
On some topological invariants related to localized wave

functions

Shin Hayashi

Mathematics for Advanced Materials‐OIL, AIST‐Tohoku University

1 Introduction

In this note, we consider topological invariants defined for some self‐adjoint operators.

We are interested in such operators modeled on Hamiltonians which are treated in con‐

densed matter physics. We review mathematical aspects of the bulk‐edge correspondence,
which first appeared in the theoretical study of the quantum Hall effect [15, 8], and also

its (mathematical) variants based on the author�s work [9, 10].
The bulk‐edge correspondence can be understood as a relation between two topological

invariants. One is defined for a gapped Hamiltonian on an infinite system without bound‐

ary. This is a model of bulk (see Fig 1) and this invariant is called the bulk index. A model

which comes from an insulator will satisfy this gapped condition. The other is defined

for a Hamiltonian on a system with codimension‐one boundary (edge). This invariant is

related to wave functions localized near the edge (whose eigenvalues are at the Fermi level

of the system) and called the edge index. The existence of such localized wave functions

means that the edge is metallic. By the bulk‐edge correspondence, such wave functions

appear reflecting some topology of the bulk. These topological invariants can be treated

in the framework of K‐theory and index theory, and these widely developed theories are

applied to condensed matter physics [5, 6, 11, 14].
By combining J. Kellendonk, T. Richter and H. Schulz‐Baldes� idea to prove the bulk‐

edge correspondence [11] and E. Park�s result [13], the author defined some secondary
invariants compared to the above mentioned invariants, and showed a relation with wave

functions on a system with codimension‐two boundary (corner) [10]. More precisely, we

consider a three dimensional system with two edges. As an intersection of these two edges

(or as a boundary of codimension‐one boundary), our system has a corner (Fig 2). On

this system, we consider a Hamiltonian which has a spectral gap not only at the bulk

but also at two edges. From the point of view of the bulk‐edge correspondence, such

Hamiltonian can be regarded as a trivial one since bulk index and edge index are both
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zerol. However, we can still define some secondary topological invariants for such gapped

Hamiltonians, and these invariants are related to wave functions (whose eigenvalues are

at the Fermi level) on the system with codimension‐two corner.

In this note, we review these topological invariants and relations on codimension‐one

and two boundary systems. In section 3, we consider a two dimensional system with edge

(Fig 1), and review a proof of the bulk‐edge correspondence from the point of view of K‐

theory and index theory following [9]. We see that the bulk‐edge correspondence follows

directly from the cobordism invariance of the index, which is a basic property of the

index. We here clarify a geometric picture behind this correspondence. In section 4, we

consider a system with corner. We here review definitions of above mentioned topological
invariants and their relation following [10].

Fig 1: Bulk and edge

2 Preliminaries

Fig 2: Bulk, edges and corner

In this note, let \mathbb{T}=\mathbb{S}_{ $\eta$}^{1} be the unit circle in the complex plane2 and V be a finite rank

hermitian vector space whose rank is N.

We use topological K‐theory and K‐theory for C^{*} ‐algebras. Our perspective is based

on M. F. Atiyah and I. M. Singer�s work [2]. We decided not to explain these theories3

since there are many articles on these topics (e.g. [3, 12]) and the results we use here are

briefly summarized in [9, 10]. In order to fix notations, we summarize here the basics of

quarter‐plane Toeplitz operators which will be used in section 4.

Let \mathcal{H} be a Hilbert space l^{2}(\mathbb{Z}\times \mathbb{Z}) . For (m, n) \in \mathbb{Z}\times \mathbb{Z} , let e_{m,n} be an element of \mathcal{H}

which is 1 at (m, n) and 0 elsewhere. Let M_{m,n} be a translation operator on \mathcal{H} defined by

lWe here consider what is called a strong invarzant. A relation with a weak invartant and our invariants defined at

section 4 is not at all clear.

2\mathrm{W}\mathrm{e} use two notations for the same object since two parameters parametrized by these unit circles will play different

roles and it will be convenient to distinguish these two parameter spaces.

