On determination of the structure of a periodic point set from its average theta series

富安(大石)亮子

RYOKO OISHI-TOMIYASU [*] 山形大学/JST さきがけ YAMAGATA UNIVERSITY/JST PRESTO [†]

Abstract

結晶学分野で需要のある,3変数正定値2次形式のℤ上の表現に関わる問題を2つ紹介する。一つは 2次形式の Z 上の表現からその 2 次形式の Z 上同値類が一意に決まるかという問題で、3 変数正定値の場 合, Kaplansky による予想がある.そこでどのような2次形式において一意性が成立しないかに関する調 査を行った. Kaplansky の予想をおおむね示唆するものの regular でない事例も少し得られたのでこれに ついて紹介する. もう一つは、ユークリッド空間内の格子 L と、L を周期に持つ離散的点分布 P に対し て定まる平均テータ級数が与えられたとき、Pに含まれる任意の2点をつなぐ差ベクトルの集合の候補を どこまで絞ることができるかという問題を紹介する.この問題に関わる結果として、平均テータ級数から Pの差ベクトルを推定する方法を提案し、具体的な計算結果も紹介する.

Introduction 1

本稿では以下の各節2,3で以下の問題1,2を扱う、それぞれの問題を議論する動機は結晶学への応用 にあるので、その背景についても紹介する、ここで紹介する結果はすでに結晶学の具体的な解析に適用さ れているものである。

問題1 (Kaplansky 予想) Z上同値でない R係数の正定値3変数2次形式 f,gについて, Z上表現の集合 が完全に一致するとき、以下のいずれかが成立するか?

- (i) ある $c, d \in \mathbb{R}$ が存在して、 {f, g} ~ { $c(x_1^2 x_1x_2 + x_2^2) + dx_3^2, c(x_1^2 + 3x_2^2) + dx_3^2$ },
- (ii) ある $c, d \in \mathbb{R}$ が存在して、 {f, g} ~ { $c(x_1^2 x_1x_2 + x_2^2) + d(x_1 + x_2 + 3x_3)^2, c(x_1^2 + 3x_2^2) + d(x_1 + 3x_3)^2$ }, (iii) ある $c \in \mathbb{R}$ が存在して, cf, cg は Q 係数かつ regular.

上で使用した記号の意味を説明する.まず, Rを環とする.2次形式 $f(x_1,...,x_n) = \sum_{1 \le i \le j \le n} c_{ij} x_i x_j$ が R 係数とは、全ての $1 \le i \le j \le n$ について $c_{ij} \in R$ が成立することを指す、このどき、集合 $\begin{array}{l} & f_{R}(x) = \{f(x): 0 \neq x \in R^{n}\} \text{ on } f \leq f \leq n, k \in \mathbb{N}, k \in \mathbb$ 立することの間に同値条件が成立することである.

ある定数 $c \in \mathbb{Q}$ に対して $f \sim cf_2$ となる 2 次形式 f, f_2 を同一視したとき, regular な正定値 3 変数 2 次形式は高々913 個しか存在しないことが知られている [7]. この 913 個の中には regular であることが証 明されていないものが 14 個残っている [9]. (この 14 個について一般化されたリーマン予想の下で regular であることが近年示されている [12].)

^{*}応用研究に紹介の機会を与えて頂いた本研究集会代表の先生方と金子昌信先生に感謝します. [†]ryoko_tomiyasu@sci.kj.yamagata-u.ac.jp

問題 2 ランク n の格子 $L \subset \mathbb{R}^n$ を平行移動したものの合併である周期的点集合 $P := \bigcup_{i=1}^m (x_i + L) \subset \mathbb{R}^n$ に対し、P の平均テータ級数が以下で定義される (cf. [3]).

$$\Theta_P(z) := \frac{1}{m} \sum_{i=1}^m \sum_{j=1}^m \sum_{l \in L} e^{\pi \sqrt{-1}z |l + x_i - x_j|^2}.$$
 (1)

Θ_P と L が与えられたときに、以下で定義される P の差ベクトル集合を取り出すことを考える.

$$D(P) := \{x - y : x, y \in P\}$$
(2)

より具体的には、Gを格子 L の自己同型群 $G := \{\sigma \in O(n) : L^{\sigma} = L\}$ としたとき、以下の集合を 一意的に決定することができるか? (応用上の関心は特にn = 3の場合にある.)

$$D_2(P) = \{ (x - y)^{\tau} : x, y \in P, \tau \in G \}.$$
(3)

上記の2つの問題を考える直接の動機は,結晶学分野で需要のある問題3を解くことである:

問題3 (粉末結晶の未知構造解析) n = 3とする. ある未知の周期的点集合 P の平均テータ級数 $\Theta_P(z)$ が 与えられたとする. もしくは, $P = \bigcup_{i=1}^{m} (x_i + L)$ のような離散点集合の代わりに以下の周期的な分 布を考える.

$$\rho(x) := \sum_{i=1}^{m} \sum_{l \in L} \gamma_i (x - x_i - l).$$
(4)

ただし γ_i は, 原点を中心とする正規分布またはデルタ関数に定数 $d_i \in \mathbb{C}$ をかけた関数である.特に $\int_{-\infty}^{\infty} \gamma_i(x) dx = d_i$ とする.さらに, 異なる $x_i + l_1 \neq x_j + l_2$ $(l_1, l_2 \in L)$ 間の距離の下界 r > 0 が 存在して, $\gamma_i(x - x_i - l_1), \gamma_j(x - x_j - l_2)$ は互いによく分離されているとする.結果として, $\rho(x)$ の極大点は P の座標とほぼ一致する.この未知の ρ に対し,以下で定義された平均テータ級数 Θ_ρ が与えられたとする.

$$\Theta_{\rho}(z) := \sum_{l \in L} \int_{(\mathbb{R}^n/L)^2} \rho(x) \rho(y) e^{\pi \sqrt{-1} |x-y+l|^2} dx dy.$$
(5)

この与えられた Θ_P (または Θ_p), L, m から以下を構成せよ.

- (I) $L O 2 次形式 (つまり |*| をユークリッドノルムとしたときに <math>L O 基底 v_1, v_2, v_3$ が定める $f(x) = |x_1v_1 + x_2v_2 + x_3v_3|^2) O \mathbb{Z}$ 上同値類の全ての候補,
- (II) 座標点集合 $x_1, \dots, x_m \in \mathbb{R}/L$ (さらに Θ_ρ が与えられた場合は d_1, \dots, d_m) の全ての候補. た だし平行移動によって一致するものは同一視する.

問題の理解のため, ⊖,の関数等式を与えておく.

$$\Theta_{\rho}(z) = \frac{1}{\operatorname{vol}(\mathbb{R}^{n}/L)} \left(\frac{\sqrt{-1}}{z}\right)^{n/2} \sum_{l^{*} \in L^{*}} \exp\left(-\frac{\pi\sqrt{-1}}{z} |l^{*}|^{2}\right) |c_{\rho}(l^{*})|^{2}.$$
(6)

ただし *L*^{*} は *L* の双対格子 *L*^{*} := { $l^* \in \mathbb{R}^n : l \in L \Rightarrow l \cdot l^* \in \mathbb{Z}$ } で, $c_{\rho}(l^*)$ は ρ のフーリエ係数 $\int_{\mathbb{R}^n/L} \rho(x) e^{2\pi \sqrt{-1x \cdot l^*}} dx$ である.よって, Θ_{ρ} から直ちに以下を抽出できることが分かる.

$$\Lambda_{\rho} := \left\{ |l^*|^2 : 0 \neq l^* \in L^*, c_{\rho}(l^*) \neq 0 \right\},$$
(7)

$$F_{\rho}(q) := \sum_{l^{*} \in L^{*}, q = |l^{*}|^{2}} |c_{\rho}(l^{*})|^{2}.$$
(8)

テータ級数の場合と異なり,各表現 *m* ∈ *q*_Z(*f*) の多重度,すなわち \sharp {*x* ∈ \mathbb{Z}^3 : *f*(*x*) = *m*} は平均テータ級数から直ちには得られないことが分かる. *F*_ρ(*q*) の形から,問題3は位相回復と呼ばれる問題をさら に難しくしたものになることが分かる. ただし位相回復とは,密度分布 $\rho(x)$ を,そのフーリエ変換 $\hat{\rho}$ の 絶対値 $|\hat{\rho}(x^*)|$ の情報から構成する解析を指す.

(I), (II) で全ての候補とあるのは解の一意性が成立しないためだが、 $q_2(f)$ から4変数以下の2次形式 fのZ上同値類を決定する問題の解は必ず有限個になり、(I)においても幅広いケースにおいて、解となるLの数が有限であることは示すことができる(以下の問題2の背景の説明の箇所を参照).また、(II)において差ペクトル集合D(P)/Lを含む \mathbb{R}^n/L の有限集合が与えられたとき x_1, \ldots, x_m を与える解の数が 有限個であることも示すことができる。

結晶学において最も標準的な位相回復の問題は,問題3のところで述べた P, ρの制約の下で以下の問題を解くことである.

問題 4 (単結晶未知構造解析) $L^* \geq |c_{\rho}(l^*)|^2 (l^* \in L^*)$ が与えられたとき, $L \geq x_1, \ldots, x_m$ の候補(もしくは ρ の極大点の座標)を全て求めよ.

 L^* の双対格子はLであるため、問題4においてLを求める部分は自明である.また問題2のような 差ベクトルの抽出も、以下のF(x)の極大点の座標が差ベクトルの座標になることから数学の問題として 難しくないことが分かる.

$$F(x) = \int_{\mathbb{R}^3/L} \rho(x-z)\overline{\rho(-z)} dz = \operatorname{vol}(\mathbb{R}^n/L)^{-2} \sum_{l^* \in L^*} |c_\rho(l^*)| \exp(2\pi\sqrt{-1}x \cdot l^*)$$
(9)

以下では問題1,2に関わる背景と本稿の結果について述べる.

