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1 The AJ conjecture for cable knots

(Anh T. Th an)
The AJ conjecture relates the \mathrm{A}‐polynomial and the colored Jones polynomial

of a knot in S^{3} . The \mathrm{A}‐polynomial A_{K}(M, L) of a knot K \subset  S^{3} was introduced

by Cooper et al. [11]; it describes the character variety of the knot complement as

viewed from the boundary torus. For every knot K
, Garoufalidis and Le [16] proved

that the colored Jones polynomial J_{K}(n) \in \mathbb{Z}[t^{\pm 1}] , with the color n standing for the

irreducible sl_{2}(\mathbb{C}) ‐module of dimension n
, satisfy linear recurrence relations. The

recurrence polynomial $\alpha$_{K}(t, M, L) of K is the minimal linear recurrence relation

for J_{K}(n) . Motivated by the work of Frohman, Gelca and LoFaro [12] on the non‐

commutative \mathrm{A}‐ideal, Garoufalidis [14] proposed the AJ conjecture which states that

$\alpha$_{K} |_{t=-1} is equal to A_{K}(M, L) up to multiplication by a polynomial depending on

M only.
Suppose K is a knot and r, s are two relatively prime integers. The (r, s)‐cable

knot K^{(r,s)} of K is the (r, s) ‐curve on the torus boundary of K . A cabling formula

for the \mathrm{A}‐polynomial has recently been given by Ni and Zhang [42]. For a pair of

relatively prime integers (r, s) with s\geq 2 ,
define F_{(r,s)}(M, L) \in \mathbb{Z}[M, L] by

F_{(r,s)}(M, L)= \left\{\begin{array}{ll}
M^{2r}L+1 & \mathrm{i}\mathrm{f} s=2,\\
M^{2rs}L^{2}-1 & \mathrm{i}\mathrm{f} s>2.
\end{array}\right.
Then

A_{K(r,\mathrm{s})}(M, L)=(L-1)F_{(r,s)}(M, L){\rm Res}_{\ell}(\displaystyle \frac{A_{K}(M^{s},\ell)}{\ell-1}, \ell^{s}-L) , (1)

where {\rm Res}_{\ell} denotes the polynomial resultant eliminating the variable \ell.

On the other hand, a cabling formula for the colored Jones polynomial was given
by Morton [36]:

J_{K}(r,s)(n)=t^{-rs(n^{2}-1)}\displaystyle \sum_{j=-(n-1)/2}^{(n-1)/2}t^{4rj(sj+1)}J_{K}(2sj+1) . (2)

We define 2 linear operators L, M acting on discrete functions f : \mathbb{Z}\rightarrow \mathbb{C}[t^{\pm 1}] by

(Lf)(n)=f(n+1) , (Mf)(n)=t^{2n}f(n) .

Using (2), one can relate the colored Jones polynomials of K^{(r,s)} and K as follows:

t^{2rs}M^{rs}(L^{2}-t^{-4rs}M^{-2rs})J_{K(r,s)}(n)
= t^{2r(n+1)}J_{K}(s(n+1)+1)-t^{-2r(n+1)}J_{K}(s(n+1)-1) .

Moreover, in case of (r, 2) ‐cable knots one has

M^{r}(L+t^{-2r}M^{-2r})J_{K}(r,2)(n)=J_{K}(2n+1) .

These equalities should imply a relationship between the recurrence polynomials of

K and its cable K^{(r,s)} . It is ideal is to have a similar formula to (1) such as

$\alpha$_{K(r,s)}(-1, M, L)=(L-1)F_{(r,s)}(M, L){\rm Res}_{\ell}(\displaystyle \frac{$\alpha$_{K}(-1,M^{s},\ell)}{\ell-1}, \ell^{s}-L) (3)

2

122



up to multiplication by a polynomial depending on M only.

Problem 1.1 (A. T. Tran). Prove equality (3) for all cable knots K^{(r,s)}.

If K satisfies the AJ conjecture and (3) holds true for a cable knot K^{(r,s)}
, then

K^{(r,s)} satisfies the AJ conjecture.

2 Loop finite type invariants of null‐homologous knots in

rational homology 3‐spheres

(Delphine Moussard)
For loop finite type invariants of null‐homologous knots in rational homology 3‐

spheres, there are two candidates to be universal loop finite type invariants, namely
the Kricker rational lift of the Kontsevich integral [27, 15] and the Lescop invariant

constructed by means of equivariant intersections in configuration spaces [31]. Le‐

scop conjectured in [32] that these two invariants are equivalent for null‐homologous
knots in rational homology 3‐spheres with a given Blanchfield pairing and a given
cardinality for the first homology group of the manifold; we recall that the Blanch‐

field pairing is the equivariant linking pairing on the universal cyclic cover of the

knot complement. By equivalent, we mean that one invariant distinguishes two knots

if and only if the other invariant distinguishes them.