3\mathrm{W}\mathrm{e} also need to clarify our sign convention, but we decided not to explain them neither. On sign convention, we follow

the one used in [9, 10].
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(M_{m,n} $\varphi$)(k, l)= $\varphi$(m+k, n+l) . Let  $\alpha$< $\beta$ be real numbers4. Let \mathcal{H}^{ $\alpha$} and \mathcal{H}^{ $\beta$} be closed

subspaces of \mathcal{H} spanned by subsets \{e_{m,n} | - $\alpha$ m+n\geq 0\} and \{e_{m,n} | - $\beta$ m+n\leq 0\},
respectively. Let P^{ $\alpha$} and P^{ $\beta$} be orthogonal projections of \mathcal{H} onto \mathcal{H}^{ $\alpha$} and \mathcal{H}^{ $\beta$} , respectively.
Then P^{ $\alpha$}P^{ $\beta$} is an orthogonal projection of \mathcal{H} onto \mathcal{H}^{ $\alpha,\ \beta$} := \mathcal{H}^{ $\alpha$}\cap \mathcal{H}^{ $\beta$} . Let T^{ $\alpha,\ \beta$} be the

C^{*}‐algebra generated by \{P^{ $\alpha$}P^{ $\beta$}M_{m},{}_{n}P^{ $\alpha$}P^{ $\beta$} | (m, n) \in \mathbb{Z}\times \mathbb{Z}\} ,
called the quarter‐plane

Toeplitz C^{*} ‐algebra. We also define half‐plane Toeplitz C^{*} ‐algebras T^{ $\alpha$} and T^{ $\beta$} to be C^{*}-

algebras generated by \{P^{ $\alpha$}M_{m},{}_{n}P^{ $\alpha$} | (m, n) \in \mathbb{Z}\times \mathbb{Z}\} and \{P^{ $\beta$}M_{m},{}_{n}P^{ $\beta$} | (m, n) \in \mathbb{Z}\times \mathbb{Z}\},
respectively. We have surjective *‐homomorphisms $\gamma$^{ $\alpha$} : T^{ $\alpha,\ \beta$} \rightarrow  T^{ $\alpha$}, $\gamma$^{ $\beta$} : T^{ $\alpha,\ \beta$} \rightarrow  T^{ $\beta$},
$\sigma$^{ $\alpha$}:T^{ $\alpha$}\rightarrow C(\mathbb{T}\times \mathbb{T}) and $\sigma$^{ $\beta$}:T^{ $\beta$}\rightarrow C(\mathbb{T}\times \mathbb{T}) ,

which map P^{ $\alpha$}P^{ $\beta$}M_{m},{}_{n}P^{ $\alpha$}P^{ $\beta$} to P^{ $\alpha$}M_{m},{}_{n}P^{ $\alpha$},
P^{ $\alpha$}P^{ $\beta$}M_{m},{}_{n}P^{ $\alpha$}P^{ $\beta$} to P^{ $\beta$}M_{m},{}_{n}P^{ $\beta$}, P^{ $\alpha$}M_{m},{}_{n}P^{ $\alpha$} to $\chi$_{m,n} and P^{ $\beta$}M_{m},{}_{n}P^{ $\beta$} to $\chi$_{m,n} , respectively,
where $\chi$_{m,n} is a continuous function on \mathbb{T}\times \mathbb{T} defined by $\chi$_{m,n}(z_{1}, z_{2})=z_{1}^{m}z_{2}^{n} . We define a

C^{*}‐algebra S^{ $\alpha,\ \beta$} to be the pullback of T^{ $\alpha$} and T^{ $\beta$} along C(\mathbb{T}\times $\Gamma$) . There is a surjective *-

homomorphism  $\gamma$ :  T^{ $\alpha,\ \beta$}\rightarrow \mathcal{S}^{ $\alpha,\ \beta$} given by  $\gamma$(T)=($\gamma$^{ $\alpha$}(T), $\gamma$^{ $\beta$}(T)) . Let \mathcal{K} be the C^{*}‐algebra
of compact operators on \mathcal{H}^{ $\alpha,\ \beta$} . The following will be a key result in section 4.