に限られる [16], [17] (正定値条件を外した場合の結果は [4], [5]).

(問題 1 の背景と結果について) Kaplansky 予想は問題 3 の (I) における解の一意性に関わる問いでもあ るが、全く同じ問題が先行して数理結晶学分野でも調べられている [8]. 著者は (I) について実験デー タに適用可能な解法を提案したことがあり [6, 11], このことが問題 1 を考えたきっかけになる. 問題 1 の仮定を 3 変数から 2 変数に変えた場合、Z 上同じ表現を持つ 2 次形式を理論的に全て求め ることは難しくない.特に 2 変数で正定値の場合は、 $q_Z(f) = q_Z(g), f \neq g$ となるのは以下の場合

$$\{cf, cg\} \sim \{x_1^2 - x_1x_2 + x_2^2, x_1^2 + 3x_2^2\}$$
 for some $c > 0.$ (10)

したがって 3 変数の場合には、上記の (i) のような $q_Z(f) = q_Z(g)$ を満たす無限系列が存在すること はすぐ分かる. にも関わらず 3 変数の場合にも、何らかの強い制約が存在していることが Kaplansky 予想が述べていることである.

本稿では、まず、予想の (iii) に関わる部分、すなわち (i), (ii) に含まれる場合を除けば、どのような正定値 2 次形式が同じ Z 上表現を持つのかに関する計算結果を与える. R 係数の f,g で $q_Z(f) = q_Z(g)$ を満たすものが存在した場合、そこから、Z 係数の f_2,g_2 で $q_Z(f_2) = q_Z(g_2)$ を満たすものが存在した場合、そこから、Z 係数の f_2,g_2 で $q_Z(f_2) = q_Z(g_2)$ を満たすものが無限間 生成されることから (Lemma 2.1), 探索範囲を Z 係数とすることができる。今回探索を行った範囲 は、得られた 2 次形式 (表 2-4) が現れた範囲よりもかなり広いことから、(i), (ii) の形のものと、表 2-4 で得られた 151 の 2 次形式の Z 上同値類が, Kaplansky 予想に該当する 2 次形式の全てを尽く していることが予想される。しかし、この 151 の同値類の中には regular でないものも 15 個入って おり、計算結果から得られる予想は Kaplansky の予想とはわずかながら異なる.

現在,表 2-4 の中に現れる 2 次形式について,全ての Z 上表現が一致するということがきちんと 証明されているものは regular であるものに限られる.上記の非 regular な 15 個と regular である ことが証明されてない 1 個については,ある定数 C より小さな表現について一致することが計算に よってチェックされたのみになる(現行の方法でも示される可能性は残っている).

結果として, Kaplansky 予想と計算結果に食い違いは見られたものの,2次形式が定数倍して Q 係 数となる場合を除けば (i), (ii) に限られることは一致しており,つまり上記の予想は以下を含む.

問題 5 (Kaplansky 予想の系) (A_i, B_i) (i = 1, 2) は Q 係数 2 次形式 A_i, B_i のペアで以下を満たすと する.

(a) A_i と B_i は Q 上線形独立,

(b) $cA_i + dB_i$ はある $c, d \in \mathbb{Q}$ に対して正定値 (つまり d-pencil),

(c) $q_{\mathbb{Z}}(A_1, B_1) = q_{\mathbb{Z}}(A_2, B_2).$

このとき,ある $w \in GL_3(\mathbb{Z})$ に対して $(A_1, B_1) = (w, 1) \cdot (A_2, B_2)$ が成立するか,または、ある $(w_i, v) \in GL_3(\mathbb{Z}) \times GL_2(\mathbb{Q})$ (i = 1, 2) が存在して $\{(A_1, B_1), (A_2, B_2)\}$ は以下に等しい.

(i) $\{(w_1, v) \cdot (x_1^2 - x_1x_2 + x_2^2, x_3^2), (w_2, v) \cdot (x_1^2 + 3x_2^2, x_3^2)\},\$

(ii) $\{(w_1, v) \cdot (x_1^2 - x_1x_2 + x_2^2, (x_1 + x_2 + 3x_3)^2), (w_2, v) \cdot (x_1^2 + 3x_2^2, (x_1 + 3x_3)^2)\}.$

上記の記号についてだが、まず、q_Z(A_i, B_i) := {(A_i(x), B_i(x)) : 0 \neq x \in Z³} の元は、(A_i, B_i) の Z 上同時表現 (simultaneous representation) と呼ばれるものである.また、Q 係数の 2 次形式のペアの集合 (Sym²Q³)* \otimes Q Q² に対して、 GL_3 (Q) × GL_2 (Q) は以下のように作用する:

$$\left(w, \begin{pmatrix} r & s \\ t & u \end{pmatrix}\right) \cdot (A, B) = (rA(\mathbf{x}w) + sB(\mathbf{x}w), tA(\mathbf{x}w) + uB(\mathbf{x}w)).$$
(11)

予想に現れた (i), (ii) のいずれもが det($A_{ix} - B_{iy}$) = 0 が重根を持つ場合に該当するが,そのよう な条件下 (つまり, det($A_{ix} - B_{iy}$) = 0 が i = 1 または 2 で重根を持つ) において, Z 上同時表現 が完全に一致する場合は (i), (ii) のいずれかに限られることを示すことは容易である (Theorem 1, [10]).また最近,著者は以下を示した.これについての議論は [10] を参照して欲しい。

Theorem 1 (Theorem 2, [10]). $(A_1, B_1), (A_2, B_2) \in (\text{Sym}^2 \mathbb{Q}^3)^* \otimes_{\mathbb{Q}} \mathbb{Q}^2$ において以下が成立する とする.

(a) A_i and B_i are linearly independent over \mathbb{Q} .

(b') (A_i, B_i) is non-singular and anisotropic over \mathbb{Q} .

(c') $q_{\mathbb{Q}}(A_1, B_1) = q_{\mathbb{Q}}(A_2, B_2).$

このとき,互いに素な $r_1, r_2 \in \mathbb{Z}$ で, $r_1^{-1} \det(A_1 x - B_1) = r_2^{-1} \det(A_2 x B_2), (r_1 A_1, r_1 B_1), (r_2 A_2, r_2 B_2)$ が $GL_3(\mathbb{Q}) \times \{1\}$ の作用で互いに写り合うようなものが存在する.

(問題2の背景と結果について) 平均テータ級数は、球によるユークリッド空間の充填問題を考えたとき、その密度の上限を与える議論の中で重要な役割を果たす、ユークリッド空間の周期的な点分布に対して定まる数学的不変量である(cf.[1]). Θp がテータ級数の場合が等スペクトル多様体の例として用いられてきたこと(cf.[14])を除けば、Pを解読するという文脈で平均テータ級数が議論されたことはなかったと考えられる、粉末結晶の回折データの解析において扱われる実験データと平均テータ級数の持つ情報の同値性に気づいたことが、著者がこの数理結晶学分野の応用研究を開始した動機になる(cf.[18]). この応用分野における最大の関心事は、3次元の低次元空間の packing を考えるからこそ可能なスペクトルの解読にある.

問題2のような差ベクトルを導出する問題は、問題3を解くにあたって最も難易度が高く、応用上 も重要な部分となる.なぜなら,まず,(I)を解いて L を有限個の候補に絞ることは可能である.少 なくとも、ある正整数 M の値が与えられており、 $\{|l^*|: l^* \in ML^*\} \subset \Lambda_{\rho}$ が式 (7) の Λ_{ρ} について 成立することがあらかじめ分かっているとき、表1のアルゴリズムを少し拡張して有限回のステッ プ数で L の候補を全て得ることができる.(この状況は実際の結晶構造の解析を行っているときに確 率的な意味で仮定でき、結果として実験データから観測誤差下でLを決める解析も十分な成功率で 実施できている.とはいえ、非常に確率の小さい偶然で、多数の $l^* \in L^*$ で $c_p(l^*) = 0$ が起きる場 合を無視しているので数学の議論としては不十分であろう.)また,定数 d_iの算出は,x₁,...,x_m が得られた後であれば、2次以下の多項式の連立方程式を解くことにあたり、グレブナー基底等に よる方法で厳密解を全て求めることは可能である.(観測値を扱う場合も半正定値計画法と呼ばれる 最適化問題に帰着することで,解を求めたり一意性などのチェックを行うことができる.)したがっ て,式 (2), (3)の D(P) または D₂(P) など,D(P) を含む有限集合が得られれば,x₁,...,x_m およ び d1,..., dm の候補解を全て計算によって求めることは原理的に可能である.結果として,問題3 の最大の障害となり得る部分は差ベクトル集合 $D(P), D_2(P)$ などを得る部分になる. (問題 4 でも, mが大きく観測誤差を考慮する必要がある状況では、差ベクトル集合の獲得はボトルネックになり 得る.)

節 3.1 で、平均テータきゅうすうから式 (3) の $D_2(P)$ を含む差ベクトルの情報を抽出するための具 体的な方法を紹介する。上記の P が式 (4) の $\rho(x)$ に対応するのと同様に、以下の $f_0(x)$ は $D_2(P)$ に対応している。この $f_0(x)$ が Θ_ρ から構成できれば問題 2 は解決する.他方、平均テータ級数か ら算出可能な分布 $H_3(x)$ においては、以下のフーリエ級数展開からも分かるように、 $f_0(x)$ よりわ ずかに各 $\lfloor c_p(L_3) \rfloor^2$ に関する情報が劣化している.

$$\begin{split} f_{0}(x) &= \sum_{l^{*} \in L^{*}} \exp(2\pi\sqrt{-1}\langle x, l^{*} \rangle) \frac{1}{\sharp\{\tau(l^{*}): \tau \in G\}} \sum_{l^{*}_{2} \in \{\tau(l^{*}): \tau \in G\}} |c_{\rho}(l^{*}_{2})|^{2}, \\ H_{3}(x) &= \sum_{l^{*} \in L^{*}} \exp\left(-2\pi\sqrt{-1}\langle x, l^{*} \rangle\right) \frac{1}{\sharp\{l^{*}_{2} \in L^{*}: |l^{*}|^{2} = |l^{*}_{2}|^{2}\}} \sum_{l^{*}_{2} \in L^{*}, |l|^{2} = |l_{2}|^{2}} |c_{\rho}(l^{*})|^{2}. \end{split}$$

いくつかの具体的な結晶構造が定める分布 $\rho(x)$ の平均テータ級数 Θ_{ρ} から、上記の $f_0 \geq H_3(x)$ 等を算出し、情報の劣化がどの程度、得られる $D_2(P)$ の情報 $(f_0(x), H_3(x)$ の極大点座標) に影響するかという調査を行ったので結果を紹介する.

