Lifts of holonomy representations and the volume of a knot complement

Hiroshi Goda

Tokyo University of Agriculture and Technology

1 Introduction

A fundamental invariant of a knot is its Alexander polynomial ([1]). It has been studied for a long time from many viewpoints as a fundamental and important knot invariant. In 1990, Lin ([12]) introduced the twisted Alexander polynomial associated with a knot K and a representation $\pi_1(S^3 \setminus K) \to \operatorname{GL}(m, \mathbb{F})$ using its Seifert surface, where \mathbb{F} is a field. Subsequently, Wada ([19]) showed a method to define it using only a presentation of a group. Via its interpretations as the Reidemeister torsion by Kitano ([8]) and Kirk-Livingston ([7]), the twisted Alexander polynomial is a mathematical object which is investigated from various viewpoints now.

A 3-manifold which admits a complete Riemannian metric with sectional curvature -1 at each interior point is said to be *hyperbolic*. If a knot complement becomes a hyperbolic manifold, the knot is called a *hyperbolic knot*. It was shown by Thurston that a knot which is neither a torus knot nor a satellite knot is hyperbolic, and almost all knots are hyperbolic in the feeling. By the Mostow's rigidity theorem, which includes that the hyperbolic structure of a hyperbolic manifold is unique, we know the volume of a knot complement is an invariant of the knot.

There are several researches on estimates of the volume of a knot complement recently. In this note we consider the twisted Alexander polynomial of a hyperbolic knot associated with the representation given by the composition of the lift of the holonomy representation to $SL(2, \mathbb{C})$ and the higher-dimensional, irreducible, complex representation of $SL(2, \mathbb{C})$. Then we study a relationship between its asymptotic behavior and the volume of the knot.

2 Alexander polynomials

There are some methods to define the Alexander polynomial. Here we introduce the definition using a presentation of the fundamental group of a knot complement and the free differential calculus devised by Fox. Let K be a knot in the 3-sphere S^3 . Fix a Wirtinger presentation of the knot group $G(K) = \pi_1(E(K)) = \pi_1(S^3 - \text{Int}N(K))$:

$$P = \langle x_1, \ldots, x_n \mid r_1, \ldots, r_{n-1} \rangle.$$

We denote by $\phi: F_n \to G(K)$ the epimorphism from the free group associated with P to G(K), and by $\tilde{\phi}: \mathbb{Z}F_n \to \mathbb{Z}G(K)$ the ring homomorphism which is obtained from ϕ by extending linearly. Let $\alpha: G(K) \to H_1(E(K); \mathbb{Z}) \cong \mathbb{Z} = \langle t \rangle$ be the abelianization homomorphism. It is given by $\alpha(x_1) = \cdots \alpha(x_n) = t$ since P is a Wirtinger presentation. By extending linearly, we have a homomorphism between group rings: $\tilde{\alpha}: \mathbb{Z}G(K) \to \mathbb{Z}[t, t^{-1}]$. We denote by Φ the composed mapping $\tilde{\alpha} \circ \tilde{\phi}$, that is,

$$\Phi: \mathbb{Z}F_n \to \mathbb{Z}[t, t^{-1}].$$

The map $\frac{\partial}{\partial x_j}$: $\mathbb{Z}F_n \to \mathbb{Z}F_n$ is the linear extension of the map defined on the elements of F_n by (1) $\frac{\partial x_i}{\partial x_j} = \delta_{ij}$, (2) $\frac{\partial x_i^{-1}}{\partial x_j} = -\delta_{ij}x_i^{-1}$, (3) $\frac{\partial(uv)}{\partial x_j} = \frac{\partial u}{\partial x_j} + u\frac{\partial v}{\partial x_j}$. This is called the *Fox's* free differential. We obtain a matrix whose size is $(n-1) \times n$:

$$A = \left(\Phi\left(\frac{\partial r_i}{\partial x_j}\right)\right) \in M(n-1,n;\mathbb{Z}[t,t^{-1}])$$

by applying the Fox's free differential to the relations r_1, \ldots, r_{n-1} of the Wirtinger presentation P and composing Φ . The matrix A is called the *Alexander matrix* associated with the presentation P of the knot group G(K).

We denote by A_j obtained from A by deleting the j column of A. This becomes a square matrix and we define the Alexander polynomial of a knot K by

$$\Delta_K(t) = \det A_j \in \mathbb{Z}[t, t^{-1}]$$

It is known that this becomes a knot invariant up to $\pm t^s$ ($s \in \mathbb{Z}$).