Theorem 2.1 (Park [13]). There is the following short exact sequence for C^{*} ‐algebras,

0\rightarrow \mathcal{K}\rightarrow T^{ $\alpha,\ \beta$}\rightarrow^{ $\gamma$}S^{ $\alpha,\ \beta$}\rightarrow 0,

which has a linear splitting5 given by a compression onto \mathcal{H}^{ $\alpha,\ \beta$}.

3 Bulk‐edge correspondence

In this section, we consider a two‐dimensional discrete system without and with edge

(codimension‐one boundary), and consider the bulk‐edge correspondence. We review a

proof of this correspondence based on [9]. For a comprehensive account on this topic, see

E. Prodan and Schulz‐Baldes� book [14].

3.1 Topological invariants and the bulk‐edge correspondence

Let A_{j}:\mathbb{T}\rightarrow \mathrm{E}\mathrm{n}\mathrm{d}_{\mathbb{C}}(V) (j\in \mathbb{Z}) be continuous maps which satisfies \displaystyle \sum_{j\in \mathrm{Z}}||A_{j}||_{\infty}<+\infty,
where ||A_{j}||_{\infty} = \displaystyle \sup_{t\in $\Gamma$}||A_{j}(t)||_{V} and let  $\mu$ \in \mathbb{R} . For each t in \mathbb{T}

,
we define a bounded

linear map H(t) on the Hilbert space l^{2}(\mathbb{Z};V) by (H(t) $\varphi$)_{n}=\displaystyle \sum_{j\in \mathrm{Z}}A_{j}(t)$\varphi$_{n-j} . We assume

that H(t) is a self‐adjoint operator for any t in  $\Gamma$ . We also assume that  $\mu$ \not\in \mathrm{s}\mathrm{p}(H(t))
for any t \in \mathbb{T}

,
which we call the spectral gap condition. Note that H(t) is translation

invariant. We call H(t) a bulk Hamiltonian6.

4We could take  $\alpha$=-\infty or  $\beta$=+\infty but not both.

5This sequence splits as a short exact sequence of linear spaces, and does not split as that of  C^{*} ‐algebras.
6\mathrm{A}\mathrm{n} example is given by a partial Fourier transform of a bounded self‐adjoint operator on l^{2}(\mathrm{Z}\times \mathrm{Z}) whose spectrum

does not contain  $\mu$ . By the spectral gap condition, we regard  H(t) as a model of an insulator.
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Let  $\gamma$ be a simple closed smooth loop through  $\mu$ in \mathbb{C} which surrounds the part of

spectrum of H(t) less than  $\mu$ for any  t\in \mathbb{T} (Fig 3). By the Fourier transform  l^{2}(\mathbb{Z};V)\cong

Fig 3: For  t\in $\Gamma$ , bold black lines indicate the spectrum of the bulk Hamiltonian \mathrm{s}\mathrm{p}(H(t)) . The family of

spectrums of bulk Hamiltonians makes a gray area. The loop  $\gamma$ (and the torus  $\gamma$\times \mathbb{T} ) is indicated as a

(family of) circle(s)

L^{2}(\mathbb{S}_{ $\eta$}^{1};V) ,
we have a continuous family of Hermitian endomorphisms on \mathbb{S}_{ $\eta$}^{1}\times \mathbb{T} given by

H( $\eta$, t) = \displaystyle \sum_{j\in \mathrm{Z}}A_{j}(t)$\eta$^{j} \in \mathrm{E}\mathrm{n}\mathrm{d}_{\mathbb{C}}(V) . By the spectral gap condition, Riesz projections

\displaystyle \frac{1}{2 $\pi$ i}\int_{ $\gamma$}( $\lambda$\cdot 1-H( $\eta$, t))^{-1}d $\lambda$ give a continuous family of projections on  V parametrized by