é first recall some definitions. Let (M, K) be a \mathbb{Q}SK‐pair, i.e . a pair of a rational

)logy 3‐sphere M and a null‐homologous knot K in M . Let  A\subset  M\backslash K be a

rational homology handlebody ( \mathbb{Q}‐handlebody). Assume A is null in M\backslash K, i.e.

the map incl* : H_{1}(A, \mathbb{Q}) \rightarrow  H_{1}(M\backslash K, \mathbb{Q}) has a trivial image. Let B be another

\mathbb{Q}‐handlebody with the same genus. Fix a homeomorphism h : \partial A \rightarrow \partial B . The

\mathbb{Q}\mathrm{S}\mathrm{K}‐pair obtained from (M, K) by the null Lagrangian‐preserving surgery, or null

LP‐surgery, (\displaystyle \frac{B}{A}) is:

(M, K)(\displaystyle \frac{B}{A})=((M\backslash Int(A))\bigcup_{h}B, K) .

Let \mathcal{F}_{0} be the rational vector space spanned by all QSK‐pairs up to orientation‐

preserving homeomorphism. Let \mathcal{F}_{n} be the vector subspace of \mathcal{F}_{0} spanned by the

[(M, K);(\displaystyle \frac{B_{1}}{A_{1}}), . . . , (\frac{B_{n}}{A_{n}})]=\sum_{I\subset\{1,..n\}}.,(-1)^{|I|}(M, K)((\frac{B_{i}}{A_{i}})_{i\in I})
for all \mathbb{Q}\mathrm{S}\mathrm{K}‐pairs (M, K) ,

all families of disjoint \mathbb{Q}‐handlebodies A_{1} ,
. . .

, A_{n} null

in M\backslash K and all families of \mathbb{Q}‐handlebodies B_{1} ,
. . .

, B_{n} with a fix identification

\partial B_{i}\cong\partial A_{i} . Since \mathcal{F}_{n+1} \subset \mathcal{F}_{n} , this defines a filtration of \mathcal{F}_{0}.

Definition. \mathrm{A} \mathbb{Q}‐linear map  $\lambda$ : \mathcal{F}_{0}\rightarrow \mathbb{Q} is a loop finite type invariant of degree n of

QSK‐pairs if  $\lambda$(\mathcal{F}_{n+1})=0.
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The homeomorphism classes of QSK‐pairs up to null LP‐surgeries are characterized

by the isomorphism classes of their Blanchfield pairings [37]. Therefore, the Blanch‐

field pairing dominates degree 0 invariants. The degree 1 invariants are given by the

cardinality of the first homology group of the manifold.

Question 2.1 (D. Moussard). Are the Kricker lift of the Kontsevich integral and

the Lescop invariant universal loop finite type invariants of \mathbb{Q}SK‐pairs up to degree
0 and 1 invariants �?

Since these two invariants satisfy the same splitting formulas with respect to null

LP‐surgeries [32, 38], the answer should be the same for both invariants. Note that

Question 2.1 implies Lescop�s conjecture. The answer is known to be positive when

the Blanchfield pairing is trivial [39].
Since the Blanchfield pairing dominates degree 0 invariants, the space \mathcal{F}_{0} is the

direct sum over all isomorphism classes of Blanchfield pairings \mathfrak{B} of spaces \mathcal{F}_{0}(\mathfrak{B}) ,

and the filtration (\mathcal{F}_{n})_{n\in \mathbb{N}} splits accordingly into filtrations (\mathcal{F}_{n}(\mathfrak{B}))_{n\in \mathbb{N}} of each

\mathcal{F}_{0}(\mathfrak{B}) . Denote \mathcal{G}_{n}(\mathfrak{B}) = \mathcal{F}_{n}(\mathfrak{B})/\mathcal{F}_{n+1}(\mathfrak{B}) the quotients of the filtration. For a

given Blanchfield pairing \mathfrak{B} , we have a map C_{n} : \mathcal{G}_{n}(\mathfrak{B}^{\oplus k})\rightarrow \mathcal{G}_{n}(\mathfrak{B}^{\oplus k+1}) induced by
the connected sum of QSK‐pairs with a fixed QSK‐pair (M_{0}, K_{0}) with Blanchfield

pairing \mathfrak{B}.

Question 2.2 (D. Moussard). Given a Blanchfield pairing \mathfrak{B} and integers k, n with

1\leq 2k<3n ,
is the map C_{n}:\mathcal{G}_{n}(\mathfrak{B}^{\oplus k})\rightarrow \mathcal{G}_{n}(\mathfrak{B}^{\oplus k+1}) injective /?

The bound on the value of k comes from the fact that \mathcal{G}_{n}(\mathfrak{B}^{\oplus N}) is combinatorially
described in [39] when N \geq \displaystyle \frac{3}{2}n . In particular, for a Blanchfield pairing \mathfrak{B}^{\oplus 3n} , the

Kricker lift of the Kontsevich integral and the Lescop invariant dominate loop finite

type invariants of degree non‐zero and at most 2n . In [39], the following fact is also

established:

Fact. For a given Blanchfield pairing, Question 2.1 is equivalent to Question 2.2 for

all n and k.