Example 2.1. The knot illustrated below is called the *figure eight knot* and it is known as a hyperbolic knot. The knot number is 4_1 .

Its knot group has the next presentation, which is a Wirtinger presentation:

$$G(K) = \langle x, y \mid xy^{-1}x^{-1}yxy^{-1}xyx^{-1}y^{-1} \rangle.$$

We apply the Fox's free differential to the relation: $r = xy^{-1}x^{-1}yxy^{-1}xyx^{-1}y^{-1}$, then we have:

$$\frac{\partial}{\partial x}r = \frac{\partial x}{\partial x} + x\frac{\partial}{\partial x}(y^{-1}x^{-1}yxy^{-1}xyx^{-1}y^{-1})
= 1 + x\left(\frac{\partial y^{-1}}{\partial x} + y^{-1}\frac{\partial}{\partial x}(x^{-1}yxy^{-1}xyx^{-1}y^{-1})\right)
= 1 + xy^{-1}\left(\frac{\partial x^{-1}}{\partial x} + x^{-1}\frac{\partial}{\partial x}(yxy^{-1}xyx^{-1}y^{-1})\right)
= 1 - xy^{-1}x^{-1} + xy^{-1}x^{-1}\frac{\partial}{\partial x}(yxy^{-1}xyx^{-1}y^{-1}) = \dots =
= 1 - xy^{-1}x^{-1} + xy^{-1}x^{-1}y + xy^{-1}x^{-1}yxy^{-1} - xy^{-1}x^{-1}yxy^{-1}xyx^{-1}.$$
(2.1)

Similarly,

$$\frac{\partial}{\partial y}r = -xy^{-1} + xy^{-1}x^{-1} - xy^{-1}x^{-1}yxy^{-1} + xy^{-1}x^{-1}yxy^{-1}x - xy^{-1}x^{-1}yxy^{-1}xyx^{-1}y^{-1}.$$

Since $\alpha(x) = \alpha(y) = t$, we have:

$$\begin{split} \Phi\left(\frac{\partial r}{\partial x}\right) &= 1 - tt^{-1}t^{-1} + tt^{-1}t^{-1}t + tt^{-1}t^{-1}ttt^{-1} - tt^{-1}t^{-1}ttt^{-1}ttt^{-1}\\ &= 1 - \frac{1}{t} + 1 + 1 - t = -\frac{1}{t} + 3 - t,\\ \Phi\left(\frac{\partial r}{\partial y}\right) &= -1 + t^{-1} - 1 + t - 1 = \frac{1}{t} - 3 + t. \end{split}$$

Thus the Alexander matrix is the matrix of 1×2 : $\left(-\frac{1}{t} + 3 - t \quad \frac{1}{t} - 3 + t\right)$, and the Alexander polynomial of the figure eight knot K is:

$$\Delta_K(t) = \det\left(-\frac{1}{t} + 3 - t\right) = -\frac{1}{t} + 3 - t$$

(up to $\pm t^s \ (s \in \mathbb{Z})$).

Originally x and y are different generators in the knot group, but they are sent to the same element t by the map α . It makes the calculation easy while this process might reduce some information included in knot groups. The twisted Alexander polynomial, which is introduced in the following section, improves this point.

3 Twisted Alexander polynomials

We use the same nations as in the previous sections. Let $\rho : G(K) \to SL(m, \mathbb{C})$ be a representation of a knot group G(K). This map induces naturally the map between group rings:

$$\widetilde{\rho}: \mathbb{Z}G(K) \to M(m; \mathbb{C}),$$

moreover by taking the tensor product with the map $\tilde{\alpha}$ induced in the previous section, we have:

$$\widetilde{\rho} \otimes \widetilde{\alpha} : \mathbb{Z}G(K) \to M(m, \mathbb{C}[t, t^{-1}]).$$

Set Φ :

$$\Phi = (\widetilde{\rho} \otimes \widetilde{\alpha}) \circ \widetilde{\phi} : \mathbb{Z}F_n \to M(m; \mathbb{C}[t, t^{-1}])$$

by composing ϕ defined in the previous section. Suppose A_{ρ} is the $(n-1) \times n$ matrix whose the (i, j) element is the $m \times m$ matrix:

$$\Phi\left(\frac{\partial r_i}{\partial x_j}\right) \in M((n-1)m \times nm; \mathbb{C}[t, t^{-1}]).$$