\mathbb{S}_{ $\eta$}^{1} \times \mathbb{T} . The images of this family makes a complex subvector bundle E_{\mathrm{B}} of the product
bundle (\mathbb{S}_{ $\eta$}^{1}\times \mathbb{T})\times V. E_{\mathrm{B}} is called the Bloch bundle. The Bloch bundle defines a class [E_{\mathrm{B}}]
in the K‐group K^{0} (\mathbb{S}_{ $\eta$}^{1} \times \mathbb{T}) . We fix a counter‐clockwise orientation on \mathbb{T} and \mathbb{S}_{ $\eta$}^{1} . Each

oriented circle has a unique spinc structure compatible with their fixed orientation up to

isomorphism. By using the product spinc structure on \mathbb{S}_{ $\eta$}^{1} \times \mathbb{T}
,

we have a K‐theoretic

push‐forward map \mathrm{i}\mathrm{n}\mathrm{d}_{\mathrm{S}_{ $\eta$}^{1}\times $\Gamma$} : K^{0}(\mathbb{S}_{ $\eta$}^{1}\times \mathbb{T})\rightarrow \mathbb{Z}.
Definition 3.1. We define the bulk index of our system by \mathcal{I}_{\mathrm{B}\mathrm{u}}\mathrm{i}_{\mathrm{k}} :=-\mathrm{i}\mathrm{n}\mathrm{d}_{\mathbb{S}_{ $\eta$}^{1}\times $\Gamma$}([E_{\mathrm{B}}]) .

Remark 3.2. By using Atiyah‐Singer�s index formula, it is easy to see that \mathrm{i}\mathrm{n}\mathrm{d}_{\mathrm{S}_{ $\eta$}^{1}\times $\Gamma$}([E_{\mathrm{B}}])
is equal to the first Chern number of the Bloch bundle. Our bulk index is equal to the

TKNN number [15].
For each k \in \mathbb{Z} , let \mathbb{Z}_{\geq k} := \{k, k+1, k+2 ,

. . Let P_{\geq k} be an orthogonal projection
of l^{2}(\mathbb{Z};V) onto l^{2}(\mathbb{Z}_{\geq k};V) . For each t in \mathbb{T}

,
we consider an operator H\#(t) given by

the compression of H(t) onto l^{2}(\mathbb{Z}_{\geq 0};V) ,
that is, H\#(t) := P_{\geq 0}H(t)P_{\geq 0} : l^{2}(\mathbb{Z}_{\geq 0};V) \rightarrow

 l^{2}(\mathbb{Z}_{\geq 0};V) . We call H\#(t) an edge Hamiltonian.

Definition 3.3. We define the edge index of our system as the minus of the spectral flow

of the family \{H\#(t)- $\mu$\}_{t\in $\Gamma$} ,
that is, \mathcal{I}_{\mathrm{E}\mathrm{d}\mathrm{g}\mathrm{e}} :=-\mathrm{s}\mathrm{f}(\{H\#(t)- $\mu$\}_{t\in $\Gamma$}) .
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The bulk‐edge correspondence for two‐dimensional type A topological insulators is the

following.

Theorem 3.4. The bulk index equals to the edge index. That is, \mathcal{I}_{\mathrm{B}\mathrm{u}\mathrm{i}\mathrm{k}}=\mathcal{I}_{\mathrm{E}\mathrm{d}\mathrm{g}\mathrm{e}}.

This correspondence was first proved by Y. Hatsugai [8], and now many proofs and

generalizations are known [11, 7, 14, 9]. In what follows in this section, we present one

elementary proof given by the author in [9] and show that the bulk‐edge correspondence
follows from the cobordism invariance of the index. This result was obtained by studying
G. M. Graf and M. Porta�s idea [7] from K‐theoretic point of view and gives a general‐
ization of Graf‐Porta�s proof. Following [7, 9], we first introduce another vector bundle

over  $\gamma$\times \mathbb{T}.

3.2 Proof of Theorem 3.4

In this section, we define a vector bundle over  $\gamma$\times \mathbb{T} , which is a generalization of the

one originally used to the proof of the bulk‐edge correspondence by Graf and Porta [7].