About Question 2.2, we shall mention a result of existence and uniqueness of the

decomposition of a \mathbb{Q}\mathrm{S}\mathrm{K}‐pair as the connected sum of irreducible \mathbb{Q}\mathrm{S}\mathrm{K}‐pairs [35].
Unfortunately, such a decomposition is not preserved by null LP‐surgeries.

Remark (T. Ohtsuki). The loop‐degree of a Jacobi diagram on S^{1} is defined to be

half of the number given by the number of trivalent vertices minus the number of

univalent vertices of the uni‐trivalent graph of the Jacobi diagram. The filtration of

the space of Jacobi diagrams on S^{1} given by loop‐degrees is related to the filtration

of loop finite type invariants through the rational lift of the Kontsevich integral. The

theory of this filtration is developed in [17] (noting that this notion also appears in

[26] and the September 1999 version of [28]); see also [44, Section 2.9].
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3 The double covering method for twisted knots

(Naoko Kamada)3
Virtual knot theory was introduced by L. H. Kauffman [24] as a generalization

of knot theory based on Gauss chord diagrams and link diagrams in closed oriented

surfaces. A virtual link diagram is a link diagram possibly with virtual crossings,
and a virtual link is an equivalence class of such diagrams by some Reidemeister type
moves. Virtual links correspond to stable equivalence classes of links in oriented 3‐

manifolds which are line bundles over closed oriented surfaces ([6, 22 Twisted

knot theory was introduced by M. O. Bourgoin [1]. It is an extension of virtual knot

theory. A twisted link diagram is a link diagram possibly with virtual crossings and

bars on arcs, and a twisted link is an equivalence class of such diagrams by some

Reidemeister type moves. Twisted links correspond to stable equivalence classes of

links in oriented 3‐manifolds which are line bundles over (possibly non‐orientable)
closed surfaces ([1, 6

An abstract link diagram is a link diagram D on a compact surface  $\Sigma$ such that

|D| is a deformation retract of  $\Sigma$
,

where |D| is the underlying immersed loops in  $\Sigma$

by forgetting over/under information from  D . In [22] and [1], an equivalence relation

on abstract link diagrams is defined. An abstract link is an equivalence classes of

abstract link diagrams by the equivalence relation. There is a bijection from the set

of virtual links and the set of abstract links on orientable surfaces [22], and there is

a bijection from the set of twisted links and the set of abstract links on surfaces [1].
Definition. An abstract link diagram D on  $\Sigma$ is normal or checkerboard colorable if

 $\Sigma$\backslash |D|\cup(bars) is checkerboard colorable. (Namely, we can assign elements of \mathbb{Z}/2\mathbb{Z}
to regions of  $\Sigma$\backslash |D|\cup(bars) such that two regions sharing an arc (or a bar) are

assigned distinct values.) A virtual link diagram or a twisted link diagram is normal

if the corresponding abstract link diagram (in the sense of [22]) is normal. A virtual

link or a twisted link is normal if there is a representative which is a normal virtual

(or twisted) link diagram.

Problem 3.1 (N. Kamada). Construct invariants of normal virtual links.

For example, the signature is defined for normal virtual links [20].
In the talk at the conference, a method of obtaining a virtual link diagram from a

twisted link diagram, called the double covering method ([23]). Using this method,
we obtain a method of converting any virtual link diagram with a cut system to a

normal virtual link diagram. (A cut system of a virtual link diagram D is a finite

number of points C on arcs of D such that when we put bars at the points of C , we

obtain a normal twisted link diagram. Then the double covering of such a normal

twisted link diagram is a normal virtual link diagram. This is the method of the con‐

version. The resulting normal virtual link diagram depends on the cut system C for

D
, but its \mathrm{K}‐equivalence class is uniquely determined from D . Here \mathrm{K}‐equivalence

3Supported by JSPS KAKENHI Grant Number 15\mathrm{K}04879.

Graduate School of Natural Sciences, Nagoya City University, 1 Yamanohata, Mizuho‐cho, Mizuho>\mathrm{k}\mathrm{u} , Nagoya,
Aichi 467‐8501 Japan
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is the equivalence relation on virtual link diagrams modulo the Reidemeister type
moves for virtual links and an additional move called Kauffman�s flype.)

Problem 3.2 (N. Kamada). Find another method of converting a virtual link to a

normal virtual link. Using the method, construct a new invariant of virtual links or

find an application.

Definition. An abstract link diagram D on oriented  $\Sigma$ is almost classical or region
\mathbb{Z} ‐colorable if  $\Sigma$\backslash |D| is \mathbb{Z}‐colorable, namely, we can assign elements of \mathbb{Z} to regions of

 $\Sigma$\backslash |D| such that if the right side is assigned i with respect to the orientation of the

arc then the left side is assigned i+1 . A virtual link diagram is almost classical if

the corresponding abstract link diagram is almost classical. A virtual link is almost

classical if there is a representative which is an almost classical virtual link diagram.

By the projection \mathbb{Z}\rightarrow \mathbb{Z}/2\mathbb{Z} , an almost virtual link is a normal virtual link.

Problem 3.3 (N. Kamada). Construct invariants of almost classical virtual links.

