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1 Wavelet Transform

We are concerned with convolution operators. The FBI transform

Tf(x,  $\xi$;h)=\displaystyle \frac{1}{2^{1/2}( $\pi$ h)^{3/4}}\int_{\mathrm{R}}盟

e^{i(x-y) $\xi$/h}e^{-(x-y)^{2}/2h}f(y)dy

provides an alternative approach to analytic wave front sets in the microlo‐

cal analysis, which is developed independently by Sato‐Kashiwara‐Kawai.

Thanks to the term e^{ix $\xi$/h}
, the FBI transform can be rewritten as the convo‐

lution operator with the function of coherent state. If we remove e^{ix $\xi$/h} and

replace e^{-iy $\xi$/h} by e^{-iy $\xi$}
,
it becomes the short time Fourier transform (STFT).

Then, the parameter h plays a role of the size of the window e^{-(x-y)^{2}/2h} . The

wavelet transform is also a convolution operator with different parameters.
Let \mathrm{A} := \mathrm{R}_{+} \times \mathrm{R} denote the ax+b group, endowed with the multiplica‐
tion (a, b)(a', b') = (aa', ab'+b) The left‐invariant Haar measure on A is

d $\mu$=\displaystyle \frac{da}{a^{2}}db . Let U be the unitary representation of A on L^{2}(\mathrm{R}) defined by

(U(a, b)f)(x)=\displaystyle \frac{1}{\sqrt{a}}f(\frac{x-b}{a})
Based on this representation, the theory of the harmonic analysis on groups

gives a generalized Fourier transform, that is wavelet. The wavelet transform

of f\in L^{2}(\mathrm{R}) with respect to the analyzing wavelet  $\psi$\in L^{2}(\mathrm{R}) satisfying the

admissible condition

C_{ $\psi$}:=\displaystyle \int_{\mathrm{R}}\frac{|\hat{ $\psi$}( $\xi$)|^{2}}{| $\xi$|}d $\xi$<\infty,
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is defined by

W $\psi$ f (a )
b) =\displaystyle \frac{1}{\sqrt{C_{ $\psi$}}}\int_{\mathrm{R}}f(x)\overline{$\psi$_{a,b}(x)}dx,

where

$\psi$_{a,b}(x)=\displaystyle \frac{1}{\sqrt{a}} $\psi$(\frac{x-b}{a}) for (a, b)\in A.

The inverse wavelet transform of  F\in L^{2}(\mathrm{R}+\times \mathrm{R}) with respect to the ana‐

lyzing wavelet  $\psi$\in L^{2}(\mathrm{R}) is defined by

M_{ $\psi$}F(x)=\displaystyle \frac{1}{\sqrt{C_{ $\psi$}}}\int_{\mathrm{R}+}\int_{\mathrm{R}}F(a, b)$\psi$_{a,b}(x)\frac{dbda}{a^{2}} (x\in \mathrm{R}) .

Remark: If  $\psi$ is real‐valued, we have the equality

\displaystyle \int_{-\infty}^{0}\frac{|\hat{ $\psi$}( $\xi$)|^{2}}{| $\xi$|}d $\xi$=\int_{0}^{\infty}\frac{|\hat{ $\psi$}( $\xi$)|^{2}}{| $\xi$|}d $\xi$(<\infty) (1)

which gives the reconstruction formula f=M $\psi$ W_{ $\psi$}f and

\Vert W_{ $\psi$}f\Vert_{L^{2}(\mathrm{A})}=\Vert f\Vert_{L^{2}(\mathrm{R})}.

These always hold when the set of a is \mathrm{R} instead of \mathrm{R}+\cdot In general, without

(1) the Cauchy‐Schwarz inequality gives

\Vert W_{ $\psi$}f\Vert_{L^{2}(\mathrm{A})}\leq C\Vert f\Vert_{L^{2}(\mathrm{R})}.

If we regard \mathrm{A} := \mathrm{R}+ \times \mathrm{R} as not group but set, we have to rewrite this

estimate as

\Vert a^{-1}W_{ $\psi$}f\Vert_{L^{2}(\mathrm{R}_{+}\times \mathrm{R})}\leq C\Vert f\Vert_{L^{2}(\mathrm{R})}.
This is regarded as the continuity property in L^{2}.