2 Z上同じ表現を持つQ上の3変数正定値2次形式の探索

問題 1 に提示した Kaplansky 予想は ℝ 係数の正定値 2 次形式の場合も含むが、 ℚ 係数の場合を探索 すれば、 ℝ 上の場合がどの程度存在するかの情報も得ることができる. 実際, $q_Z(S_1) = q_Z(S_2)$ となる ℝ 係数の S_1, S_2 に対して,以下の補題のように分解 $S_i = \sum_{j=1}^s \lambda_j T_{ij}$ を取れば、 A_j について T_{ij} は ℚ係 数かつ $q_Z(T_{1j}) = q_Z(T_{2j})$ を満たしている. (さらに定数倍して, T_{ij} が ℤ 係数であることも仮定できる.) Lemma 2.1. [Lemma 2.1, [10]] A S_i ($1 \le i \le m$) &, ℝ 係数の N_i 変数正定値 2 次形式とする. こ のとき、ある正数 $\lambda_1, \ldots, \lambda_s \in \mathbb{R}_{>0}$ で ℚ $\bot 1$ 次独立なものと、 ℚ 係数の N_i 変数正定値 2 次形式 T_{ij} ($1 \le i \le m, 1 \le j \le s$) で $S_i = \sum_{j=1}^s \lambda_j T_{ij}$ をA i に対してそれぞれ満たすものが存在する. 一般に,変数の数が4以下で ℝ係数の正定値2次形式 ƒ が与えられたとき,それと全く同じ ℤ上表 現を持つ2次形式を全て与えるアルゴリズムを与えることは可能である.(実数型で丸め誤差が存在する場 合,それを考慮する必要はある.)[10]で与えたアルゴリズムを表1に示す.

: a sorted sequence $\langle q_1, \ldots, q_t \rangle$ of positive numbers	
: number of variables,	
: a quadratic form $(s_{ij})_{1 \le i,j \le N}$	
: integers $1 \le m \le n \le N$ indicating that the algorithm	n is determining
the (m, n) -entry of S	
: numbers satisfying	
$\int q_{min} \le s_{nn} \le q_{max} \qquad \text{if } m = n,$	
$\begin{cases} a_{min} \leq s_{mm} + s_{nm} + 2s_{mn} \leq a_{man} & \text{otherwise} \end{cases}$	
(Annu - onu + onu - monu - Anna - onus anos	
: an array of $N \times N$ Minkowski reduced summetric ma	$\tilde{\mathbf{x}} := (\tilde{\mathbf{x}}_{i})$
that satisfy	(s_{ij})
$\int \tilde{a} da $	
$\begin{cases} s_{NN} \leq q_t, \ \Lambda \cap [0, s_{NN}] \subset q_{\mathbb{Z}}(S), \end{cases}$	
$\left(ilde{s}_{nn}, ilde{s}_{mm}+ ilde{s}_{nn}+2 ilde{s}_{mn}\in\Lambda. ight.$	
tegers I and J such that $\Lambda \cap [q_{min}, q_{max}] = \langle q_I, \cdots, q_J \rangle$.	
I to J do	
n = n then	
$s_{nn} := q_l.$	
$s_{mn} := s_{nm} := \frac{1}{2}(q_l - s_{mm} - s_{nn}).$	
if	
u = 1 then	
$ \text{if } n \geq N \text{ then } \\$	
Insert S in Ans .	
else	
$T := (s_{ij})_{1 \leq i,j \leq n}$. /* an n-by-n submatrix of S */.	
$t_2:=\maxig\{1\leq i\leq t: q_1,\ldots,q_{i-1}\in q_{\mathbb{Z}}(T)ig\}.$	
$\operatorname{func}(\Lambda,N,S,n+1,n+1,s_{nn},q_{t_2},Ans).$	
end if	
Take p_{min} , p_{max} such that s_{m-1n} and the determined entries	ies s_{m-1m-1} , s_{nn} of S
fulfill the conditions to be Minkowski-reduced iff $p_{min} \leq s_n$	$a_{n-1m-1} + s_{nn} + 2s_{m-1n} \le p_{max}.$
$\operatorname{func}(\Lambda, N, S, m-1, n, S, p_{min}, p_{max}, Ans).$	
if	
te <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i> <i>i</i>	: a sorted sequence $\langle q_1, \ldots, q_t \rangle$ of positive numbers : number of variables, : a quadratic form $(s_{ij})_{1 \le i, j \le N}$: integers $1 \le m \le n \le N$ indicating that the algorithm the (m, n) -entry of S : numbers satisfying $\begin{cases} q_{min} \le s_{nn} \le q_{max} & \text{if } m = n, \\ q_{min} \le s_{mm} + s_{nn} + 2s_{mn} \le q_{max} & \text{otherwise.} \end{cases}$: an array of $N \times N$ Minkowski-reduced symmetric mathematication that satisfy $\begin{cases} \tilde{s}_{NN} \le q_t, \ \Lambda \cap [0, \tilde{s}_{NN}] \subset q_{\mathbb{Z}}(\tilde{S}), \\ \tilde{s}_{nn}, \tilde{s}_{mm} + \tilde{s}_{nn} + 2\tilde{s}_{mn} \in \Lambda. \end{cases}$ gers I and J such that $\Lambda \cap [q_{min}, q_{max}] = \langle q_I, \cdots, q_J \rangle$. to J do = n then $n_n := q_t.$ $m_n := s_{nm} := \frac{1}{2}(q_t - s_{mm} - s_{nn}).$ f = 1 then $n \ge N$ then Insert S in $Ans.$ Ise $T := (s_{ij})_{1 \le i, j \le n}. /*$ an n -by- n submatrix of $S^*/.$ $t_2 := \max\{1 \le i \le t : q_1, \ldots, q_{i-1} \in q_{\mathbb{Z}}(T)\}.$ func $(\Lambda, N, S, n + 1, n + 1, s_{nn}, q_{i_2}, Ans).$ and if alke p_{min}, p_{max} such that s_{m-1n} and the determined entry unc $(\Lambda, N, S, m - 1, n, S, p_{min}, p_{max}, Ans).$

表1の方法が有限個のステップ数で終了することは、正定値2次形式の満たす以下の性質から示すことができる。

- S, S_2 はそれぞれ N, N_2 変数の 2 次形式として、 $1 \le N_2 < N \le 4$ とすると、 $q_Q(S_2) \not\supseteq q_Q(S)$.
- • N = 4 変数以下の Minkowski 簡約な 2 次形式 S = (s_{ij}) について, s_{ii} は i 番目の逐次最小に等しく することが可能, すなわち以下が成立する (cf. [15]).

$$s_{nn} = \min\left\{\max\{S(v_i) : 1 \le i \le n\}: \begin{array}{c} v_1, \dots, v_n \in \mathbb{Z}^N\\ \text{are linearly independent over } \mathbb{Q}\end{array}\right\}.$$
(12)

このことは、4 変数以下の正定値 2 次形式に対して、同じ ℤ 上表現を持つ 2 次形式の類は有限個しかない ことの証明も与える、5 変数以上の場合、同じ表現を持つ 2 次形式の類は無限個ある場合があるので理論 的限界にも一致している。 表1では、入力パラメータのΛは、実数を小さい順に並べた有限長さの配列としたが、2次形式 S_0 を 固定して、 $\Lambda := (0,q] \cap q_Z(S_0)$ とし、必要が生じたときには区間(0,q]を拡大して、計算上必要な範囲ま で大きな $q_Z(S_0)$ の元が取得できるよう、プログラムを実装することは可能である.

アルゴリズム実行後には、出力される配列 Ans に含まれる各 2 次形式 S 対して以下を行う必要がある.

- (a) あらかじめ準備しておいた定数 C に対し、 $Lambda = q_{\mathbb{Z}}(S) \cap [0, C]$ が成立してないものを取り除く、
- (b) 同じ Z 上同値類に属す 2 次形式が Ans に含まれていたら、どちらかを取り除く.

表 1 のアルゴリズムを以下の範囲にある 2 次形式 $S_0 = \sum_{1 \le i \le j \le 3} s_{ij} x_i x_j$ に適用した.

- (P1) Z係数かつ $s_{11}, s_{22}, s_{33}, s_{12}, s_{13}, s_{23}$ は1より大きな共通因子を持たない.
- (P2) Minkowski 簡約である (すなわち対角成分 s₁₁, s₂₂, s₃₃ が 1, 2, 3 番目の逐次最小に等しい) ことに 加えて、以下の制約条件を満たす(これにより 3 変数正定値 2 次形式は一意に表される):
 - (1) $s_{12}, s_{13}, s_{23} > 0$ or $s_{12}, s_{13}, s_{23} \le 0$,
 - (2) $s_{11} = s_{22} \Longrightarrow |s_{23}| \le |s_{13}|,$
 - (3) $s_{22} = s_{33} \Longrightarrow |s_{13}| \le |s_{12}|$.

(P3) s₃₃ ≤ 115 (探索範囲の拡大はこの上限を増やすことで行われる).

加えて, [7] に記載されている 913 個の 2 次形式 (regular, またはその可能性があるもの) も入力して, 同様の探索を行ったが, これにより新しいケースが得られることはなかった.