Problem 3.4 (N. Kamada). Find a method of converting a virtual link to an almost

classical virtual link. Using the method, construct a new invariant of virtual links

or find an application.

4 Presentations of (immersed) surface‐knots by marked graph
diagrams

(Jieon Kim)4
An immersed surface‐knot is a generically immersed closed and connected surface

in the 4‐space \mathbb{R}^{4}.
A marked graph diagram is a diagram of a 4‐valent graph each of whose vertices

is a vertex with a marker looks like \times\cdot An oriented marked graph diagram is a

marked graph diagram in which every edge has an orientation such that each marked

vertex looks like \ovalbox{\tt\small REJECT} \mathrm{o}\mathrm{r}\ovalbox{\tt\small REJECT}.
For a given (oriented) marked graph diagram D

,
let L_{+}(D) and L_{-}(D) be classical

(oriented) link diagrams obtained from D by replacing each marked vertex \timeswith

\wedge^{\mathrm{a}\mathrm{n}\mathrm{d}}\vee) ( , respectively. A marked graph diagram D is said to be H‐admissible

if both resolutions L_{+}(D) and L_{-}(D) are \mathrm{H}‐trivial link diagrams, where an \mathrm{H}‐trivial

link is a split union of trivial knots and Hopf links. See Fig. 1.

An unlinking crossing point c of a classical link diagram L is a crossing of L such

that L is transformed into a diagram of an unknotted link by switching over arc and

under arc of c.

4(Osaka city University/JSPS)
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D L_{+}(D) L_{-}(D)

Figure 1: \mathrm{H}‐admissible marked graph diagram

Definition. A crossing point p (in a marked graph diagram D ) is an upper singular
point if p is an unlinking crossing point in the resolution L_{+}(D) ,

and a lower singular
point if p is an unlinking crossing point in the resolution L_{-}(D) , respectively.
Remark. The moves (a) of $\Gamma$_{9} and $\Gamma$_{9}' in Fig. 4 need the conditions that the com‐

ponents l^{+} (in the resolution L_{+}(D) ) and l^{-} (in the resolution L_{-}(D) ) are trivial,
respectively. The moves (b) of $\Gamma$_{9} and $\Gamma$_{9}' need the conditions that p are an upper

singular point and a lower singular point, respectively.
It is known that two marked graph diagrams present equivalent surface‐links if

and only if they are related by the Yoshikawa moves of type I and type II (see [49]).
The generalized Yoshikawa moves for marked graph diagrams are the deformations

$\Gamma$_{1} ,
. . .

, $\Gamma$_{5} (Type I), $\Gamma$_{6} ,
. . .

, $\Gamma$_{8} (Type II), and $\Gamma$_{9}, $\Gamma$_{9}', $\Gamma$_{10} (Type III) as shown in

Fig. 2, Fig. 3, and Fig. 4, respectively.

Definition. A set S of moves are independent if x is not generated by finite sequences

of moves in S\backslash \{x\} for every x\in S.

Question 4.1 (S. Kamada, A. Kawauchi, J. Kim, S. Y. Lee [21]). Is the set of
generalized Yoshikawa moves independent?

Lemma. Let \mathcal{L} and \mathcal{L}' be immersed surface‐links, and D and D' their marked graph
diagrams, respectively. If D and D' are related by a finite sequence of generalized
Yoshikawa moves, then \mathcal{L} and \mathcal{L}' are equivalent.

Problem 4.2 (J. Kim). Find the set S of local moves of marked graph diagrams
such that the marked graph diagrams are related by S if and only if their immersed

surface‐links are equivalent.

Problem 4.3 (J. Kim). Create a table of H‐admissible marked graph diagrams rep‐

resenting immersed surface‐links under the equivalence of S in the previous Problem

with ch‐index 10 or less, where the ch‐index of a marked graph diagram is the sum

of the number of crossings and that of vertices.

7
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Figure 2: Moves of Type I

Figure 3: Moves of Type II

8
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Figure 4: Moves of Type III

5 Knotted 2‐foams and quandle homology

(J. Scott Carter)
Let

$\Delta$^{n+1}=\displaystyle \{\vec{x}= (x_{0}, x_{1}, \cdot \cdot \cdot , x_{n+1})\in \mathbb{R}^{n+2} | \sum x_{i}=1 \& 0\displaystyle \leq x_{i}\}
denote the standard simplex. The space Y^{n} \subset $\Delta$^{n+1} is defined as follows: Y^{0} =

(\displaystyle \frac{1}{2}, \frac{1}{2}) . Take $\Delta$_{j}^{n}=\{\vec{x}\in$\Delta$^{n+1}|x_{j}=0\} . Embed a copy, Y_{j}^{n-1}\subset$\Delta$_{j}^{n} . Cone \displaystyle \bigcup_{j=1}^{n+2}Y_{j}^{n-1}
to the barycenter b=\displaystyle \frac{1}{n+2}(1,1, \ldots, 1) of $\Delta$^{n+1} . We put

Y^{n}=C(\displaystyle \bigcup_{j=1}^{n+2}Y_{j}^{n-1}) .