Time‐ Frequency localization depends on window size. There is a general
relationship between a and frequency:

Wide window (Stretched wavelet with large a)
Poor time localization and Good frequency localization.

Coarse features \Rightarrow \mathrm{L}\mathrm{o}\mathrm{w} frequency
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For the wide window, we can not find out the high frequency, which is aver‐

aged by integration.

Narrow window (Compressed wavelet with small a)
Good time localization and Poor frequency localization.

Rapidly changing details \Rightarrow High frequency
For the narrow window) we can not find out the low frequency, which behaves

very slowly.

Remark: Even if we use the narrow window, we can not detect the high
frequency, which exists only locally in the frequency space. There is a limit

to the detection with window due to the uncertainty principle, which says

that the window sizes of time space and frequency space have an inverse

proportionality.

Indeed, both STFT and wavelet transform use a window having an inverse

proportionality. For STFT, the window size can be changed, but must be

fixed and applied to all frequencies. A more flexible approach in which win‐

dow size varies across frequencies would be desirable. So, the wavelet trans‐

form utilizes different window sizes for each frequency, as  a\sim | $\xi$|^{-1} . That

is just the auto focus property of wavelets. The wavelet transform is an

improved version rather than a simplified version of STFT.

2 Application
We consider the Cauchy problem on [0, T] \times \mathrm{R}_{x}

\left\{\begin{array}{l}
\partial_{t}^{2}u-A(t)\partial_{x}^{2}u=0,\\
u(0, x)=u_{0}(x) , \partial_{t}u(0, x)=u_{1}(x) ,
\end{array}\right. (2)

where the coefficient A(t) satisfies the weakly hyperbolic condition

A(t)\geq 0 for t\in[0, T].

Let us denote by G^{s}(\mathrm{R}) (1\leq s<\infty) the space of Gevrey functions f(x)
satisfying

\displaystyle \sup_{x\in K}|\partial_{x}^{n}f(x)|\leq C_{K}r_{K}^{n}n!^{s}
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for any compact set K \subset \mathrm{R}, n \in N. [2] gave the assumption that  A \in

 C^{ $\alpha$}[0, T] (0\leq $\alpha$\leq 1) and proved the well‐posedness in G^{S} for

1\displaystyle \leq s<1+\frac{ $\alpha$}{2} . (3)

Counter Example: [3] gave the following example of the ill‐posedness:

Define that T_{0}=0, T_{j}=\displaystyle \sum_{n=1}^{j}2^{-(n-1)/20} (j\geq 1) ,

A(t)=2^{-j/10} $\Theta$((2^{21j/20}(t-T_{j})) for  t\in [T_{j}, T_{j+1}] (j\geq 0) ,

where

 $\Theta$( $\tau$)=\displaystyle \frac{2-2\cos 2 $\pi \tau$}{2+3$\Gamma$^{3}\sin 2 $\pi \tau$+( $\Gamma$-9$\Gamma$^{2})\cos 2 $\pi \tau$}
and

 $\Gamma$=(1+2\displaystyle \sqrt{7})^{1/3}-\frac{3}{(1+2\sqrt{7})^{1/3}}.
Then, the Cauchy problem (2) with A(t) \in  C^{0}[0, T] which is non‐negative
and degenerates at t=T_{j} (j\geq 0) ,

is ill‐posed in G^{s} for s> 11/10∼1.
To know the behaviour of the coefficient concerned with the frequency, the

standard Fourier transform is not good, because the coefficients are usually
not defined in the whole interval \mathrm{R}_{t} . Therefore, it is natural to consider

STFT:

T_{w}A( $\xi$, b)=\displaystyle \int_{\mathrm{R}}e^{-it $\xi$}A(t)\overline{w(t-b)}dt
and the wavelet transform:

W_{ $\psi$}A(a, b)=\displaystyle \frac{1}{\sqrt{a}}\int_{\mathrm{R}}A(t)\overline{ $\psi$(\frac{t-b}{a})}dt.

 $\xi$
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\underline{1}
a

The slopes of both figures indicate that a peak moves toward the blow‐up
point T_{\infty} as the frequency increases, which possibly causes the ill‐posedness.

Remark 2.1 If a equals some power of 2, the form of the counter example
resembles the wavelet. Generally for a function F(\displaystyle \frac{t-b'}{a}) ,

the wavelet trans‐

form with  $\psi$(\displaystyle \frac{t-b}{a}) detects  a\sim  a' and b \sim  b' . The above figure means that

a\sim 2^{-21j/20} and b=T_{j} are conspicuous since A(t)=20^{-j/10} $\Theta$(\displaystyle \frac{t-T}{2-21j/20}) for
each interval.