結果を表 2-4 に示す.以下のいずれかに完全に一致するケースはこの表から除かれている.

- (i) $\{c(x^2 xy + y^2) + dz^2, c(x^2 + 3y^2) + dz^2\},\$
- (ii) $\{c(x^2 xy + y^2) + d(x + y + 3z)^2, c(x^2 + 3y^2) + d(x + 3z)^2\},\$

No.1-53 の各グループのうち regular でないグループは 15 個あった. 各グループに属す 2 次形式について, genus representation (すなわち同じ種に属す 2 次形式のうち少なくとも一つによって表現される整数) が完全に一致すること,および max{30000,50d} より小さい \mathbb{Z} 上表現が完全に一致することを確認している. ただし, d は各グループに属す 2 次形式 (つまり以下の対称行列)の行列式のうち最大のものとした.

$$\begin{pmatrix} s_{11} & s_{12}/2 & s_{13}/2\\ s_{12}/2 & s_{22} & s_{23}/2\\ s_{13}/2 & s_{23}/2 & s_{33} \end{pmatrix}$$
(13)

このことから、regular であることが示されている 2 次形式については $(0,\infty)$ の範囲にある Z 上表現が全 て一致することが分かる.

表 2-4 に出てくる 2 次形式では s33 は最大で 68, 非 regular なものに限れば最大で 41 である. これ は探索範囲の 115 と比較すれば小さい値であり,これらと上記の (i), (ii) によって, Z 上表現が一致する 3 変数正定値 2 次形式の組が全て尽くされていることが予想される. 結果として, regular でない組もい くつか見つかったものの, Kaplansky 予想の具体的な形が得られたことになる.

3 平均テータ級数からの差ベクトル情報の導出

位相回復とは、求めたい密度分布 $\rho(x)$ を、そのフーリエ変換の絶対値 $|\hat{\rho}(x^*)|$ の情報から得る解析を指す。この条件のみから問題を解こうとすると、通常、実験データからの位相回復は underdetermined、 すなわち $|\hat{\rho}(x^*)|$ の値が与えられている x^* の数が、 $\rho(x)$ の概要を与えるために必要な xの数より少ないこ とが多い。それを解消するために、個々の観測の状況に応じてどのような制約条件を設定すべきかといっ た問題が、具体的に $\rho(x)$ をどのように構成すればよいかという方法論の議論においてに生じる。

問題 2,3 を解くにあたって、 $\rho(x)$ にかかる制約は、問題 3 の式 (4) について記述したものになる. つまり、 $\rho(x)$ はある $P = \bigcup_{i=1}^{m} (x_i + L)$ に、Gaussian 関数に似た鋭い立ち上がりを持つピークの極大点が現れる関数で、m の値は既知と仮定できる.

また定義より、 Θ_P は各 γ_i をデルタ関数 δ とし、 $\rho(x) := \sum_{x \in P} \delta(x - z)$ とおいたときの Θ_ρ に等し い、以下では、問題 2 の仮定において与えられたのは Θ_ρ で、 ρ を構成する各 γ_i はデルタ関数ではなく 正規分布の定数倍であること(特に ρ の取る値は有限値であること)を仮定することにする。ただし、式 (14) の各 $|c_\rho(t^*)|^2$ にある正規分布の t^* における値をそれぞれかけることによって、デルタ関数を正規分 布に置き換えて、 Θ_ρ から Θ_ρ を作ることはできるので、基本的に Θ_ρ が与えられたときにできることになる。

表 2: ℤ 上同じ表現を持つ 3 変数正定値 2 次形式 (1/3)											
No	. Determinant	s_{11}	s22	\$33	s_{12}	s_{13}	s23	Integers not represented by the genus	Bravais Type		
	(Ratio)										
1	**2 ⁹ · 3 ³ (8)	11	32	44	-8	-4	-16	$4n+1, 4n+2, 8n+7, 2^2(4n+1), 2^2(4n+2),$	Triclinic		
	$**2^6 \cdot 3^3 \cdot 11 (11)$	11	32	59	8	10	8	$3n+1, 3^{2k+1}(3n+1)$	Triclinic		
2	$**2^9 \cdot 3^2$ (8)	5	20	48	-4	0	0	$4n+2, 4n+3, 8n+1, 2^{2}(4n+2), 2^{2}(4n+3),$	Monoclinic(P)		
	$*2^6 \cdot 3^2 \cdot 11 \ (11)$	5	20	68	-4	-4	-8	$3^{2k}(3n+1)$	Triclinic		
3	$**2^9 \cdot 3^2$ (8)	17	17	20	-14	-4	-4	$4n + 2, 4n + 3, 8n + 5, 2^{2}(4n + 2), 2^{2}(4n + 3),$	Monoclinic(C)		
	$**2^6 \cdot 3^2 \cdot 11 (11)$	17	20	20	-4	-4	-8	$3^{2k}(3n+1)$	Monoclinic(C)		
4	**2 ⁹ · 3 (8)	7	15	16	-6	0	0	$4n+1, 4n+2, 8n+3, 2^{2}(4n+1), 2^{2}(4n+2),$	Monoclinic(P)		
	$2^{6} \cdot 3 \cdot 11 (11)$	7	15	23	-6	-2	-6	$3^{2k+1}(3n+1)$	Triclinic		
5	**2 ⁹ · 3 (8)	11	11	16	6	8	8	$4n + 1, 4n + 2, 8n + 7, 2^{2}(4n + 1), 2^{2}(4n + 2),$	Monoclinic(C)		
	$**2^{6} \cdot 3 \cdot 11 (11)$	11	11	19	6	2	2	$3^{2k+1}(3n+1)$	Monoclinic(C)		
6	**2 ⁵ · 3 ³ (8)	8	11	11	-4	-4	-2	$4 + 1 + (2 + 2) + 1 + 2^{2k+1}(2 + 1)$	Monoclinic(C)		
	$**2^2 \cdot 3^3 \cdot 11$ (11)	8	11	15	-4	0	-6	$4n + 1, 4n + 2, 3n + 1, 3^{2n}, (3n + 1)$	Triclinic		
7	**2532 (8)	5	5	12	-2	0	0	$4\pi + 2, 4\pi + 2, 22k(2\pi + 1)$	Orthorhombic(C)		
	$**2^{2}3^{2}11$ (11)	5	5	17	-2	-2	-2	$4n + 2, 4n + 5, 5^{-1}(5n + 1)$	Monoclinic(C)		
8	**253 (8)	4	4	7	0	-4	0	$4 = 1 4 = 10 2^{2k+1} (2 = 1)$	Orthorhombic(C)		
	$**2^{2}3$ 11 (11)	4	7	7	-4	0	-6	$4n + 1, 4n + 2, 3^{-n}, (3n + 1)$	Monoclinic(C)		
9	**2 ² 3 ³ 5 (5)	5	8	17	4	2	8	$4n + 9, 4n + 2, 2n + 1, 22k \pm 1/2n + 1$	Monoclinic(C)		
	**2533 (8)	5	8	24	-4	0	0	$4n + 2, 4n + 3, 3n + 1, 3^{2n+1}(3n + 1)$	Monoclinic(P)		
10	**22325 (5)	3	8	8	0	0	-4	$4 + 1 + 0 + 0 + 0^{2} + 1$	Orthorhombic(C)		
	**2532 (8)	3	8	12	0	0	0	$4n + 1, 4n + 2, 3^{2n}(3n + 1)$	Orthorhombic(P)		
11	$**2^{2}35(5)$	1	4	16	0	0	-4	$(1, 2, 3, 4, 5, 2, 2^{2} + 1/2, 5, 1)$	Orthorhombic(C)		
	**2 ⁵ 3 (8)	1	4	24	0	0	0	$4n + 3, 4n + 2, 3^{2n+1}(3n + 1)$	Orthorhombic(P)		
12	2-23352 (25)	5	5	8	-2	-4	-1	0 + 1 024+1/0 1)	Triclinic		
	$2^{-2}3^{3}37(37)$	5	8	8	-4	-1	-5	$3n+1, 3^{2n+1}(3n-1)$	Triclinic		
13	$2^{-2}3^{2}5^{2}$ (25)	3	4	7	-3	0	-4	o ² h/o 1)	Monoclinic(C)		
	$2^{-2}3^{2}37(37)$	3	4	7	0	0	-1	$3^{2n}(3n-1)$	Monoclinic(P)		
14	$2^{-2}35^{2}(25)$	1	4	5	0	-1	-1	$a^{2k+1}(a) = a^{2k+1}(a)$	Monoclinic(C)		
	$2^{-2}3\ 37\ (37)$	1	4	7	0	0	-1	$3^{2n+1}(3n-1)$	Monoclinic(P)		
15	$2 \cdot 3^4$ (1)	4	7	7	2	2	5	4 + 2 + 2 + 3 + 2(2 + 1) + 2(2 + 1) + 2(2 + 1)	Monoclinic(C)		
	$2^3 \cdot 3^4 (4)$	4	7	25	-2	-2	-4	$4n + 2, 3n - 1, 3(3n \pm 1), 2^{2n+1}(8n + 7)$	Triclinic		
16	$2^{-1} \cdot 3^{5}$ (1)	2	2	41	-2	-1	-1	$a \rightarrow 1 \ a^{2}(a \rightarrow 1) \ a^{2k+1}(a \rightarrow 1)$	Orthorhombic(F)		
	$2 \cdot 3^5$ (4)	2	6	41	0	-1	-3	$3n + 1, 3^{2}(3n + 1) 3^{2n+1}(3n + 1)$	Triclinic		
17	$2^{-1}3^{4}(1)$	2	2	14	-2	-1	-1	P(n + 1) = 2k(n + 1)	Orthorhombic(F)		
	$2 \cdot 3^4$ (4)	2	6	14	0	-1	-3	$3(3n+1), 3^{2n}(3n+1)$	Triclinic		
18	$2^{-1}3^{3}(1)$	2	2	4	0	-2	-1	$2(2 + 1) + 2k \pm 1/(2 + 1)$	Monoclinic(C)		
	$2 \cdot 3^3$ (4)	2	4	8	-1	0	-4	$3(3n-1), 3^{2n+1}(3n+1)$	Triclinic		
19	$2 \cdot 3^4$ (1)	5	7	7	-5	-1	-5	$(1 + 2) 2(2 + 1) 23(2 + 1) 22k \pm 1(2 + 2)$	Triclinic		
	$2 \cdot 3^4$ (1)	5	5	8	-3	-4	0	$4n + 2, 3(3n \pm 1), 3^{\circ}(3n \pm 1), 2^{2n+1}(8n + 7)$	Triclinic		
20	$2 \cdot 29(1)$	3	5	5	-3	-1	-2	$4 - 1 = 0.02k \pm 1(0 - 1 = 0)$	Triclinic		
	$2 \cdot 29(1)$	3	3	7	1	2	1	$4n+2, 2^{2n+3}(8n+3)$	Triclinic		
21	*3 ³ (1)	1	4	7	0	-1	0	(x + 0, 2)(3x + 1), 22k + 1(2x + 1)	Orthorhombic(C)		
	*3 ³ (1)	1	5	7	-1	0	-5	$4n + 2, 3(3n + 1), 3^{-n} + (3n - 1)$	Monoclinic(C)		
22	$*2^{-2}3^{3}(1)$	1	1	7	0	-1	0	2(2 + 1) = 2k + 1/2 = 1	Orthorhombic(C)		
	$(1)^{*2^{-2}3^3}$	1	2	4	-1	0	-1	$3(3n+1), 3^{2n+1}(3n-1)$	Monoclinic(C)		
23	$2^{-2}3^2 \cdot 59$ (59)	5	5	6	-2	-3	0	$a^{2k}(a + t)$	Triclinic		
	$2^{-2}3^2 \cdot 71$ (71)	5	5	8	-4	-2	-1	$a^{}(an+1)$	Triclinic		
24	$2^{-2}3 \cdot 59(59)$	2	4	7	-1	-1	-4	$a^{2k+1}(a + 1)$	Triclinic		
	$2^{-2}3 \cdot 71(71)$	2	4	7	-1	-1	0	$3^{}(3n+1)$	Triclinic		
25	34 (4)	4	4	6	-2	-3	0	$a(a + 1) = a^{2}k(a + 1)$	Triclinic		
	$2^{-2}3^{4}7(7)$	4	6	7	3	2	3	$s(3n+1), 3^{2n}(3n-1)$	Triclinic		