An n ‐foam is a compact topological space X for which each point x \in  X has a

neighborhood N(x) that is homeomorphic to a neighborhood of a point in Y^{n}.

Y_{0} Y_{1} Y_{2}

In particular, a 2‐foam is a compact topological space such that any point has a

neighborhood that is homeomorphic to a neighborhood of a point in Y_{2} . A knotted

2‐foam is an embedded 2‐foam in a 4‐dimensional space. A knotted 2‐foam is a

2‐dimensional generalization of a spatial trivalent graph. See [4, 3] for details.

Problem 5.1 (J. S. Carter, see [3, Problem 3.5]). Construct interesting examples
of knotted 2‐foams by using movie techniques.

This problem is related to the next problem.
In a group, let a\triangleleft b=b^{-1}ab . Then we have,

9
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YY (ab)c=a(bc)

YI (ab)\triangleleft c=(a\triangleleft c)(b\triangleleft c)

IY (a\triangleleft b)\triangleleft c=a\triangleleft(bc)

III (a\triangleleft b)\triangleleft c=(a\triangleleft c)\triangleleft(b\triangleleft c)

Local crossings of 2‐foams are geometric representations of chains in the homology
that is associated to the algebraic structure encoded by these four identities. There

is a homology theory that encompasses both group and quandle homology. (See for

example, this volume or my talk at RIMS).

Problem 5.2 (J. S. Carter). Develop methods of computing homology and cohomol‐

ogy classes for foam homology.

6 3‐dimensional braids

(J. Scott Carter)
Carter and Kamada [5] described a method for constructing simple braided em‐

beddings or immersions in 5‐space of the 2‐fold and 3‐fold branched covers of S^{3}
branched along a given knot or link.

Let D^{2} be a 2‐disk. We denote by pr_{2} : D^{2}\times S^{3}\rightarrow S^{3} the second factor projection.
A 3‐dimensional braid in D^{2} \times  S^{3} of degree d is a 3‐manifold M such that the

restriction map pr_{2}|_{M} : M \rightarrow  S^{3} is a simple branched covering map of degree d

branched along a link in S^{3} . Here, a simple branched covering map is a branched

covering map whose monodromy takes each meridian of the link of the branch set

to a transposition. See [5] for details of 3‐dimensional braids.

We consider 3‐dimensional braids of degree 2 or 3.

Question 6.1 (J. S. Carter).
(1) When are these knotted�?

(2) In particular, are the embeddings that are constructed via the Seifert algorithm
for a given diagram knotted.?

(3) What are the relationships among the immersions of the 2‐fold branched covers

that are parametrized by the bracket smoothing cube�? Explicitly modify the Seifert
algorithm to construct (possibly non‐orientable) surfaces using any combination of
A and B smoothings. Can the immersions in 5‐space be isotopic Í?

7 Volume conjecture for 3‐manifolds

(Qingtao Chen)
In my paper with T. Yang [10], we proposed the Volume Conjecture for Reshetikhin‐

Turaev and Turaev‐Viro invariants at roots of unity q(2) ,
where q(s) = e^{s $\pi$\sqrt{-1}/r}.

The example of Turaev‐Viro invariant of non‐orientable 3‐manifold N_{2_{1}} (Callahan‐
Hildebrand‐Weeks census [2]) vanishes at roots of unity q(s) ,

where r and s are

10
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both odd numbers and (r, s)=1 (required by a condition from the definition of the

Turaev‐Viro invariant). Numerical evidence shows that it is nonzero at q(s) and

also goes exponentially large as  r\rightarrow\infty
,

when  s is an odd number other than 1 but

r is an even number.

Thus it is natural to propose the following Volume Conjecture,

Conjecture 7.1 (Q. Chen). Let M be an (orientable or non‐orientable) hyperbolic
3‐manifold with cusps or totally geodesic boundary. For a fixed odd number s other

than 1 and such integer r that condition (*) TV_{r}(M, q(s)) \neq 0 is satisfied, then we

have

\displaystyle \lim_{r\rightarrow\infty} \underline{s $\pi$}_{\log}|TV_{r}(M, q(s))| = \mathrm{V}\mathrm{o}\mathrm{l}(M) .

r
(r,s)=1

r satisfies (*)

Remark. If TV_{r}(M, q(s))\neq 0 for all any even integer r and any 3‐manifold M with

boundary, we could change condition r satisfies (*)
�

to r is even�

Remark. When M has cusps, as in [10], we consider ideal tetrahedral decomposition
of M

,
and consider Turaev‐Viro invariant of this tetrahedral decomposition.

When M has totally geodesic boundary, we consider the singular 3‐manifold

obtained from M by collapsing each boundary component, and consider Turaev‐

Viro invariant of a triangulation of this singular 3‐manifold.

Similar phenomenon happens to the Reshetikhin‐Turaev invariants also. The

Reshetikhin‐Turaev invariants of closed 3‐manifold M obtained from a 4k+2‐surgery

along a knot K, RT_{r}(M, q(s)) , vanishes at roots of unity q(s) , where r and s are

both odd numbers and (r, s) = 1 (see [25] and see also [9]). Numerical evidence

shows that Reshetikhin‐Turaev of certain examples we tested are nonzero at q(s)
and also goes exponentially large as  r\rightarrow\infty

,
when  s is an odd number other than 1

but r is an even number.