This matrix is called the *twisted Alexander matrix associated with* ρ . In order to make a square matrix, we delete from A_{ρ} 'one column' corresponding to a generator x_k in the presentation P, so that we have a $(n-1)m \times (n-1)m$ matrix, which is denoted by $A_{\rho,k}$. We define the *twisted Alexander polynomial* as:

$$\Delta_{K,\rho}(t) = \frac{\det A_{\rho,k}}{\det \Phi(x_k - 1)}.$$

Here we assume $\det \Phi(x_k - 1) \neq 0$.

Wada proved the following theorem in [19].

Theorem 3.1 ([19]). Let K be a knot and G(K) the knot group. Suppose ρ is a representation of G(K). The twisted Alexander polynomial $\Delta_{K,\rho}(t)$ is an invariant for the pair $(G(K), \rho)$ up to $\pm t^s$ $(s \in \mathbb{Z})$.

Example 3.2. Let K be the figure eight knot, then the knot group G(K) has the following presentation as in Example 2.1:

$$G(K) = \langle x, y \mid xy^{-1}x^{-1}yxy^{-1}xyx^{-1}y^{-1} \rangle.$$
(3.1)

Define

$$\rho(x) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \rho(y) = \begin{pmatrix} 1 & 0 \\ \frac{-1+\sqrt{-3}}{2} & 1 \end{pmatrix}.$$
 (3.2)

Then we can confirm that ρ becomes a representation from G(K) to $SL(2, \mathbb{C})$. Set $\rho(x) = X$, $\rho(y) = Y$, then we have : $\Phi(\frac{\partial r}{\partial x}) =$

$$I - \frac{1}{t}XY^{-1}X^{-1} + XY^{-1}X^{-1}Y + XY^{-1}X^{-1}YXY^{-1} - tXY^{-1}X^{-1}YXY^{-1}XYX^{-1},$$

where I is the identity matrix of size 2×2 . Note that this can be obtained from (2.1) by changing $x \to X, y \to Y$ and $1 \to I$ with t to the appropriate power. Calculate these matrices, then we have:

$$\Delta_{K,\rho}(t) = \frac{\det \Phi(\frac{\partial r}{\partial x})}{\det \Phi(y-1)} = \frac{1/t^2(t-1)^2(t^2-4t+1)}{(t-1)^2} \doteq t^2 - 4t + 1.$$

This seems to make up for the lack of the information caused by going through the map α . However the twisted Alexander polynomial depends on not only G(K) but also ρ , so it might not be called a knot invariant, namely, it is hard to use for distinguishing two given knots. Furthermore, is is not easy to find a representation of a knot group in general. Therefore the thinkable ways to apply might be (1) to find a property of a knot satisfied for any representation or (2) to consider the restricted representation. I think an example of the former case is to determine a non-fibered knot by using any unimodular representation, i.e., we gave the theorem in [6] which states that the twisted Alexander polynomials of fibered knots are monic for any unimodular representation. See [3, 15] for the researches which followed this theorem. In the following sections, we will consider the twisted Alexander polynomial associated with the holonomy representation of a hyperbolic knot, which corresponds to the case (2) above.

For the details of basic notations and conceptions on the twisted Alexander polynomial, see [10]. See [4, 9] for its recent researches.

4 On hyperbolic knots

We refer [11, 18] for the former half in this section.

We regard the upper half space model \mathbb{H}^3 as a subspace of the quaternion field and set

$$\mathbb{H}^{3} = \{ (x + y \, i) + t \, j \, \in \mathbb{C} + \mathbb{R} \, j \mid t > 0 \}$$

where 1, i, j are the part of basis, $i = \sqrt{-1}$, and we suppose $\partial \mathbb{H}^3 = \mathbb{C} \cup \{\infty\}$. We give the metric

$$ds^{2} = \frac{1}{t^{2}}(dx^{2} + dy^{2} + dt^{2})$$

to \mathbb{H}^3 then we call this \mathbb{H}^3 *the 3-dimensional hyperbolic space*. It is known that the orientation preserving isometric transformation group of \mathbb{H}^3 is:

$$\mathsf{PSL}(2,\mathbb{C}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mid a, b, c, d \in \mathbb{C}, ad - bc = 1 \right\} / \left\{ \pm \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