Remark 2.2 Amphtudes of oscillating coefficients are flattened by the de‐

generacy. Regularities depend on not only frequency but also amplitude (de‐
9eneracy). For example, according to [1] let us consider

high frequency
f(t)= \{1

0 for t=0,

small amplitude
(\log|t|)

\displaystyle \frac{\mathrm{S}\ln}{(\log|t|)^{2}+1} otherwise,

higher frequency
(t)= \{

0 for t=0,

f_{2} \sin(\exp^{\underline{1}})
smaller amplitude \displaystyle \frac{|t|}{\exp\frac{1}{|t|}} otherwise.

Then, we find that

\bullet  f_{1} belongs not \displaystyle \bigcup_{0< $\alpha$<1}C^{ $\alpha$} but BV,

\bullet  f_{2} belongs to not BV but \displaystyle \bigcap_{0< $\alpha$<1}C^{ $\alpha$}.

The counter example corresponds to the case of f_{1} ,
so the regularity is only

C^{0} (around t=T_{\infty}) and not BV.
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STFT would require some graphs to adjust the brightness of the spectrogr�am.
On the other hand) such an arrangement is not necessary for the wavelet

transform. For this case, the wavelet transform will be useful.

3 Gelfand‐Shilov Space and Continuity
From the point of view of the uncertainty principle, we are interested in

better Time‐Frequency localization. In this sense, the Schwartz space S will

be preferable, because it has an arbitrary polynomial decay in both time and

frequency spaces. For instance, very famous Mexican hat wavelet belongs
to the Schwartz space S . But in fact, the Mexican hat wavelet like the

Gaussian satisfies an exponential decay. Therefore, we shall introduce the

Gelfand‐Shilov space which is an interpolation between arbitrary polynomial
decay and exponetial decay, that is sub‐exponetial decay in both time and

frequency spaces. For positive constants  $\mu$, \mathrm{y} and h such that  $\nu$+ $\mu$\geq  1
,

we

define the Banach Gelfand‐Shilov space

S_{ $\nu$,h}^{ $\mu$}(\mathrm{R})= { f\in S ; \Vert x^{ $\alpha$}\partial_{x}^{ $\beta$}f(x)\Vert_{L}\infty(\mathrm{R})\leq Ch^{ $\alpha$+ $\beta$} $\alpha$!^{ $\nu$} $\beta$!^{ $\mu$} for all  $\alpha$,  $\beta$\in \mathrm{N} }
with the norm

\displaystyle \Vert f\Vert_{S_{ $\nu$,h}^{ $\mu$}(\mathrm{R})}=\sup_{ $\alpha,\ \beta$\in \mathrm{N}}\frac{\Vert x^{ $\alpha$}\partial_{x}^{ $\beta$}f(x)||_{L^{\infty}(\mathrm{R})}}{h^{ $\alpha$+ $\beta$} $\alpha$!^{ $\nu$} $\beta$!^{ $\mu$}},
and the (non‐Uanach) Gelfand‐Shilov space S_{ $\nu$}^{ $\mu$}(\mathrm{R})

S_{ $\nu$}^{ $\mu$}(\mathrm{R})= ind \displaystyle \lim_{h>0}S_{ $\nu$,h}^{ $\mu$}(\mathrm{R})
with the inductive limit topology. The Gelfand‐Shilov spaces have often

appeared in the study of functional analysis and PDE�s (see [8], etc For the

discrete wavelet case requiring strong additional conditions, [4] constructed

the wavelets belonging to the Gelfand‐Shilov spaces.