Lemma 3.5. There exists a positive integer K such that for any integer k\geq K and (z, t)
in  $\gamma$\times $\Gamma$ , the map  P_{\geq k}(H(t)-z)P_{\geq 0}:l^{2}(\mathbb{Z}_{\geq 0};V)\rightarrow l^{2}(\mathbb{Z}_{\geq k};V) is surjective.

Proof. The detail of this proof is a little bit complicated [9] but its idea is simple. We

present here a rough sketch of the idea. Since surjectivity is an open condition, by some

approximation argument, we can assume that the hopping matrices of our Hamiltonian

is finitely many, that is, A_{j}(t) = 0 except for finitely many j \in \mathbb{Z} . Let (z, t) \in  $\gamma$ \times \mathbb{T}

and  $\psi$\in l^{2}(\mathbb{Z}_{\geq k};V) . Under this assumption, we want to find some  $\varphi$\in l^{2}(\mathbb{Z}_{\geq 0};V) which

satisfies the equation  P_{\geq k}(H(t)-z) $\varphi$= $\psi$ . Since  H(t)-z is invertible, the map P_{\geq k}(H(t)-
z) : l^{2}(\mathbb{Z};V) \rightarrow l^{2}(\mathbb{Z}_{\geq k};V) is surjective, and so there is some  $\varphi$\in  l^{2}(\mathbb{Z};V) which satisfies

this equation. Since we assumed that the hopping matrices are finitely many, if we take

sufficiently large k
,

the terms $\varphi$_{-1}, $\varphi$_{-2},
\cdots does not appear in our equation, and so we

can find a solution  $\varphi$ of our equation  P_{\geq k}(H(t)-z) $\varphi$= $\psi$ in  l^{2}(\mathbb{Z}_{\geq 0};V) . \square 

We choose such k \geq  K . Let H^{\mathrm{b}}(z, t) : l^{2}(\mathbb{Z}_{\geq 0};V) \rightarrow  l^{2}(\mathbb{Z}_{\geq 0};V) be the composite of

P_{\geq k}(H(t)-z)P_{\geq 0} and the inclusion l^{2}(\mathbb{Z}_{\geq k};V)\mapsto l^{2}(\mathbb{Z}_{\geq 0};V) .

Lemma 3.6. For any (z, t) \in $\gamma$\times \mathbb{T}, H^{\mathrm{b}}(z, t) is a Fredholm operator whose Fredholm index

is zero. Moreover, the rank of their kernels are constant with respect to the parameter.

Proof. Let (z, t) \in  $\gamma$ \times \mathbb{T} . Since H^{\mathrm{b}}(z, t) is a finite rank perturbation of the Fredholm

operator H\#(t) -z
,

which can be connected continuously to the self‐adjoint operator

 H\#(t)- $\mu$ ,
the operator  H^{\mathrm{b}}(z, t) is Fredholm whose Fredholm index is zero. The rest part

follows from Lemma 3.5. \square 

86



For (z, t) \in $\gamma$\times \mathbb{T} , we have \mathrm{C}\mathrm{o}\mathrm{k}\mathrm{e}\mathrm{r}H(z, t)=V^{\oplus k} by Lemma 3.5, and we set (E_{\mathrm{G}\mathrm{P}})_{z,t} :=

\mathrm{K}\mathrm{e}\mathrm{r}(H(z, t Then kernels E_{\mathrm{G}\mathrm{P}}=\sqcup_{(z,t)\in $\gamma$\times $\Gamma$}(E_{\mathrm{G}\mathrm{P}})_{z,t}\rightarrow $\gamma$\times \mathbb{T} is a vector bundle. Coker‐

nels also make a vector bundle \underline{V}^{\oplus k} :=( $\gamma$\times \mathbb{T})\times V^{\oplus k} which is a product bundle over  $\gamma$\times \mathbb{T}.
We now fix a counter‐clockwise orientation on the loop  $\gamma$ . By using a spinc structure on

 $\gamma$ compatible with this orientation, we have a push‐forward map \mathrm{i}\mathrm{n}\mathrm{d}_{ $\gamma$\times $\Gamma$} : K^{0}( $\gamma$\times \mathbb{T})\rightarrow \mathbb{Z}.
Definition 3.7. \mathcal{I}_{\mathrm{G}\mathrm{P}} :=\mathrm{i}\mathrm{n}\mathrm{d}_{ $\gamma$\times $\Gamma$}([E_{\mathrm{G}\mathrm{P}}]-[\underline{V}^{\oplus k}]) .