Thus it is natural to propose the following Volume Conjecture,

Conjecture 7.2 (Q. Chen). Let M be a closed hyperbolic hyperbolic 3‐manifold.
For a fixed odd number s other than 1 and such integer r that condition (**)
RT_{r}(M, q(s))\neq 0 is satisfied, then we have

rsatisfies (**)(r\displaystyle \vec{s)},=1\lim_{r\infty}\frac{2s $\pi$}{r}\log(RT_{r}(M, q(s)))
= \mathrm{V}\mathrm{o}\mathrm{l}(M)+\sqrt{-1} CS (M) (mod \sqrt{-1}$\pi$^{2}\mathbb{Z} ),

with a suitable choice of a branch of the \mathrm{l}\mathrm{o}\mathrm{g}.

Remark. If RT_{r}(M, q(s)) \neq 0 for all any even integer \mathrm{r} and any 3‐manifold closed

manifold M
,

we could change condition r satisfies (**)
�

to r is even�

Habiro [18, 19] proved that the colored Jones polynomial (reduced colored SU(2)
invariants) of a knot K can be expanded in the following form, called the cyclotomic

11
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expansion,

J_{0}(K) = 1,
J_{1}(K) = 1+\{1\}\{3\}H_{1}(K) ,

J_{2}(K) = 1+\{2\}\{4\}H_{1}(K)+\{1\}\{2\}\{4\}\{5\}H_{2}(K) ,

:

J_{N}(K) = 1 + \{N\}\{N+2\}H_{1}(K) + . . .

+ \{1\}\cdots\{N\}\{N+2\}\cdots\{2N+1\}H_{N}(K) ,

for some H_{i}(K) \in \mathbb{Z}[q] ,
where \{n\}=q^{n}-q^{-n} and J_{N}(K) denotes the colored Jones

polynomial associated with the N‐th symmetric tensor product of the fundamental

representation of \mathcal{B}1_{2} ( i.e.
,
the (N+1) ‐dimensional irreducible representation of \mathcal{B}l_{2} ).

Careful readers who are familiar with Volume Conjecture may find that root of

unity employed in Volume Conjecture proposed by Kashaev‐Murakami‐Murakami

is exactly q=e^{\frac{ $\pi$}{N+1}} , which is a solution of �gap equation� \{N+1\}=0 in cyclotomic
expansion.

The colored SU(n) invariant J_{N}^{SU(n)}(K) of a knot K is the quantum SU(n) in‐

variant associated with the N‐th symmetric tensor product of the fundamental rep‐

resentation of \mathfrak{s}$\iota$_{n}.

Conjecture 7.3 (Chen‐Liu‐Zhu [9]). The colored SU(n) invariants of a knot K can

be expanded in the following form,

J_{0}^{SU(n)}(K) = 1,

J_{1}^{SU(n)}(K) = 1+\{1\}\{n+1\}H_{1}^{SU(n)}(K) ,

J_{2}^{SU(n)}(K) = 1+\{2\}\{n+2\}H_{1}^{SU(n)}(K)+\{1\}\{2\}\{4\}\{5\}H_{2}^{SU(n)}(K) ,

:

J_{N}^{SU(n)}(K) = 1 + \{N\}\{N+n\}H_{1}^{SU(n)}(K) + . . .

+ \{1\}\cdots\{N\}\{N+n\}\cdots\{2N+n-1\}H_{N}^{SU(n)}(K) ,

for some H_{i}^{SU(n)}(K) \in \mathbb{Z}[q].

Conjecture 7.4 (Chen‐Liu‐Zhu [9]). Volume Conjecture holds for the colored SU(n)
invariants of a knot K at roots of unity q = e^{\frac{ $\pi$}{N+a}} (with a wider choices), where

a=1, n-1.

We proved the conjecture in the case of the figure‐eight knot. We note that these

roots corresponds to the �gap equation� \{N+a\} = 0 in the above cyclotomic
expansion.

Chen [7] applied this philosophy to the (reduced) superpolynomial of HOMFLY‐

PT homology and Kauffman homology and thus obtained both cyclotomic expansion
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and Volume Conjectures (proved in the case of the figure‐eight knot). All the ex‐

amples in existence literature have been verified. Roots of unity employed in this

Volume Conjecture are solutions of a two variable �gap equation��
Because even categorified invariants seem to have Habiro type cyclotomic expan‐

sion and Volume Conjecture, thus now it is natural to ask whether all quantum
invariants of a knot have cyclotomic expansions and Volume Conjectures. (I believe

that the answer is positive.)

A cyclotomic expansion conjecture of the superpolynomial of colored HOMFLY‐

PT homology is formulated in [7], as follows.