^a** は,その種の中に同値類がただ一つしかない 2 次形式であることを示す (したがって regular である).

 b_* は、2次形式が regular であることを示す.

*! は 2 次形式が, regular であることが証明されてない 14 個の同値類のうちの一つに属していることを示す.

No	Determinant	\$12	822		812	\$13	523	Integers not represented by genus	Bravais Type
110.	(Ratio)	011	022	000	-12	*10	- 20		
26	**335 (5)	5	5	8	-5	-2	-2		Monoclinic(C)
	**2333 (8)	5	8	8	-2	-2	-8	$4n+2, 3n+1, 3^{2k+1}(3n+1)$	Monoclinic(C)
	**3 ³ 11 (11)	5	8	9	2	3	6		Triclinic
27	**325 (5)	3	5	5	-3	0	-5		Orthorhombic(I)
	**2332 (8)	3	5	5	0	0	-2	$4n+2, 3^{2k}(3n+1)$	Orthorhombic(C)
	**3 ² 11 (11)	3	5	8	-3	0	-2		Monoclinic(C)
28	**3.5 (5)	1	4	5	0	-1	-4		Orthorhombic(I)
	**233 (8)	1	4	7	0	0	-4	$4n+2, 3^{2k+1}(3n+1)$	Orthorhombic(C)
	**3 11 (11)	1	5	7	-1	0	-1		Monoclinic(C)
29	**243 (3)	1	8	8	0	0	-8		Hexagonal
	**2411 (11)	1	8	24	0	0	-8	$4n+2, 4n+3, 2^{2k}(8n+5)$	Orthorhombic(C)
	$*2^{6}3(12)$	1	8	24	0	0	0		Orthorhombic(P)
30	**3 (3)	1	2	2	0	0	-2		Hexagonal
	**11 (11)	1	2	6	0	0	-2	$2^{2k}(8n+5)$	Orthorhombic(C)
	$**2^{2}3(12)$	1	2	6	0	0	0		Orthorhombic(P)
31	**2-13 (3)	1	1	2	-1	0	0		Hexagonal
01	**2-111 (11)	1	2	3	0	-1	0	$2^{2k+1}(8n+5)$	Orthorhombic(C)
	**2.3 (12)	1	2	3	Ó	0	0		Orthorhombic(P)
32	**24 (1)	3	3	3	-2	-2	-2		Cubic(I)
52	**96 (4)	3	3	8	-2	0	ō	$4n+1, 4n+2, 2^{2k}(8n+7)$	Orthorhombic(C)
	**2432 (9)	3	3	19	-2	-2	-2		Orthorhombic(F)
33	**2 (1)	1	- <u>1</u>	3	-1	-1	0		Rhombohedral
00	** 23 (4)	1	â	3	ñ	0	-2	$4n + 2$, $2^{2k+1}(8n + 7)$	Orthorhombic(C)
	*2. 32 (0)	1	3	7	-1	-1	-1		Monoclinic(C)
- 34	**1 (1)	1	- 1	1					Cubic(P)
94	** 92 (4)	1	2	2	ŏ	ő	õ	$2^{2k}(8n+7)$	Tetragonal(P)
	**32 (9)	î	2	5	ŏ	ŏ	-2	- (Orthorhombic(C)
35	**2-133 (2)	1	4	4	-1	-1	-1		Orthorhombic(I)
00	**2.33 (8)	1	6	9	Ô	0	ō	$3n-1, 3^{2k+1}(3n+1)$	Orthorhombic(P)
	*12-23311 (11)	1	6	13	õ	-1	-3		Monoclinic(C)
36	**2-152 (2)	1	4	4	-1	-1	-2		Orthorhombic(I)
50	$*2^{-23}, 5^{2}(3)$	ĩ	4	5	-1	Ô	0	$5^{2k}(5n \pm 2)$	Orthorhombic(C)
	$**2.5^{2}(8)$	ĩ	5	10	Ô	ŏ	õ	• (•••==)	Orthorhombic(P)
37	**2-15 (2)	-1	2	2	-1	0	-2		Orthorhombic(I)
0.	$*2^{-23}.5(3)$	1	2	2	n	Ő	-1	$5^{2k+1}(5n+2)$	Orthorhombic(C)
	**2.5(8)	î	2	5	ő	ő	ō.	• (••• = -)	Orthorhombic(P)
- 28	** 2-252 (1)	-2	2	2	-1	1	-1		Rhombohedral
30	** 52 (4)	2	3	5	-2	o Î	ົ	$5^{2k}(5n+1)$	Orthorhombic(C)
	$**5^{2}(4)$	2	2	7	-1	-1	-1	° (0,1 ± 1)	Monoclinic(C)
	** 0-25 (1)	1		2	-1	-1-	<u></u>		Rhombohedral
35	**5 (4)	1	2	3	0	n n	-2	$5^{2k+1}(5n+1)$	Orthorhombic(C)
	**5 (4)	ĩ	2	a a	-1	ñ	-1	0 (00 = 1)	Monoclinic(C)
- 40	<u> </u>	- 5	12	12					Monoclinic(C)
40	2-3-13 (39)	5	12	21	-4		_4	01	Triclinic
	2 11 (11)	5	12	24	-4	0	-8	$4n+2, 4n+3, 2^{2k}(8n+1)$	Triclinic
	2-19 (19)	5	12	24	-4	-4	-0		Triclinic
41	2-3-19 (95)			5		- <u>-</u> -			Monoclinic(C)
41	3 · 13 (39) 71 (71)	3 2	ы 5	6	2	2	-2 4		Triclinic
	(1 ((1))	ა ი	5 5	6	4 0	4 2	<u>*</u>	$2^{2k}(8n+1)$	Triclinic
	(9 (19) E 10 (0E)	3	Э г	0 7	-2	-2	0		Triclinic
	$\frac{5 \cdot 19}{95}$	3		1	-4		-4		Monoclinic(C)
42	$2^{-3} \cdot 13(39)$	3 0	3	3 E	-3 1	-1	U 1		Triclinic
	4 = (1 (71)) 0 = 170 (70)	ა ი	ა ა	Э Б	-1	-0 -0	-1	$2^{2k+1}(8n+1)$	Triclinic
	2 = 19(19)	3	3 F	0 E	-1	-2	-1		Triclinic
	4 ° 0 · 19 (95)	3	Э	Э	-3	- T	-4		menne

表 3: Z 上同じ表現を持つ3変数正定値2次形式 (2/3)