Here the action on \mathbb{H}^3 of $PSL(2, \mathbb{C})$ is given by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} w = (aw+b)(cw+d)^{-1} \quad (w \in \mathbb{H}^3).$$

We calculate the right-hand side as elements of the quaternion field. The isometric transformation of \mathbb{H}^3 is a conformal mapping, and the action of $PSL(2, \mathbb{C})$ on \mathbb{H}^3 is transitive. Moreover its stabilizer of a point is $PSU(2, \mathbb{C}) \cong SO(3)$, that is, if f(p) and the mapping between tangent spaces $T_p \mathbb{H}^3 \to T_{f(p)} \mathbb{H}^3$ are given for $f \in PSL(2, \mathbb{C})$ and a point $p \in \mathbb{H}^3$, then f may be determined uniquely. Thus, if the image of the neighborhood of a point by the isometric transformation is given, then one can extend the mapping to the whole space \mathbb{H}^3 uniquely. Further, there exists uniquely the transformation $f \in PSL(2, \mathbb{C})$ such that f transforms any 3 points $p_1, p_2, p_3 \in \partial \mathbb{H}^3$ into any 3 points $p'_1, p'_2, p'_3 \in \partial \mathbb{H}^3$.

Let M be a 3-dimensional differentiable manifold. If M has a local coordinate such that a neighborhood of each point is homeomorphic to an open set in \mathbb{H}^3 and the coordinate transformation can be written in an element of $PSL(2, \mathbb{C})$, we call M a hyperbolic 3-manifold. This is the same concept defined in Section 1. For a simply-connected hyperbolic 3-manifold M', we may define the developing map from M' to \mathbb{H}^3 as follows. Give a local coordinate of a neighborhood of the base point in M'. For any point p we take a path from the base point to p and a sequence of local coordinates along the path. We may have the image of p by the developing map by determining the image of the coordinate functions corresponding to the sequence in order. (It does not depend on the way to take a path.) Let γ be an element of the fundamental group of a hyperbolic 3-manifold M and $\tilde{\gamma}$ a lift of γ to a universal covering M of M. We call the homomorphism $\rho: \pi_1(M) \to \text{PSL}(2,\mathbb{C})$ the holonomy representation of M if $\rho(\gamma)$ is the element ($\in PSL(2, \mathbb{C})$) which maps the image by the developing map of the neighborhood of the base point of $\tilde{\gamma}$ to that of the neighborhood of the end point of $\tilde{\gamma}$. Let Γ be the image $\rho(\pi_1(M))$ for the holonomy representation ρ of a complete hyperbolic 3-manifold M, then Γ acts \mathbb{H}^3 naturally and M is homeomorphic to \mathbb{H}^3/Γ . Therefore the classification of complete hyperbolic 3-manifolds is equivalent essentially to that of a kind of discrete subgroups of $PSL(2, \mathbb{C})$, so we may think the geometrical information of a complete hyperbolic 3-manifold is included in Γ . It is shown by Thurston that a holonomy representation can be lift to $SL(2, \mathbb{C})$ representation, and in [2] it is proved that the lift has a one-to-one correspondence to the spin structure of M. Let η be a spin structure of M. Then we have the following homomorphism:

$$\operatorname{Hol}_{(M,\eta)}: \pi_1(M,\eta) \to \operatorname{SL}(2,\mathbb{C}).$$

If a submanifold of a hyperbolic 3-manifold is homeomorphic to the direct product of the 2-dimensional torus and the half-line, the submanifild is called a *cusp*. A 3-manifold M with a cusp is non-compact, and we obtain from M a compact 3-manifold whose boundary is a torus by getting rid of a neighborhood of the cusp. It is known that a complete hyperbolic 3-manifold with finite volume is a closed 3-manifold or a 3-manifold with cusps. In particular, a knot K (L resp.) is said to be *hyperbolic* if $S^3 - K$ ($S^3 - L$ resp.) admits the structure of the hyperbolic 3-manifold with a cusp (cusps resp.). A knot which is neither a torus knot nor a satellite knot is hyperbolic.