Conjecture 7.5 (Q. Chen [7]). For any knot \mathcal{K} , there exists an integer valued

invariant  $\alpha$(K) \in \mathbb{Z}
,

such that the reduced superpolynomial \mathcal{P}_{N}(K;a, q, t) of the

colored HOMFLY‐PT homology of a knot K has the following cyclotomic expansion
formula

(-t)^{N $\alpha$(K)}\mathcal{P}_{N}(K;a, q, t)

= 1+\displaystyle \sum_{k=1}^{N}H_{k}(K;a, q, t) (A_{-1}(a, q, t)\prod_{i=1}^{k}(\frac{\{N+1-i\}}{\{i\}}B_{N+i-1}(a, q, t)))
with coefficient functions H_{k}(K;a, q, t) \in \mathbb{Z}[a^{\pm 1}, q^{\pm 1}, t^{\pm 1}] ,

where A_{i}(a, q, t) = aq^{i}+
t^{-1}a^{-1}q^{-i}, B_{i}(a, q, t)=t^{2}aq^{i}+t^{-1}a^{-1}q^{-i} and \{p\}=q^{p}-q^{-p}.
Remark. The above Conjecture‐Definition for the invariant  $\alpha$(K) should be under‐

stood in this way. If the above conjecture of a knot K is true for N=1
,
then  $\alpha$(K)

is defined.

We tested many homologically thick knots up to 10 crossings to illustrate this

conjecture as well as many examples with higher representation. Based on highly
nontrivial computations of torus knots/links studied, in [7], we are able to prove the

above conjecture of N = 1 for torus knots, and show that  $\alpha$(T(m, n)) = -(m-
1) (n-1)/2 for the torus knot T(m, n) .

Now we are considering a problem relating to the sliceness of a knot. The smooth

4‐ball genus g_{4}(K) of a knot K is the minimum genus of a surface smoothly embedded

in the 4‐ball B^{4} with boundary the knot. In particular, a knot K \subset  S^{3} is called

smoothly slice if g_{4}(K)=0 . It is known (Milnor Conjecture, proved by Kronheimer‐

Mrowka [29] and Rasmussen [45]) that the smooth 4‐ball genus for the torus knot

T(m, n) is (m-1)(n-1)/2 . Based on all the above results, we are able to propose

the following conjecture.

Conjecture 7.6 (Q. Chen [7]). The invariant  $\alpha$(K) (determined by the cyclotomic
expansion conjecture for N=1 ) is a lower bound for the smooth 4‐ball genus g_{4}(K) ,

i.e. | $\alpha$(K)| \leq g_{4}(K) .

Remark. Rasmussen [45] introduced a knot concordant invariant s(K) ,
which is a

lower bound for the smooth 4‐ball genus for knots. For all the knots we tested, it is

identical to the Ozsváth‐Szabó�s  $\tau$ invariant and Rasmussen�s  s invariant (up to a

factor of 2).
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8 Gauge theory on 4‐manifolds with \mathbb{Z}‐actions

(Masaki Taniguchi)
The gauge theory has been an important tool for the study of 4‐dimensional

manifolds since the early 1980\mathrm{s} , when Donaldson solved long‐standing problems
in topology. There are two fundamental invariants which are called Donaldson

invariant and Seiberg‐Witten invariant in gauge theory, but these invariants can not

be defined for closed oriented 4‐manifolds with b_{+}^{2}=0.
We consider a closed oriented 4‐manifold X whose \mathbb{Z}‐homology is isomorphic

to H_{*} (S^{3} \times S^{1};\mathbb{Z}) ; we call such a 4‐manifold a homology S^{3} \times  S^{1} . We assume

that the homology of \mathbb{Z} covering of X is isomorphic to the homology of S^{3} . From

the viewpoint of the Donaldson gauge theory, an invariant $\lambda$_{\mathrm{F}\mathrm{O}}(X) is defined in

[13], by algebraically counting gauge equivalence classes of irreducible flat SU(2)
connections on X with signs determined from the orientation of the moduli space

of anti‐self‐dual connections in the Donaldson gauge theory. From the viewpoint of

the Seiberg‐Witten gauge theory, another invariant $\lambda$_{\mathrm{M}\mathrm{R}\mathrm{S}}(X) is defined in [40], by
algebraically counting gauge equivalence classes of solutions of the Seiberg‐Witten
equations. It is conjectured [40] that these invariants are essentially equal.

When X=Y\times S^{1} for a \mathbb{Z}‐homology 3‐sphere Y
,
it is known that these invariants

coincide with the Casson invariant of Y . In fact, $\lambda$_{\mathrm{F}\mathrm{O}} (Y \times S^{1}) is an invariant

obtained by algebraically counting gauge equivalence classes of irreducible flat SU(2)
connections on Y with signs of the Donaldson gauge theory, and it is known [47]
that the Casson invariant can be obtained in such a way. Further, it is known, see

[40], that $\lambda$_{\mathrm{M}\mathrm{R}\mathrm{S}} (Y \times S^{1}) is equal to the Seiberg‐Witten invariant of Y
,

and it is

known [33] that this invariant is equal to the Casson invariant of Y.