We call this invariant \mathcal{I}_{\mathrm{G}\mathrm{P}} Graf‐Porta�s index. As in the case of bulk index, Graf‐Porta�s

index is the same as the first Chern number of the bundle E_{\mathrm{G}\mathrm{P}} . We prove Theorem 3.4

by showing the following two relations.

Proposition 3.8. (1) \mathcal{I}_{\mathrm{B}\mathrm{u}}\mathrm{i}\mathrm{k}=-\mathcal{I}_{\mathrm{G}\mathrm{P}} , (2) -\mathcal{I}_{\mathrm{G}\mathrm{P}}=\mathcal{I}_{\mathrm{E}\mathrm{d}\mathrm{g}\mathrm{e}}.

Proof. Let \mathrm{D}_{ $\eta$}^{2} be the closed unit disk with \partial \mathbb{D}_{ $\eta$}^{2}=\mathbb{S}_{ $\eta$}^{1} , and let \mathrm{D}_{z}^{2} be the closed domain of

the complex plane with \partial \mathrm{D}_{z}^{2}= $\gamma$ . Let  X :=(\mathrm{D}_{ $\eta$}^{2}\times \mathrm{D}_{z}^{2})\backslash (\mathbb{S}_{ $\eta$}^{1}\times $\gamma$)\times \mathbb{T}, A :=\mathbb{S}_{ $\eta$}^{1}\times(\mathrm{D}_{z}^{2}\backslash  $\gamma$)\times \mathbb{T}
and B=(\mathrm{D}_{ $\eta$}^{2}\backslash \mathbb{S}_{ $\eta$}^{1}) \times $\gamma$\times \mathbb{T} . Then \partial X=A\sqcup B.

By using the (Fourier transform of the) bulk Hamiltonian H( $\eta$, t) ,
we can construct

an element  $\alpha$ = [X \times V, X \times V; $\rho$(H( $\eta$, t)-z)] \in  K_{\mathrm{c}\mathrm{p}\mathrm{t}}^{0}(X) in a K‐group with compact

supports K_{\mathrm{c}\mathrm{p}\mathrm{t}}^{0}(X) of X
,

where  $\rho$ is a cut‐off function on  X which is 0 near \{0\}\times $\gamma$\times \mathbb{T}.
Consider the following diagram.

where i_{A} and i_{B} are natural inclusions, $\beta$_{z} and $\beta$_{ $\eta$} are Bott periodicity isomorphisms

given by a multiplication of Bott elements. There are some constructions of the inverse

of this multiplication map. In [1], Riesz projections are used to construct the inverse,
and by using this construction, we have $\beta$_{z}^{-1}(i_{A}^{*}( $\alpha$)) = [E_{\mathrm{B}}] . In [4], a family index of

Toeplitz operators are used, and by using this construction, we see that $\beta$_{ $\eta$}^{-1}(i_{B}^{*}( $\alpha$)) =

-[E_{\mathrm{G}\mathrm{P}}]+[\underline{V}^{\oplus k}]^{7} By the cobordism invariance of the index, we have -\mathcal{I}_{\mathrm{B}\mathrm{u}\mathrm{l}\mathrm{k}}+(-\mathcal{I}_{\mathrm{G}\mathrm{P}})=0
and (1) is proved.