In the case of a knot in S^3 , we let A_1, \ldots, A_n be the images of generators a_1, \ldots, a_n of a Wirtinger presentation of G(K) by the holonomy representation ρ , then their lifts to SL(2, \mathbb{C}) are A_1, \ldots, A_n or $-A_1, \ldots, -A_n$ (Corollary 2.3 in [14]). We denote by $\rho^{\pm}(a_i) = \pm A_i(\in$

 $SL(2, \mathbb{C})$ for the lifts of the holonomy representation $\rho(a_i) = A_i (\in PSL(2, \mathbb{C}))$.

5 Irreducible $SL(m, \mathbb{C})$ -representations of $SL(2, \mathbb{C})$

We review irreducible representations of $SL(2, \mathbb{C})$ briefly. The vector space \mathbb{C} has the standard action of $SL(2, \mathbb{C})$. It is known that the symmetric product $Sym^{m-1}(\mathbb{C}^2)$ and the induced action by $SL(2, \mathbb{C})$ give an *m*-dimensional representation of $SL(2, \mathbb{C})$. We can identify $Sym^{m-1}(\mathbb{C}^2)$ with the vector space of homogeneous polynomials on \mathbb{C}^2 with degree m - 1, namely,

$$V_m = \operatorname{span}_{\mathbb{C}} \langle x^{m-1}, x^{m-2}y, \dots, xy^{m-2}, y^{m-1} \rangle.$$

The action of $A \in SL(2, \mathbb{C})$ is expressed as

$$A \cdot p\begin{pmatrix} x\\ y \end{pmatrix} = p(A^{-1}\begin{pmatrix} x\\ y \end{pmatrix})$$

where $p\begin{pmatrix} x\\ y \end{pmatrix}$ is a homogeneous polynomial and the variables in the right-hand side are determined by the action of A^{-1} on the column vector as a matrix multiplication. We denote by (V_m, σ_m) the representation given by the above action of $SL(2, \mathbb{C})$ where σ_m denotes the homomorphism from $SL(2, \mathbb{C})$ into $GL(V_m)$. It is known that (1) each representation (V_m, σ_m) turns into an irreducible $SL(m, \mathbb{C})$ -representation and (2) every irreducible *m*-dimensional representation of $SL(2, \mathbb{C})$ is equivalent to (V_m, σ_m) .

Let *M* be a complete hyperbolic 3-manifold and $\operatorname{Hol}_{(M,\eta)}$ the homomorphism defined in Section 4. By composing $\operatorname{Hol}_{(M,\eta)}$ and σ_m , we have the representation:

$$\rho_m: \pi_1(M) \to \operatorname{SL}(m, \mathbb{C}).$$

Example 5.1. It is known that the map given by (3.2) in Example 3.2 is the holonomy representation of the figure eight knot K. To avoid the reduplication, let a and b be generators of G(K) instead of x and y in the group presentation (3.1) and set:

$$\rho(a) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}; \quad \rho(b) = \begin{pmatrix} 1 & 0 \\ \frac{-1+\sqrt{-3}}{2} & 1 \end{pmatrix}$$

Note that these are the elements in $SL(2, \mathbb{C})$. Since $(x - y)^2 = x^2 - 2xy + y^2$, $(x - y)y = xy - y^2$, $y^2 = y^2$, we have the next matrix by taking the coefficients:

$$\rho_3(a) = \begin{pmatrix} 1 & -2 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}^T.$$

By setting $u = \frac{-1 + \sqrt{-3}}{2}$ and calculating similarly, we obtain:

$$\rho_{3}(b) = \begin{pmatrix} 1 & 0 & 0 \\ u & 1 & 0 \\ u^{2} & 2u & 1 \end{pmatrix}^{T}, \ \rho_{4}(a) = \begin{pmatrix} 1 & -3 & 3 & -1 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}^{T}, \ \rho_{4}(b) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ u & 1 & 0 & 0 \\ u^{2} & 2u & 1 & 0 \\ u^{3} & 3u^{2} & 3u & 1 \end{pmatrix}^{T}.$$

Here $(\cdot)^T$ means the transposed matrix.