It is known, see e.g . [30, 46], that the Casson invariant has combinatorial de‐

scriptions such as surgery formulas.

Question 8.1 (M. Taniguchi). Are there combinatorial descriptions such as surgery

formulas for $\lambda$_{\mathrm{F}\mathrm{O}}(X) and $\lambda$_{\mathrm{M}\mathrm{R}\mathrm{S}}(X)'?

It is known [47] that the instanton Floer homology is a categorifications of the

Casson invariant. This is shown by reconstructing the Casson invariant from the

viewpoint of the gauge theory.

Problem 8.2 (M. Taniguchi). Construct categorifications of $\lambda$_{\mathrm{F}\mathrm{O}}(X) and $\lambda$_{\mathrm{M}\mathrm{R}\mathrm{S}}(X)
by developing the gauge theory on the \mathbb{Z} covering space of X.

Considering this problem leads to developing the gauge theory on non‐compact
4‐manifolds and constructing diffeomorphism invariants of 4‐manifolds with b_{+}^{2}=0.
To solve such a problem, it is important to describe the divergence of any sequence

in the moduli space. We now introduce more explicit setting of the compactness
problem in the case of Donaldson theory.

Let X be an oriented \mathbb{Z}‐homology S^{3}\times S^{1} ,
and let p:\overline{X}\rightarrow X be the \mathbb{Z} covering

space of X . We denote the product SU(2) bundles on X and \overline{X} by P_{X} and P_{\overline{X}}
respectively. If we have Riemannian metric g_{X} on X

, we have a periodic Riemannian
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metric g_{\overline{X}} on \overline{X} by the pull‐back. There is a natural orientation of \overline{X} induced by
the orientation of X . We fix such Riemannian metric and orientation. We also fix

two SU(2) connections on P_{X} and denote them by a, b . Let f:X-\rightarrow S^{1} be a smooth

map which corresponds to [f] = 1 \in [X, S^{1}] \cong  H^{1}(X) and f : \overline{X} \rightarrow \mathbb{R} be its lift.

Then we can consider the following moduli space for q>3 :

M(a, b) :=\{A_{a,b}+c |c\in L_{q}^{2}, (1+*)F(A_{a,b}+c)=0\}/\mathcal{G}_{a,b}
where *\mathrm{i}\mathrm{s} the Hodge star operator, A_{a,b} is an \mathrm{S}\mathrm{U}(2) ‐connection with A_{a,b}|_{\overline{f}^{-1}(-\infty,-1]} =

p^{*}a and A_{a,b}|_{\overline{f}^{-1}[1,\infty)}=p^{*}b ,
and \mathcal{G}_{a,b} is defined by

\mathcal{G}_{a,b} := {  g\in Aut (P_{\overline{X}}) \subset \mathrm{E}\mathrm{n}\mathrm{d}(\mathbb{C}^{2})_{L_{q+1,loc}^{2}} |\nabla_{A_{a,b}}g\in L_{q}^{2} }.
The action of \mathcal{G}_{a,b} on \{A_{a,b}+c |c\in L_{q}^{2}, (1+*)F(A_{a,b}+c)=0\} is the pull‐backs
of connections. We can show that ||F(A)||_{L^{2}}^{2} is equal to the extended Chern‐Simon

invariant which we will define in the lecture (independent of A) for A in M(a, b) .

Now we extend the chain convergence in the case of \mathbb{Z} covering.

Definition. Let c_{1} ,
. . .

, c_{m} be SU(2) flat connections on P_{X} , and let \{A_{n}\} be a se‐

quence in M(a, b) . If there exist m sequences \{s_{n}^{j}\}_{1\leq j\leq m} in \mathbb{Z} which satisfy

T^{s_{n}^{j^{*}}}A_{n}\rightarrow B_{j}\in L_{q,lo\mathrm{c}}^{2}
where (Bl, . . .

, B_{n} ) \underline{\mathrm{i}}\mathrm{s} an element in M(c_{1}, c_{2})\times\cdots\times M(c_{m-1}, c_{m}) and T is the deck

transformation of X
,

then we say that the \{A_{n}\} chain converges to (Bl, . . .

, B_{n} ).
In the instanton Floer theory, any sequence in M(a, b) has a chain convergent

subsequence under the assumption that all flat connections on Y are non‐degenerate.

Question 8.3 (M. Taniguchi). What is a topological condition of X satisfying that

any sequence in M(a, b) has a chain convergent subsequence 4?

We consider an oriented closed 4‐manifold X with a homomorphism $\pi$_{1}(X)\rightarrow \mathbb{Z}.
Let p : \overline{X} \rightarrow  X be the corresponding \mathbb{Z} covering space of X . We consider a

fundamental domain X_{0} of the \mathbb{Z} action on \overline{X} . We regard X_{0} as a cobordism

from -Y to Y
,

and expect that the relative Donaldson invariant gives a linear

transformation on the Floer homology of Y.

Question 8.4 (M. Taniguchi). Under some appropriate assumption, can we con‐

struct \mathbb{Z} ‐equivariant Donaldson invariant� of X as the characteristic polynomial of
such a linear transformation!?
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