No	Determinant	\$11	822	522	812	\$13	823	Integers not represented by the genus	Bravais Type
110	(Batio)	011	022	033	012	015	•20		
42	**947 (7)	5	5	5	2	2	2		Rhombohedral
40	**943.5 (15)	5	5	12	-2	-4	-4	01	Orthorhombic(F)
	**9492 (92)	5	8	12	0	-4	_8	$4n+2, 4n+3, 2^{2\kappa}(8n+1)$	Monoclinic(C)
	* 267 (28)	5	8	12	ñ	-4	ດັ		Monoclinic(P)
4.4	**7 (7)			3	<u> </u>	-2	0		Bhombohedral
44	++9 E (1E)	2	2	2	-2	0	ñ		Orthorhombic(C)
	**02 (02)	2	2	5	-2	0	_?	$2^{2k}(8n+1)$	Monoclinic(C)
	**027 (00)	2	ວ. ວ	5	0	0	-2		Monoclinic(P)
-15	**0-17 (7)	4		5	1	1			Bhombohedral
40	$\frac{1}{2} = \frac{1}{2} (1)$	1	1	2	-1	-1	0		Orthorhombic(I)
	12 2 3 3 10 $^{(10)}$	1	3	3	-1	-1	~	$2^{2k+1}(8n+1)$	Monoclinic(C)
	**2 *23 (23)	1	3	Э Е	-1	0	-0 0		Monoclinic(P)
	**0=203 (1)	.1	<u> </u>	0	1		-2		Rhombohedral
46	$^{++2}2^{-2}3^{-3}(1)$	2	2	2	1	1	1		Orthorhombic(C)
	** 33 (4)	2	3	5	U_	-2	0	$3n+1, 3^{2k+1}(3n-1)$	Manaalinia(C)
	** 33 (4)	2	2	8	-1	-2	-1		Monoclinic(C)
	*2-2337 (7)	2	3	8	0	-1	0		Monocinic(F)
47	$**2^{-2}3^{2}(1)$	1	1	3	-1	0	0		Hexagonal
	$**3^{2}(4)$	1	3	3	0	0	0	$3^{2k}(3n-1)$	letragonal(P)
	$**3^{2}(4)$	1	3	4	0	-1	-3	÷ ()	Orthorhombic(1)
	$*2^{-2}3^{2}7(7)$	1	3	6	0	0	-3		Orthorhombic(C)
48	$**2^{-2}3(1)$	1	1	1	-1	0	0		Hexagonal
	**3 (4)	1	1	3	0	0	0	$3^{2k+1}(3n-1)$	Tetragonal(P)
	**3 (4)	1	2	2	-1	-1	0	0 (00 1)	Orthorhombic(1)
	$*2^{-2}3 \cdot 7(7)$	1	2	3	-1	0	0		Orthorhombic(C)
49	$*2^{-2}3^{3}(1)$	1	1	9	-1	0	0		Hexagonal
	$*2^{-2}3^{3}(1)$	1	3	3	0	0	-3	$2m = 1 + 2^{2k+1}(2m - 1)$	Hexagonal
	$*3^{3}$ (4)	1	3	10	0	-1	-3	3n = 1, 3 + (3n = 1)	Orthorhombic(I)
	**33 (4)	1	3	9	0	0	0		Orthorhombic(P)
50	$**2^{-1}(1)$	1	1	1	-1	-1	0		$\operatorname{Cubic}(\mathbf{F})$
	**2 (4)	1	1	2	0	0	0	2k+1(2n+7)	Tetragonal(P)
	$**2^{-1}3^{2}$ (9)	1	2	3	0	-1	-2	$2^{2n+1}(8n+7)$	Orthorhombic(I)
	**2 ³ (16)	1	2	4	0	0	0		Orthorhombic(P)
51	**2-133 (2)	2	2	5	-2	-1	-1		Orthorhombic(F)
	**2-2335 (5)	2	5	5	-2	-1	-4		Monoclinic(C)
	**2.33 (8)	2	5	6	-2	0	0	$3n+1, 3^{2k+1}(3n+1)$	Orthorhombic(C)
	**2.33 (8)	2	5	6	-1	ō	-3		Triclinic
	$**2^{-2}3^{3}11(11)$	2	5	8	-1	-1	-2		Triclinic
52	**2-132 (2)	-2	2	2	-2	-1	-1		Tetragonal(I)
02	$**2^{-2}3^{2}5(5)$	2	2	3	-1	0	0		Orthorhombic(C)
	**2.32 (8)	2	3	3	ñ	õ	ñ	$3^{2k}(3n+1)$	Tetragonal(P)
	**2,32 (8)	$\tilde{2}$	2	5	ĩ	1	1	- () -/	Monoclinic(C)
	$**2^{-2}3^{2}11(11)$	2	ã	5	ñ	-1	-3		Monoclinic(C)
52	**0-12 (0)	1	1	~	0	_1	-1		Tetragonal(I)
03	2 3 (2) **0-29 5 (5)	1	1	4	0	-1	0		Orthorhombic(C)
	⊿ ∹ວ∙ວ(ອ) **ງ ງ(ຊ)	1	1	4 6	0	-1	ň	$3^{2k+1}(3n+1)$	Tetragonal(P)
	∠·∂(0) **0.2(0)	1	1 9	4	1	0	5	5 (5 <i>n</i> + 1)	Monoclinic(C)
	2·3(8) **0-29 11(11)	1	4	4 5	-1	1	0		Monoclinic(C)
	$-2^{-2}3 \cdot 11(11)$	1	2	9	-1	-1	U		Monochine(C)

表 4: Z 上同じ表現を持つ3変数正定値2次形式 (3/3)

平均テータ級数 Θ_{ρ} が与えられるということは、式 (7), (8) の Λ_{ρ} と $F_{\rho}(q)$ の値が情報として与えられることである、式 (6) より、このときまず右辺が計算できる、

$$\begin{aligned} \frac{1}{\operatorname{vol}(\mathbb{R}^N/L)} \left(\frac{\sqrt{-1}}{2z}\right)^{N/2} \Theta_\rho\left(-\frac{1}{2z}\right) &= \sum_{l^* \in L^*} \exp\left(2\pi\sqrt{-1}|l^*|^2z\right) |c_\rho(l^*)|^2 \\ &= \sum_{q \in \Lambda(L^*)} \exp\left(2\pi\sqrt{-1}qz\right) \sum_{q = |l^*|^2} |c_\rho(l^*)|^2 \end{aligned}$$

ただし、 $\Lambda(L^*) := \{|l^*|^2 : l^* \in L^*\}$ とおいた、上式をフーリエ変換すると $\Lambda(L^*)$ の座標点にデルタ関数 が現れる R 上の分布が得られる:

$$\sum_{q \in \Lambda(L^*)} \delta(\xi - q) \sum_{q = |l^*|^2} |c_{\rho}(l^*)|^2.$$
(14)

上記は、以下(すなわち式 (9) のフーリエ変換)の \mathbb{R} 上の分布を、半径 $\sqrt{\xi}$ の超球上で積分してさら に $(2\sqrt{\xi})^{-1}$ 倍したものに等しい.

$$\sum_{l^* \in L^*} \delta(x^* - l^*) |c_{\rho}(l^*)|^2.$$

粉末結晶回折データは、式 (14) の分布を、物理的な制限の下、ある有限な区間 $I ⊂ \mathbb{R}_{>0}$ において観 測したものである (図 3).

図 1: 粉末結晶の回折パターン(三角 \land は自動抽出されたピークを示す. 細かい補正項を除けば, ピークの 横軸の座標からある格子ベクトル $l \in L^*$ の長さを求める式は、それぞれ $2\sin\theta/(X 線の波長)$, (定数)/(Time of flight) である)

節 3.1 の方法は上記のような観測値への応用も念頭に置かれているが、問題2を考えるとき、観測誤 差や観測範囲の問題は無視してよい、問題2の本質には大きく影響しないように思われる.

3.1 差ベクトル導出法の概要

以下では、 \mathbb{R}^n の元 x とその双対空間 Hom_R(\mathbb{R}^n , \mathbb{R})の元 x^* に対して、 $\langle x, x^* \rangle = x^*(x)$ とする. 関数 $f(x) : \mathbb{R}^n \to \mathbb{R}$ に対し、フーリエ変換は以下で定義される.

$$\hat{f}(x^*) = \int_{\mathbb{R}^n} f(x) \exp(2\pi \sqrt{-1} \langle x, x^* \rangle) dx.$$

[2] と同様, 関数 f(x) が admissible であることを以下によって定義する.

Definition 3.1. 連続な可積分関数 $f(x) : \mathbb{R}^n \to \mathbb{R}$ が admissible とは、ある $\delta, C > 0$ が存在して、 $|f(x)| < C(1+|x|)^{-n-\delta}, |\hat{f}(x^*)| < C(1+|x^*|)^{-n-\delta}$ が成立することである.

関数 f(x) が admissible であることは以下の Poisson 和公式が成立することの十分条件となる.

$$\sum_{l \in L} f(x+l) = \frac{1}{\operatorname{vol}(\mathbb{R}/L)} \sum_{l^* \in L^*} \exp(-2\pi \sqrt{-1} \langle x, l^* \rangle) \hat{f}(l^*).$$

一般に、Hankel 変換の持つ性質から以下が成立している.

Lemma 3.1. $h(x): \mathbb{R}^n \to \mathbb{R}$ を admissible な関数とし, $(0,\infty)$ で定義された関数 ht(r), $hd(r^*)$ を以下 のように定義する.

$$ht(r) := r^{-n/2} \int_{|x|^2 = r^2} h(x) dx, \qquad (15)$$

$$hd(r^*) := (r^*)^{-n/2} \int_{|x^*|^2 = (r^*)^2} \hat{h}(x^*) dx^*.$$
 (16)

このとき、ht(r), $hd(r^*)$ は互いに Hankel 変換によって写り合う. 具体的には以下が成立する.

$$ht(r) = 2\pi \int_0^\infty hd(r^*) J_{n/2-1}(2\pi r r^*) r^* dr^*,$$

$$hd(r^*) = 2\pi \int_0^\infty ht(r) J_{n/2-1}(2\pi r r^*) r dr.$$

ただし、 J_n は次数 n のベッセル関数である.