6 Main Theorem and the outline of the proof

Let K be a hyperbolic knot, and ρ_m the SL (m, \mathbb{C}) -representation which is obtained from the holonomy representation of G(K) by the method described in Sections 4 and 5. Set:

$$\mathcal{A}_{K,2k}(t) = \frac{\Delta_{K,\rho_{2k}}(t)}{\Delta_{K,\rho_{2}}(t)}; \quad \mathcal{A}_{K,2k+1}(t) = \frac{\Delta_{K,\rho_{2k+1}}(t)}{\Delta_{K,\rho_{3}}(t)}.$$
(6.1)

Our main result is the following:

Theorem 6.1 ([5]).

$$\lim_{k \to \infty} \frac{\log |\mathcal{A}_{K,2k}(1)|}{(2k)^2} = \lim_{k \to \infty} \frac{\log |\mathcal{A}_{K,2k+1}(1)|}{(2k+1)^2} = \frac{\operatorname{Vol}(K)}{4\pi}$$

As in (6.1), \mathcal{A}_{K,ρ_m} is defined by dividing the principal part, but it is inessential, especially in the case of *m* even. We may describe as follows if there is no corrections:

•
$$\lim_{k \to \infty} \frac{\log |\Delta_{K,2k}(1)|}{(2k)^2} = \frac{\operatorname{Vol}(K)}{4\pi};$$

•
$$\lim_{k \to \infty} \frac{1}{(2k+1)^2} \Big(\log \big(\lim_{t \to 1} \Big| \frac{\Delta_{K,2k+1}(t)}{t-1} \Big| \big) \Big) = \frac{\operatorname{Vol}(K)}{4\pi}$$

In the next section, we give sample calculations of the figure eight knot. As shown there the volume of a knot complement can be approximated using a kind of a combinatorial method. The crucial points are the results of Müller: one of them states the analytic torsion and the Reidemeister torsion are the same essentially for unimodular representations ([16]) and the other gives the volume formula using the analytic torsion ([17]) for a closed complete hyperbolic 3-manifold. Thus, combing them, we are able to have a volume formula for a closed complete hyperbolic 3-manifold using the Reidemeister torsion. Applying the Thurston's hyperbolic Dehn surgery theorem to these Müller's works, Menal-Ferrer and Porti gave a volume formula for a complete hyperbolic 3-manifold with cusps in [14] (see Theorem 6.4), so we have only to make clear the relation between the Reidemeister torsion and the twisted Alexander polynomial.

Let us review some results of Menal-Ferrer and Porti. Let M be an oriented complete hyperbolic 3-manifold whose boundary is one torus cusp, i.e., we will consider M with $\partial \overline{M} = T^2$.

m

Proposition 6.2 ([13]). (1) If m is even, then $\dim_{\mathbb{C}} H_i(M; \rho_m) = 0$ for any i.

(2) If m is odd, then $\dim_{\mathbb{C}} H_0(M; \rho_m) = 0$ and $\dim_{\mathbb{C}} H_i(M; \rho_m) = 1$ for i = 1, 2.

Proposition 6.3 ([14]). Suppose *m* is odd and let $G < \pi_1(M)$ be some fixed realization of the fundamental group of *T* as a subgroup of $\pi_1(M)$. Choose a non-trivial cycle $\theta \in H_1(T; \mathbb{Z})$, and a non-trivial vector $v \in V_m$ fixed by $\rho_m(G)$. If $i: T \to M$ denotes the inclusion, then the following assertions hold.

- (1) A basis for $H_1(M; \rho_m)$ is given by $i_*([v \otimes \theta])$.
- (2) Let $[T] \in H_2(T;\mathbb{Z})$ be a fundamental class of T. A basis for $H_2(M;\rho_m)$ is given by $i_*([v \otimes T])$.

Using the above notations, we set:

$$\mathcal{T}_{2k+1}(M) = \frac{\operatorname{Tor}(M; \rho_{2k+1}; \theta)}{\operatorname{Tor}(M; \rho_3; \theta)};$$
$$\mathcal{T}_{2k}(M) = \frac{\operatorname{Tor}(M; \rho_{2k})}{\operatorname{Tor}(M; \rho_2)}.$$

Here $Tor(\cdot)$ means the Reidemeister torsion.