As for the continuous wavelet transform requiring only the admissible

condition, there are many possibilities to choose analyzing wavelets. Re‐

cently, [9] proved some estimates concerned with the continuity (bounded‐
ness) property of wavelet transforms in the (non‐Banach) Gelfand‐Shilov type
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of space S_{ $\nu$}^{ $\mu$,+}(\mathrm{R}) which is restricted to the half space  $\xi$ > 0 as the Hardy
space. For example, the Bessel wavelet  $\psi$(x) defined by \hat{ $\psi$}( $\xi$) = e^{- $\xi$- $\xi$-1}
for  $\xi$ > 0 and = 0 for  $\xi$ \leq  0 belongs to \mathrm{S}_{2}^{1,+}(\mathrm{R}) . In fact, we know that

 $\psi$(x) = \displaystyle \frac{1}{ $\pi$\sqrt{1-ix}}K_{1}(2\sqrt{1-ix}) ,
where K_{1} is the first modified Bessel function

of the second kind (see [6]).
In this paper we assume vanishing moment conditions for not only  $\psi$

but also  f . Paying the attention to the parameter h
,

we try to derive some

detailed estimates. Our purpose is to show the continuity (boundedness)
property of wavelet transforms in the (Banach) Gelfand‐Shilov space S_{ $\nu$,h}^{ $\mu$}(\mathrm{R}) .

Moreover, we also compute the wavelet transforms of concrete functions in

the Gelfand‐Shilov spaces and show the optimality of our results.

Lemma 3.1 There exists C>0 and h_{0}>0 such that

\Vert e^{h_{0}|x|^{1/ $\nu$}}f\Vert_{L^{\infty}(\mathrm{R})}+\Vert e^{h_{0}| $\xi$|^{1/ $\mu$}}\hat{f}\Vert_{L^{\infty}(\mathrm{R})} \leq C,

if and only if f\in S_{ $\nu$,h}^{ $\mu$}(\mathrm{R}) .

Taking Lemma 3.1 into account, we also introduce the Banach Gelfand‐Shilov

space combining with the infinite vanishing moments condition |\hat{f}( $\xi$)| \leq

 Ce^{-h| $\xi$|^{-1/ $\delta$}},

S_{ $\nu$,h}^{ $\mu,\ \delta$}(\mathrm{R})=\{f\in S;\Vert e^{h|x|^{1/ $\nu$}}f\Vert_{L}\infty+\Vert e^{h\mathrm{m}m\{| $\xi$|^{1/ $\mu$},| $\xi$|^{-1/ $\delta$}\}}\hat{f}\Vert_{L^{\infty}}<\infty\}.
We remark that S_{ $\nu$,h}^{ $\mu$}(\mathrm{R}) (without the infinite vanishing moments condition)
corresponds to S_{ $\nu$,h}^{ $\mu,\ \delta$}(\mathrm{R}) with  $\delta$=\infty

, i.e.,

 S_{ $\nu$,h}^{ $\mu$,\infty}(\mathrm{R})= { f\in \mathcal{S} ; \Vert e^{h}国  1/ $\nu$ f\Vert_{L\infty}+\Vert e^{h| $\xi$|^{1/ $\mu$}}\hat{f}\Vert_{L^{\infty}}<\infty }.
Then, we get the following theorem (see [5]):

Theorem 3.2 Let  $\mu$, v, h and  $\delta$ be positive constants such that  $\mu$+\mathrm{v}\geq  1.

Define that d( $\lambda$)= $\lambda$( $\lambda$-1)^{-1+1/ $\lambda$} . Then for the wavelet transform W_{ $\psi$} with

 $\psi$\in S_{ $\nu$,h}^{ $\mu,\ \delta$}(\mathrm{R}) , the following estimates hold:

(i) if  $\nu$>1

\displaystyle \Vert\frac{e^{h|b/(a+1)|^{1/ $\nu$}}}{a^{1/2}+1}W_{ $\psi$}f\Vert_{L\infty(\mathrm{R}_{+}\times \mathrm{R})}\leq C\Vert e ん囮 1/ $\nu$ f\Vert_{L\infty(\mathrm{R})},
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(i)' if \mathrm{v}\leq 1

\Vert e^{h'2^{1-1/ $\nu$}|b/(a+1)|^{1/ $\nu$}}W_{ $\psi$}f\Vert_{L\infty(\mathrm{R}_{+}\times \mathrm{R})}\leq C\Vert e^{h|x|^{2}}f\Vert_{L^{\infty}(\mathrm{R})} (0<h'<h) ,

(ii) if  $\mu$>1

\displaystyle \Vert\frac{a^{1/2}e^{hd( $\delta$/ $\mu$+1)^{1/ $\mu$}a^{-1/( $\mu$+ $\delta$)}}}{a+1}W_{ $\psi$}f\Vert_{L\infty(\mathrm{R}_{+}\times \mathrm{R})}\leq C\Vert e^{h| $\xi$|^{1/ $\mu$}}\hat{f}\Vert_{L^{\infty}(\mathrm{R})} )