Proof. 定義より,

$$\begin{split} ht(r) &= r^{-n/2} \int_{|x|^2 = r^2} \left(\int_{\mathbb{R}^n} \hat{h}(x^*) \exp(-2\pi\sqrt{-1}x \cdot x^*) dx^* \right) dx \\ &= r^{-n/2} \int_{\mathbb{R}^n} \hat{h}(x^*) \left(\int_{|x|^2 = r^2} \exp(2\pi\sqrt{-1}x \cdot x^*) dx \right) dx^* \\ &= 2\pi \int_{\mathbb{R}^n} \hat{h}(x^*) \left(|x^*|^{-n/2+1} J_{n/2-1}(2\pi r |x^*|) \right) dx^* \\ &= 2\pi \int_0^\infty h d(r^*) J_{n/2-1}(2\pi r r^*) r^* dr^*. \end{split}$$

ただし, $\int_{|x|^2 \leq 1} e^{2\pi \sqrt{-1}x \cdot x^*} dx = |x^*|^{-n/2} J_{n/2}(2\pi |x^*|), \frac{d}{dx}(x^m J_m(x)) = (x^m J_{m-1}(x))$ より得られる 以下を用いた.

$$\begin{split} \int_{|x|^2 = r^2} \exp(2\pi\sqrt{-1}x \cdot x^*) dx &= \frac{\partial}{\partial r} \int_{|x|^2 \le r^2} \exp(2\pi\sqrt{-1}x \cdot x^*) dx \\ &= \frac{\partial}{\partial r} \left(r^n \int_{|x|^2 \le 1} \exp(2\pi\sqrt{-1}rx \cdot x^*) dx \right) \\ &= \left(2\pi |x^*|^2 \right)^{-n/2} \frac{\partial}{\partial r} \left((2\pi r |x^*|)^{n/2} J_{n/2}(2\pi r |x^*|) \right) \\ &= 2\pi r^{n/2} |x^*|^{-n/2+1} J_{n/2-1}(2\pi r |x^*|). \end{split}$$

対称性より,残りの等式も同様に得られる.

特に n=3のとき、 $J_{1/2}(2\pi rr^*) = (\pi^2 rr^*)^{-1/2} \sin(2\pi rr^*)$ より以下のようになる.

$$ht(r) = \frac{2}{\sqrt{r}} \int_0^\infty h d(r^*) \sqrt{r^*} \sin(2\pi r r^*) dr^*,$$

$$hd(r^*) = \frac{2}{\sqrt{r^*}} \int_0^\infty ht(r) \sqrt{r} \sin(2\pi r r^*) dr.$$

また, h(x)が原点について等方的, すなわち任意の $x \in \mathbb{R}^n$ に対し h(x) = h(|x|)のとき, $\hat{h}(x^*)$ も原 点について等方的となり,以下が成立する.

$$\begin{aligned} |x|^{n/2-1}h(|x|) &= 2\pi \int_0^\infty \hat{h}(r^*) J_{n/2-1}(2\pi |x|r^*)(r^*)^{n/2} dr^*, \\ |x^*|^{n/2-1} \hat{h}(|x^*|) &= 2\pi \int_0^\infty h(r) J_{n/2-1}(2\pi r |x^*|) r^{n/2} dr. \end{aligned}$$

このことから逆に、上で定めた ht(r), $hd(r^*)$ について、 $|x|^{1-n/2}ht(|x|)$, $(|x^*|)^{1-n/2}hd(|x^*|)$ は互い にフーリエ変換で写り合うことも分かる.

以下では, $L \subset \mathbb{R}^n$ をフルランクの格子, f(x)を以下のフーリエ級数で定義された周期 Lを持つ関数 とし, ある M > 0 が存在して, $c(l^*)$ は $\exp(-M|l^*|)$ の定数倍によって上から抑えられると仮定する.

$$f(x) = \sum_{l^* \in L^*} c(l^*) \exp(2\pi \sqrt{-1} \langle x, l^* \rangle).$$

このとき, f(x) は連続な有界関数となる. したがって任意の admissible な $g(x) : \mathbb{R}^n \to \mathbb{R}$ に対して, h(x) = f(x)g(x) も admissible である (\hat{h} については, $\hat{h}(x^*) = \sum_{l^* \in L^*} c(l^*)$ $\hat{g}(x^* - l^*)$ が成立している). したがって, g(x) が原点について等方的ならば以下が成立する.

Lemma 3.2. 上記の条件下で, ht(r) を式 (15) のように取ると以下が成り立つ.

$$\operatorname{vol}(\mathbb{R}^n/L) + \sum_{l \in L} |x+l|^{1-n/2} ht(|x+l|) = \sum_{0 \neq l^* \in L^*} \frac{\exp\left(-2\pi\sqrt{-1}\langle x, l^*\rangle\right)}{|l^*|^{n-1}} \sum_{l_2^* \in L^*} c(l_2^*) \int_{|x^*+l_2^*|^2 = |l^*|^2} \hat{g}(x^*) dx^* + C.$$

ただし, $\hat{h} \succeq (r^*)^{1-n/2} h d(r^*)$ の連続性を仮定しているので, $C = \lim_{r \to \infty} (r^*)^{1-n/2} h d(r^*) = \hat{h}(0) \ge c \delta$.

Proof. 今, g(x) の有界性より以下が成立している.

$$ht(r) := r^{-n/2} \int_{|x|^2 = r^2} h(x) dx = r^{-n/2} g(r) \int_{|x|^2 = r^2} f(x) dx,$$

$$hd(r^*) := (r^*)^{-n/2} \int_{|x^*|^2 = (r^*)^2} \hat{h}(x^*) dx^* = (r^*)^{-n/2} \sum_{l^* \in L^*} c(l^*) \int_{|x^*+l^*|^2 = (r^*)^2} \hat{g}(x^*) dx^*,$$

さらに, h(x)が admissible より, $|x+l|^{1-n/2}ht(|x+l|)$ もまた admissible となるので, Poisson 和 公式を適用すれば得られる.

$$\begin{aligned} \operatorname{vol}(\mathbb{R}^{n}/L) \sum_{l \in L} |x+l|^{1-n/2} ht(|x+l|) &= \sum_{l^{*} \in L^{*}} \exp\left(-2\pi\sqrt{-1}\langle x, l^{*}\rangle\right) |l^{*}|^{1-n/2} hd(|l^{*}|) \\ &= \hat{h}(0) + \sum_{0 \neq l^{*} \in L^{*}} \exp\left(-2\pi\sqrt{-1}\langle x, l^{*}\rangle\right) |l^{*}|^{1-n/2} hd(|l^{*}|) \\ &= \hat{h}(0) + \sum_{0 \neq l^{*} \in L^{*}} \exp\left(-2\pi\sqrt{-1}\langle x, l^{*}\rangle\right) |l^{*}|^{1-n} \sum_{l^{*}_{2} \in L^{*}} c(l^{*}) \int_{|x^{*}+l^{*}_{2}|^{2} = |l^{*}|^{2}} \hat{g}(x^{*}) dx^{*} \end{aligned}$$

具体的な f(x) として,式 (9)の関数など、差ベクトル集合 $D(P) := \{x - y : x, y \in P\}$ に極大点を持つ関数に上記の補題を適用する、さらに g(r) として、関数系 $\{\exp(-2\pi^2\sigma^2r^2) : \sigma > 0\}$ を代入し、 $\sigma \rightarrow +0$ とすることを考える、このとき、 $r^{1-n/2}ht(r)$ の極大点と、 $\{|x - y| : x, y \in P\}$ の座標点との差異はだんだん小さくなる、結果として、 $\sum_{l \in L} |x + l|^{1-n/2}ht(|x + l|)$ は、D(P)/Lに近い座標に極大点を持つことが期待される、

また, ĝ は分散 σ の正規分布であることから, $\sigma \to +0$ としたときに汎関数としてデルタ関数に近づく. 結果として, $\mathbb{R}_{>0}$ 上の関数 $hd(r^*)$ (または ht(r)) から, 構成可能な以下の \mathbb{R}^n/L 上の関数に基づき, 元の f(x) の極大点の推定を行うことができる.

$$H(x) := \sum_{0 \neq l^* \in L^*} \exp\left(-2\pi \sqrt{-1} \langle x, l^* \rangle\right) |l^*|^{1-n} \sum_{l_2^* \in L^*, |l|^2 = |l_2|^2} c(l_2^*).$$

以下ではn = 3とし,周期的関数 ρ を問題3のところで述べた式(4)とする.D(P)に極大値を持つ以下の $f_i(x)$ (i = 1, 2, 3)に対して,対応するH(x)は以下のようになる.

Example 1.
$$f_1(x) = \int_{\mathbb{R}^3/L} \rho(x-z)\overline{\rho(-z)}dz = \sum_{l^* \in L^*} |c_\rho(l^*)|^2 \exp(2\pi\sqrt{-1}\langle x, l^*\rangle):$$

 $H_1(x) = \sum_{0 \neq l^* \in L^*} \exp\left(-2\pi\sqrt{-1}\langle x, l^*\rangle\right) |l^*|^{-2} \sum_{l_2^* \in L^*, |l|^2 = |l_2|^2} |c_\rho(l^*)|^2.$ (17)

Example 2. $f_2(x) = -\text{Tr}\left(\frac{\partial^2}{\partial x_i \partial x_j} f_1(x)\right)_{1 \le i, j \le 3} = \sum_{l^* \in L^*} |l^*|^2 |c_\rho(l^*)|^2 \exp(2\pi \sqrt{-1} \langle x, l^* \rangle):$

$$H_2(x) = \sum_{0 \neq l^* \in L^*} \exp\left(-2\pi\sqrt{-1}\langle x, l^*\rangle\right) \sum_{\substack{l_2^* \in L^*, |l|^2 = |l_2|^2}} |c_\rho(l^*)|^2.$$
(18)

図 2: 重畳ピークと2次微分(2次微分からは2つの重なったピークが分離されてより明確に見える)

