^+(x-y) \le 1$ for n = 2 and hence we can show neither $\nu^+(x-y) = 0$ nor $\nu^+(x-y) \ne 0$.

We also mention the relationship between our partial order and satellite knots. Let P be a knot in a standard solid torus $V \subset S^3$ with the longitude l, and K a knot in S^3 . For $n \in \mathbb{Z}$, Let $e_n : V \to S^3$ be an embedding so that e(V) is a tubular neighborhood of K and $lk(K, e_n(l)) = n$. Then we call $e_n(P)$ the *n*-twisted satellite knot of K with pattern P, and denote it by P(K, n). Furthermore, if P represents m times generators of $H_1(V; \mathbb{Z})$ for $m \geq 0$, then we denote w(P) := m. It is proved in [3, Theorem B] that the map $[K]_{\nu^+} \mapsto [P(K, n)]_{\nu^+}$ for any pattern P with $w(P) \neq 0$. We extend their theorem to all satellite knots, and show that those maps preserve our partial order.

Proposition 3.5. For any pattern P and $n \in \mathbb{Z}$, the map $P_n : \mathcal{C}_{\nu^+} \to \mathcal{C}_{\nu^+}$ defined by $P_n([K]_{\nu^+}) := [P(K, n)]_{\nu^+}$ is well-defined and preserve the partial order \leq .

By Proposition 3.5, we obtain infinitely many order-preserving maps on \mathcal{C}_{ν^+} which have geometric meaning. Now it is an interesting problem to compare these satellite maps. Theorem 3.4 tells us the relationship among the maps $\{P_n\}_{n\in\mathbb{Z}}$ for some particular patterns.

Corollary 3.6. Let P be a pattern.

- 1. If w(P) = 0 or 1, then the inequality $P_m(x) \ge P_n(x)$ holds for any integers m < nand $x \in C_{\nu^+}$.
- 2. If the geometric intersection number between P and the meridian disk of V is equal to w(P) and $w(P) \ge 3$, then $P_m(x) < P_n(x)$ for any m < n and $x \in C_{\nu^+}$.

References

- J. Hom, A survey on Heegaard Floer homology and concordance. J. Knot Theory Ramifications 26 (2017), no. 2, 1740015, 24 pp.
- [2] J. Hom and Z. Wu, Four-ball genus bounds and a refinement of the Ozsváth-Szabó tau-invariant. J. Symplectic Geom. 14 (2016), no. 1, 305–323.
- [3] M. H. Kim and K. Park, An infinite-rank summand of knots with trivial Alexander polynomial. To appear in J. Symplectic Geom. arXiv:1604.04037 (2016).
- [4] Y. Ni and Z. Wu, Cosmetic surgeries on knots in S³. J. Reine Angew. Math. 706 (2015), 1–17.
- [5] P. Ozsváth, A. Stipsicz and Z. Szabó, Concordance homomorphisms from knot Floer homology. Adv. Math. 315 (2017), 366–426.

- [6] P. Ozsváth and Z. Szabó, Holomorphic disks and knot invariants. Adv. Math. 186 (2004), no. 1, 58–116.
- [7] P. Ozsváth and Z. Szabó, Holomorphic disks and topological invariants for closed three-manifolds. Ann. of Math. (2) 159 (2004), no. 3, 1027–1158.
- [8] P. Ozsváth and Z. Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary. Adv. Math. 173 (2003), 179–261.
- [9] P. Ozsváth and Z. Szabó, Knot Floer homology and the four-ball genus. Geom. Topol. 7 (2003), 615–639.
- [10] Z. Wu, A cabling formula for ν^+ invariant. Proc. Amer. Math. Soc. 144 (2016), no. 9, 4089–4098.

School of Science Tokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku, Tokyo JAPAN E-mail address: sato.k.bs@m.titech.ac.jp

東京工業大学・理学院 佐藤 光樹