Theorem 6.4 ([14]).

$$\lim_{k \to \infty} \frac{\log |\mathcal{T}_{2k+1}(M)|}{(2k+1)^2} = \lim_{k \to \infty} \frac{\log |\mathcal{T}_{2k}(M)|}{(2k)^2} = \frac{\operatorname{Vol}(M)}{4\pi}.$$

As in Proposition 6.2 (1), the twisted homology vanishes in the case that m is even. In such a case the corresponding chain complex is said to be *acyclic* and it is easy relatively to discuss the Reidemeister torsion. Let M be the complement E(K) of a knot K. It is proved by Kitano ([8]) that the Reidemeister torsion can be obtained from the twisted Alexander polynomial by evaluating t = 1 in this case, that is,

$$\operatorname{Tor}(M;\rho_{2k}) = \Delta_{K,\rho_{2k}}(1).$$

Thus we get the even case of our main result via Theorem 6.4

The representation obtained from the adjoint action of the $SL(2, \mathbb{C})$ -representation of a fundamental group is the same as ρ_3 in our setting essentially. The next proposition is a generalization of the Yamaguchi's theorem ([20, 21]) which treats the adjoint action of the $SL(2, \mathbb{C})$ representation of a fundamental group. We restrict the base θ in Proposition 6.3 to a longitude λ and handle it well, so that we have this proposition:

Proposition 6.5 ([5]). Let λ be a longitude of a knot K and M the complement of K, then the following equation holds:

$$|\text{Tor}(M; \rho_{2k+1}; \lambda)| = \lim_{t \to 1} \frac{|\Delta_{K, \rho_{2k+1}}(t)|}{t-1}.$$

The odd case in our main result follows from the proposition.

7 Some calculations

Here we give some calculations on the figure eight knot K. It is known that the volume of the complement of K is equal to $2.0298832\cdots$.

We use the lifts $\rho^+(a) = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, $\rho^+(b) = \begin{pmatrix} 1 & 0 \\ \frac{-1+\sqrt{-3}}{2} & 1 \end{pmatrix}$, stated in Example 5.1, and we proceed the calculation in Example 3.2, then we have:

$$\Delta_{K,\rho_2^+}(t) = \frac{1}{t^2}(t^2 - 4t + 1), \\ \Delta_{K,\rho_3^+}(t) = -\frac{1}{t^3}(t - 1)(t^2 - 5t + 1), \\ \Delta_{K,\rho_4^+}(t) = \frac{1}{t^4}(t^2 - 4t + 1)^2.$$

In the same way, we can have:

$$\Delta_{K,\rho_5^+}(t) = -\frac{1}{t^5}(t-1)(t^4 - 9t^3 + 44t^2 - 9t + 1).$$

We denote by $\mathcal{A}_{K,m}^+$ the corresponding $\mathcal{A}_{K,m}$ with ρ^+ , so we obtain:

$$\frac{4\pi \log |\mathcal{A}_{K,4}^+(t)|}{4^2} = \frac{\pi \log |t^2 - 4t + 1|}{4} \xrightarrow{t=1} \frac{\pi \log 2}{4} \approx 0.544397 \cdots;$$
$$\frac{4\pi \log |\mathcal{A}_{K,5}^+(t)|}{5^2} = \frac{\pi \log \left|\frac{t^4 - 9t^3 + 44t^2 - 9t + 1}{t^2 - 5t + 1}\right|}{5^2} \xrightarrow{t=1} \frac{4\pi \log \frac{28}{3}}{5^2} \approx 1.12273 \cdots.$$

The following is the results using by a computer. The symbol $\mathcal{A}_{K,m}^-$ corresponds to the lift of the holonomy representation of K:

$$\rho^{-}(a) = -\begin{pmatrix} 1 & 1\\ 0 & 1 \end{pmatrix}; \quad \rho^{-}(b) = -\begin{pmatrix} 1 & 0\\ \frac{-1+\sqrt{-3}}{2} & 1 \end{pmatrix}$$

Note that $\mathcal{A}_{K,m}^+(t) = \mathcal{A}_{K,m}^-(t)$ when *m* is odd. Mr. Tetsuya Takahashi helped me to calculate these and we used the softwares Wolfram Mathematica and MathWorks Matlab. It took about $4 \sim 5$ hours to compute in the degree 33 case.

m(even)	$\frac{4\pi \log \mathcal{A}_{K,m}^+(1) }{m^2}$	$\frac{4\pi \log \mathcal{A}_{K,m}^-(1) }{m^2}$	m(odd)	$\frac{4\pi \log \mathcal{A}_{K,m}(1) }{m^2}$
4	$0.54439\cdots$	$1.40724\cdots$	5	$1.12273\cdots$
8	$1.66441\cdots$	$1.84668\cdots$	9	$1.76436\cdots$
12	$1.86678\cdots$	$1.94781\cdots$	13	$1.90158\cdots$
16	$1.93822\cdots$	$1.98381\cdots$	17	$1.95494\cdots$
20	$1.97121\cdots$	$2.00039\cdots$	21	$1.98076\cdots$
24	$1.98914\cdots$	$2.00940\cdots$	25	$1.99522\cdots$
28	$1.99994\cdots$	$2.01483\cdots$	29	$2.00412\cdots$
32	$2.00696\cdots$	$2.01836\cdots$	33	$2.00999\cdots$

Acknowldgements

This work was supported by JSPS KAKENHI Grant Numbers JP15K04868.