Example 3.
$$f_{3}(x) = \sum_{l^{*} \in L^{*}} \frac{|l^{*}|^{2} |c_{\rho}(l^{*})|^{2}}{\{l_{2}^{*} \in L^{*} : |l^{*}|^{2} = |l_{2}^{*}|^{2}\}} \exp(2\pi\sqrt{-1}\langle x, l^{*}\rangle):$$
$$H_{3}(x) = \sum_{0 \neq l^{*} \in L^{*}} \exp\left(-2\pi\sqrt{-1}\langle x, l^{*}\rangle\right) \frac{1}{\sharp\{l_{2}^{*} \in L^{*} : |l^{*}|^{2} = |l_{2}^{*}|^{2}\}} \sum_{l_{2}^{*} \in L^{*}, |l|^{2} = |l_{2}^{*}|^{2}} |c_{\rho}(l^{*})|^{2}.$$
(19)

実際の粉末結晶構造解析においては、式 (14) の観測値が得られたとき、各 $l^* \in L^*$ に対して、 $c_{\rho}(l^*) = \sharp \{l_2^* \in L^* : |l^*|^2 = |l_2^*|^2\})^{-1} \sum_{l_2^* \in L^*, |l|^2 = |l_2^*|^2} |c_{\rho}(l^*)|^2$ という仮定をおき、問題 4 の単結晶構造解析の方法を適用するヒューリスティックスが用いられている (e.g., 2.14.1, [13]). よって理想的な状態では $H_3(x)$ が用いられることになるが、観測誤差の問題があり、観測範囲の中でも $|l^*|$ が大きい領域では、 $|l^*|$ の精度が悪くなることから、 $|l^*|^2 = |l_2^*|^2$ ではなく $|l^*|^2 \approx |l_2^*|^2$ となる $l_2^* \in L^*$ の個数で割られることが起きる、そのため、実際の解析で使われるのは $H_3(x)$ と $H_1(x)$ の中間に位置するものと考えられる.

 $H_2(x)$ は、 $H_3(x)$ と $H_1(x)$ の中間式として与えたが、 $f_1(x)$ の2次徴分から求められているため、 $f_1(x)$ と $f_2(x)$ の極大点の座標は基本的に一致するはずである。これは工学分野でもよく用いられる方法である(図 2)。

次に, 各 $H_i(x)$ (i = 1, 2, 3) が実際にどのような座標点に極大点を持つかということが問題になる. L を L に写す直行行列 O(n) の有限部分群を G としたとき, 各フーリエ係数が $|l^*|$ にのみ依存することか ら, 明らかに $H_i(x^{\tau}) = H_i(x)$ $(\tau \in G)$ を満たす. このことから, 極大点の集合は G の作用で不変である. 問題 2 に現れた $D_2(P) := \{(x - y)^{\tau} : x, y \in P, \tau \in G\}$ も同じ性質を持ち,以下の関数の極大点になる.

$$f_{0}(x) := \frac{1}{\#G} \sum_{\tau \in G} (f_{1}(x^{\tau}) - |c_{\rho}(0)|^{2}) = \frac{1}{\#G} \sum_{0 \neq l^{*} \in L^{*}} \exp(2\pi \sqrt{-1}\langle x, l^{*} \rangle) \sum_{\tau \in G} |c_{\rho}(\tau(l^{*}))|^{2}$$
$$= \sum_{0 \neq l^{*} \in L^{*}} \exp(2\pi \sqrt{-1}\langle x, l^{*} \rangle) \frac{1}{\#\{\tau(l^{*}) : \tau \in G\}} \sum_{l^{*}_{2} \in \{\tau(l^{*}) : \tau \in G\}} |c_{\rho}(l^{*}_{2})|^{2}.$$
(20)

集合 { $r(l^*): r \in G$ } と { $l_2^* \in L^*: |l_2^*|^2 = |l^*|^2$ } の違いから, $f_0(x) \ge H_3(x)$ の差は発生している. もし, $H_3(x)$ が $f_0(x)$ のよい近似を与えるのであれば, $D_2(P)$ は P の平均テータ級数から決定するという問題 2 の問いが肯定的に解決でき, さらに $D_2(x)$ の具体的な構成法も得られる.

次節で, 実際の結晶構造に対応する ρ に対して, $f_0(x)$, $H_1(x)$, $H_3(x)$ の値を計算し, 比較する. $(H_2(x)$ は紙面の都合で割愛する。)

3.2 計算結果

節3.1の議論で導出された以下の関数を,複数の結晶構造をモデルにした。から算出した。

(i)
$$H_1(x) = \sum_{0 \neq l^* \in L^*} \exp\left(-2\pi\sqrt{-1}\langle x, l^* \rangle\right) |l^*|^{-2} \sum_{l_2^* \in L^*, |l|^2 = |l_2|^2} |c_\rho(l^*)|^2,$$

(ii) $H_3(x) = \sum_{0 \neq l^* \in L^*} \exp\left(-2\pi\sqrt{-1}\langle x, l^* \rangle\right) \frac{1}{\sharp \left\{l_2^* \in L^* : |l^*|^2 = |l_2^*|^2\right\}} \sum_{l_2^* \in L^*, |l|^2 = |l_2|^2} |c_\rho(l^*)|^2.$

(iii)
$$f_0(x) = \sum_{0 \neq l^* \in L^*} \exp(2\pi \sqrt{-1} \langle x, l^* \rangle) \frac{1}{\sharp \{\tau(l^*) : \tau \in G\}} \sum_{\substack{l_2^* \in \{\tau(l^*) : \tau \in G\}}} |c_{\rho}(l_2^*)|^2,$$

特に、今回の計算では、集合 { τ (l^*): $\tau \in G$ } と { $l_2^* \in L^*$: $|l_2^*|^2$ } の間に差が生じやすいよう、 ρ の対称性を与える空間群の位数が大きいものから選んでいる. 図 3 に、各関数を Mathematica で 3D 表示したものを示す.

少なくとも今回計算した例では、 $D_2(P)$ の情報が $\Theta(P)$ から抽出できることを示す結果が得られている.ただし、今のところは 20 例程度の ρ にしか計算を行っておらず、結晶構造として得られる ρ には一定の傾向があることも知られているため、より広いケースを対象とした調査は必要であろう.

参考文献

- [1] H. Cohn. New upper bounds on sphere packings ii. Geometry and Topology, 6:329-353, 2002.
- [2] H. Cohn and N. Elkies. New upper bounds on sphere packings i. Annals of Mathematics, 157:689-714, 2003.
- [3] J. H. Conway and N. J. A. Sloane. Sphere Packings, Lattices and Groups (3rd ed.), volume 290 of Grundlehren der mathematischen Wissenschaften. Springer, 1998.
- [4] L. Delang. Indefinite binary forms representing the same numbers. Math. Proc. Camb. Phil. Soc., 92:29-33, 1982.
- [5] L. Delang. Representation of numbers by binary quadratic forms. Acta Mathematica Sinica, 3(1):58-65, 1987.
- [6] A. Esmaeili, T. Kamiyama, and R. Oishi-Tomiyasu. New functions and graphical user interface attached to powder indexing software conograph. J. Appl. Cryst., 50:651-659, 2017.
- [7] W. C. Jagy, I. Kaplansky, and A. Schiemann. There are 913 regular ternary forms. MATHE-MATICA, 44:332-341, 1997.
- [8] A. D. Mighell and A. Santoro. Geometrical ambiguities in the indexing of powder patterns. J. Appl. Cryst., 8:372–374, 1975.
- [9] B.-K. Oh. Regular positive ternary quadratic forms. Acta Arithmetica, 147:233-243, 2011.
- [10] R. Oishi-Tomiyasu. On ternary positive-definite quadratic forms with the same representations over F. submitted (arxiv: https://arxiv.org/abs/1703.08854).
- [11] R. Oishi-Tomiyasu. Distribution rules of systematic absences on the conway topograph and their application to powder auto-indexing. Acta Cryst. A., 69:603–610, 2013.
- [12] R. J. L. Oliver. Representation by ternary quadratic forms. Bull. London Math. Soc., 46:1237– 1247, 2014.
- [13] V. Pecharsky and P. Zavalij. Fundamentals of Powder Diffraction and Structural Characterization of Materials. Springer (second edition), 2009.
- [14] A. Schiemann. Ein beispiel positiv definiter quadratischer formen der dimension 4 mit gleichen darstellungszahlen. Archiv der Mathematik, 54:372–375, 1990.
- [15] B. L. van der Waerden. Die reduktionstheorie der positiven quadratischen formen. Acta Mathematica, 96(1):265–309, 1956.
- [16] G. L. Watson. Determination of binary quadratic form by its values at integer points. MATH-EMATIKA, 26:72–75, 1979.
- [17] G. L. Watson. Determination of binary quadratic form by its values at integer points: Acknowledgement. MATHEMATIKA, 27:188, 1980.
- [18] 富安亮子.数学者の立場からの粉末構造解析(解の一意性に関わる問題を中心に).日本中性子科学 会学会誌「波紋」サイエンス記事, 20(4):274-280, 2010.

 $Ba_2Cu(UO_6)$, I 4/m (body-centered tetragonal, a = 5.77, $c = 8.82(\text{\AA})$):

 $La(OH)_3$, $P \ 6_3/m$ (hexagonal, a = 6.52, $c = 3.84(\text{\AA})$):

 SiO_2 , $P \ge 1$ 3 (primitive cubic, $a = 7.27(\text{\AA})$):

図 3: 平均テータ級数から計算可能な \mathbb{R}^n/L 上の分布関数 $H_1(x)$, $H_3(x)$ と差ベクトル集合 $D_2(P)$ に極大値 を持つ $f_0(x)$ の比較.最右列の画像は $f_0(x)$ の分布と実際の $D_2(P)$ の座標点を重ねたもの.これら4 例も 含め, $H_3(x)$ と $f_0(x)$ は値がかなり異なることもあるものの、よく似た画像を与えることが 20 例程度の ρ に対して確認できた.粉末結晶構造解析で利用可能な関数は,理想的な状況で $H_3(x)$,実際は観測誤差の影 響で $H_1(x)$ と $H_3(x)$ の中間に位置すると考えることができる.この状況で $D_2(P)$ など差ベクトル情報を求 める方法は上記の解析で最もボトルネックになりやすいとともに需要がある。