By comparing H\#(t) and H^{\mathrm{b}}(t) ,
it is easy to see that we have a linear map H\#(t)-

z : (E_{\mathrm{G}\mathrm{P}})_{(z,t)}\rightarrow V^{\oplus k} for (z, t) \in $\gamma$\times \mathbb{T} . The kernel of this map corresponds to solutions  $\varphi$\in

 l^{2}(\mathbb{Z}_{\geq 0};V) of the eigenequation  H\#(t) $\varphi$=z $\varphi$ . Note that the edge index \mathcal{I}_{\mathrm{E}\mathrm{d}\mathrm{g}\mathrm{e}} is defined

7Actually, we calculated a family index of a family \{H^{\mathrm{b}}(t)-z\}_{ $\gamma$\times \mathrm{T}} explicitly, which is a finite rank perturbation of the

family of Toeplitz operators \{H\#(t)-z\}_{ $\gamma$\times \mathrm{T}} . The element of K‐group does not change under this perturbation.
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by counting these solutions (counting the number of crossing points with multiplicity of

the spectrum of H\#(t) and  $\mu$ ) with sign. By using a bundle homomorphism  E_{\mathrm{G}\mathrm{P}} \rightarrow

( $\gamma$ \times \mathbb{T}) \times  V^{\oplus k} given by H\#(t) -z and by using excision, we can localize the index

theoretic information of a K‐class [E_{\mathrm{G}\mathrm{P}}] - [\underline{V}^{\oplus k}] near the crossing points and obtain a

relation between \mathcal{I}_{\mathrm{G}\mathrm{P}} and \mathcal{I}_{\mathrm{E}\mathrm{d}\mathrm{g}\mathrm{e}} . In this way, (2) can be proved. \square 

Remark 3.9. Kellendonk−Richter−Schulz‐Baldes proved the bulk‐edge correspondence based

on the six‐term exact sequence of K‐theory for C^{*} ‐algebras associated to the following

Toeplitz extension [11],

0\rightarrow K(l^{2}(\mathbb{N}))\rightarrow T\rightarrow C(\mathbb{T})\rightarrow 0,

where T is the Toeplitz algebra. In the next section, we replace this Toeplitz extension

by the quarter‐plane Toeplitz extension obtained by Park [13].

Remark 3.10. The bulk‐edge correspondence for two dimensional type AII topological
insulators can also be proved by using the cobordism invariance of the index [9]. In this

case, we use KSp‐theory introduced by J. D. Dupont instead of complex K‐theory.

4 Bulk‐edge and corner correspondence

In this section, we consider a three dimensional system with corner (codimension‐two
boundary) which appears as an intersection of two edges (or as a boundary of codimension‐

one boundary). Actually we consider four systems, a system without edge, two systems
with edge (without corner) and a system with corner. We define two topological invariants

and show some relation between them. The content of this section is based on [10].
Let \mathcal{H}_{V} be the Hilbert space l^{2}(\mathbb{Z}\times \mathbb{Z};V)=\mathcal{H}\otimes V ,

and let \mathcal{H}_{V}^{ $\alpha$} :=\mathcal{H}^{ $\alpha$}\otimes V, \mathcal{H}_{V}^{ $\beta$} :=\mathcal{H}^{ $\beta$}\otimes V,
\mathcal{H}_{V}^{ $\alpha,\ \beta$} := \mathcal{H}^{ $\alpha,\ \beta$}\otimes V, P_{V}^{ $\alpha$} := P^{ $\alpha$}\otimes 1 and P_{V}^{ $\beta$} := P^{ $\beta$}\otimes 1 . Let \mathbb{T}\times \mathbb{T}\times \mathbb{T} \rightarrow \mathrm{E}\mathrm{n}\mathrm{d}_{\mathbb{C}}(V) be

a continuous map. By the partial Fourier transform, we obtain a continuous family of

bounded linear operators \mathbb{T}\rightarrow B(l^{2}(\mathbb{Z}\times \mathbb{Z};V t\mapsto H(t) . Let  $\mu$\in \mathbb{R} . We assume that

H(t) is a self‐adjoint operator for any t \in \mathbb{T} and call H(t) the bulk Hamiltonian. We

consider the following operators.

H^{ $\alpha$}(t) :=P_{V}^{ $\alpha$}H(t)P_{V}^{ $\alpha$}:\mathcal{H}_{V}^{ $\alpha$}\rightarrow \mathcal{H}_{V}^{ $\alpha$} , H^{ $\beta$}(t) :=P_{V}^{ $\beta$}H(t)P_{V}^{ $\beta$}:\mathcal{H}_{V}^{ $\beta$}\rightarrow \mathcal{H}_{V}^{ $\beta$}.