References

- Alexander, J.W., Topological invariants of knots and links. *Trans. Amer. Math. Soc.*, 30 (1928), no. 2, 275–306.
- [2] Culler, M., Lifting representations to covering groups, *Adv. in Math.*, 59 (1986), 64–70. arXiv:0906.1500v4.
- [3] Dunfield, N.M., Friedl, S., Jackson, N., Twisted Alexander Polynomials of Hyperbolic knots. *Exp. Math.*, 21 (2012), no. 4, 329–352.
- [4] Friedl, S., Vidussi. S., A survey of twisted Alexander polynomials, The Mathematics of Knots: Theory and Application (Contributions in Mathematical and Computational Sciences), (2010), 45–94.
- [5] Goda, H., Twisted Alexander invariants and Hyperbolic volume, preprint, arXiv:1604.07490.
- [6] Goda, H., Kitano, T., and Morifuji, T., Reidemeister torsion, twisted Alexander polynomial and fibered knots, *Comment. Math. Helv.* 80 (2005), no.1, 51–61.
- [7] Kirk, P. and Livingston, C., Twisted Alexander invariants, Reidemeister torsion, and Casson-Gordon invariants. *Topology*, 38 (1999), no. 3, 635–661.
- [8] Kitano, T., Twisted Alexander polynomial and Reidemeister torsion. *Pacific J. Math.*, 174 (1996), no. 2, 431–442.
- [9] Kitano, T., Twenty years of twisted Alexander polynomials, Sugaku, 65 (2013), 360–384 (in Japanese).
- [10] Kitano, T., Goda, H., and Morifuji, T., Twisted Alexander invariants, Sugaku Memoirs vol.5, The Mathematical Society of Japan, 2006 (in Japanese).
- [11] Kojima, S., The geometry of 3-dimension, Asakurasyoten, 2002 (in Japanese).
- [12] Lin, X.S., Representations of knot groups and twisted Alexander polynomials. Acta Math. Sin. 17 (2001), no. 3, 361–380.
- [13] Menal-Ferrer, P. and Porti, J., Twisted cohomology for hyperboilc three manifolds. *Osaka J. Math.*, 49 (2012), 741–769.

- [14] Menal-Ferrer, P. and Porti, J., Higher-dimensional Reidemeister torsion invariants for cusped hyperbolic 3-manifolds. J. Topol., 7 (2014), no. 1, 69–119.
- [15] Morifuji,T., Representations of knot groups into SL(2,C) and twisted Alexander polynomials, Handbook of Group Actions (Vol. I), Advanced Lectures in Mathematics 31 (2015) 527–576.
- [16] Müller, W., Analytic torsion and R-torsion for unimodular representations. J. Amer. Math. Soc., 6 (1993), no. 3, 721–753.
- [17] Müller, W., The asymptotics of the Ray-Singer analytic torsion of hyperbolic 3-manifolds, Metric and differential geometry, 317–352, Progr. Math., 297, Birkhäuser/Springer, Basel, 2012.
- [18] Ohtsuki, T., Knot invariants, Kyoritsushuppan, 2015 (in Japanese).
- [19] Wada, M., Twisted Alexander polynomial for finitely presentable groups. *Topology*, 33 (1994), no. 2, 241–256.
- [20] Yamaguchi, Y., On the non-acyclic Reidemeister torsion for knots, Dissertation at the University of Tokyo, 2007.
- [21] Yamaguchi, Y., A relationship between the non-acyclic Reidemeister torsion and a zero of the acyclic Reidemeister torsion. *Ann. Inst. Fourier (Grenoble)*, 58 (2008), no. 1, 337–362.

Department of Mathematics Tokyo University of Agriculture and Technology 2-24-16 Naka-cho, Koganei Tokyo 184-8588 Japan E-mail address: goda@cc.tuat.ac.jp

東京農工大学・大学院工学研究院 合田 洋