These operators are half‐plane Toeplitz operators, which we call edge Hamiltonians. We

assume that  $\mu$\not\in \mathrm{s}\mathrm{p}(H^{ $\alpha$}(t)) nor  $\mu$\not\in \mathrm{s}\mathrm{p}(H^{ $\beta$}(t)) for any t\in \mathbb{T} (spectral gap condition).
The pair (H^{ $\alpha$}(t), H^{ $\beta$}(t)) is a self‐adjoint element of a unital C^{*}‐algebra M_{N}(S^{ $\alpha,\ \beta$}\otimes C(\mathbb{T})) .

By the spectral gap condition,  $\mu$ is not contained in its spectrum. Let  h be a continuous

function on \mathbb{C}\backslash \{{\rm Re}(z) =  $\mu$\} ,
which is 0 on {\rm Re}(z) >  $\mu$ and 1 on {\rm Re}(z) <  $\mu$ . By the
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continuous functional calculous, we have a projective element  p := h(H^{ $\alpha$}(t), H^{ $\beta$}(t)) in

this C^{*}‐algebra.

Definition 4.1 ([10]). We denote by \mathcal{I}_{\mathrm{B}\mathrm{u}}\mathrm{i}\mathrm{k} ‐Edge the element [p]_{0} in the K‐group  K_{0}(S^{ $\alpha,\ \beta$}\otimes
 C(\mathbb{T})) ,

and call the bulk‐edge invariant.

We next consider a family of quarter‐plane Toeplitz operators H^{ $\alpha,\ \beta$}(t) :=P_{V}^{ $\alpha$}P_{V}^{ $\beta$}H(t)P_{V}^{ $\alpha$}P_{V}^{ $\beta$}
on \mathcal{H}_{V}^{ $\alpha,\ \beta$} , which we call corner Hamiltonians. By the spectral gap condition and Theorem

2.1, \{H^{ $\alpha,\ \beta$}(t)- $\mu$\}_{t\in $\Gamma$} is a continuous family of self‐adjoint Fredholm operators.

Definition 4.2. The family \{H^{ $\alpha,\ \beta$}(t) - $\mu$\}_{t\in $\Gamma$} gives an element \mathcal{I}Corner of the K‐group

K_{1}(C(\mathbb{T})) . We call this element \mathcal{I}Corner the corner invariant.

By taking a tensor product of the sequence in Theorem 2.1 and C(\mathbb{T}) ,
and consider an

associated six‐term exact sequence, we have a boundary homomorphism $\delta$_{0} :  K_{0}(S^{ $\alpha,\ \beta$}\otimes
 C(\mathbb{T}))\rightarrow K_{1}(\mathcal{K}\otimes C(\mathbb{T})) . Note that K_{1}(\mathcal{K}\otimes C(\mathbb{T})) is naturally isomorphic to K_{1}(C(\mathbb{T}))
by the stability of K‐groups.

Theorem 4.3 ([10]). Through the isomorphism K_{1}(\mathcal{K}\otimes C(\mathbb{T}))\cong K_{1}(C(\mathbb{T})) ,
the map $\delta$_{0}

maps the bulk‐edge invariant to the corner invariant, that is, $\delta$_{0}(\mathcal{I}_{\mathrm{B}\mathrm{u}\mathrm{l}\mathrm{k}-\mathrm{E}\mathrm{d}\mathrm{g}\mathrm{e}})=\mathcal{I}_{\mathrm{C}\mathrm{o}\mathrm{r}\mathrm{n}\mathrm{e}\mathrm{r}}.

Proof. This theorem is easily proved by following the construction of the map $\delta$_{0} and using
a linear splitting of the short exact sequence in Theorem 2.1. \square 

Remark 4.4. The bulk‐edge invariant does not change unless the spectral gap of two edges
closes. The above map $\delta$_{0} is surjective, but not injective [10].
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