(iii) if  $\mu$>1

\displaystyle \Vert\frac{a^{1/2}e^{hd( $\delta$/ $\mu$+1)^{1/ $\mu$}(\mathrm{m}\mathrm{m}\{a,a^{-1}\})^{1/( $\mu$+ $\delta$)}}}{a+1}W_{ $\psi$}f\Vert_{L\infty(\mathrm{R}_{+}\times \mathrm{R})}
\leq C\Vert e^{h\max\{| $\xi$|^{1/ $\mu$},| $\xi$|^{-1/ $\delta$}\}}\hat{f}\Vert_{L\infty(\mathrm{R})}.

Example: Let us consider the Mexican hat wavelet

 $\psi$(x)=\displaystyle \frac{2}{$\pi$^{1/4\sqrt{}}}(1-x^{2})e^{-x^{2}/2}, \hat{ $\psi$}( $\xi$)=\frac{2\sqrt{2 $\pi$}}{$\pi$^{1/4\sqrt{}}}$\xi$^{2}e^{-$\xi$^{2}/2}.
We see that  $\psi$ \in  S_{1/2,h}^{1/2,\infty}(\mathrm{R}) with 0 < h < 1/2 . In particular when f(x) =

e^{-x^{2}/2}
,

we can get

W_{ $\psi$}f(a, b)=\displaystyle \frac{2\sqrt{2}$\pi$^{1/4}a^{\mathrm{s}/2}(a^{2}-1-b^{2})}{\sqrt{3C_{ $\psi$}}(a^{2}+1)^{5/2}}e^{-b^{2}/(2a^{2}+2)}.
Then, (i)' in Theorem 3.2 becomes

\Vert e^{h'2^{-1}|b/(a+1)|^{2}}W_{ $\psi$}f\Vert_{L\infty(\mathrm{R}+\mathrm{x}\mathrm{R})}\leq C\Vert e
ん

|x|^{2}f\Vert_{L^{\infty}(\mathrm{R})},
where 0< h' <h . This implies that the exponent in (i)' is almost optimal
with respect to a and b

,
since

h'2^{-1}|b/(a+1)|^{2}\displaystyle \sim\frac{1}{2}\cdot b^{2}/(2a^{2}+2) .

Thus, we see that (i)' can not be improved anymore.

Moreover, we define the following weighted L^{\infty}(\mathrm{R}_{+}\times \mathrm{R}) space which is

a subspace of L^{2}(\mathrm{R}_{+}\times \mathrm{R}) as far as h is positive:

V_{ $\nu$,h}^{ $\mu,\ \delta$}(\mathrm{R}_{+}\times \mathrm{R})
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=\{F\in L^{2}(\mathrm{R}_{+}\times \mathrm{R});\Vert e^{h\max\{|b/(a+1)|^{1/ $\nu$}\prime} a^{1/ $\mu$}, a^{-1/ $\delta$}\}F\Vert_{L\infty(\mathrm{R}_{+}\times \mathrm{R})}<\infty\}.
We remark that when  $\mu$=\infty

 V_{ $\nu$,h}^{\infty, $\delta$}(\mathrm{R}_{+}\times \mathrm{R})

=\{F\in L^{2}(\mathrm{R}_{+}\times \mathrm{R});\Vert e^{h\max\{|b/(a+1)|^{1/ $\nu$}\prime} a^{-1/ $\delta$}\}F\Vert_{L\infty(\mathrm{R}_{+}\mathrm{x}\mathrm{R})}<\infty\}.
Theorem 3.2 gives the following continuity results:

Corollary 3.3 Let  $\mu$> 1,  $\nu$> 1, h>0 and  $\delta$>0 . Then for  $\psi$\in S_{ $\nu$,h}^{ $\mu,\ \delta$}(\mathrm{R}) ,
the wavelet transform

S_{ $\nu$,h}^{ $\mu$,\infty}(\mathrm{R})\ni f\mapsto W $\psi$ f\in V_{ $\nu$,h}^{\infty}
)  $\mu$+ $\delta$(\mathrm{R}+\times \mathrm{R})

is continuous. If f also satisfies the infinite vanishing moments condition,
the wavelet transform

S_{ $\nu$,h}^{ $\mu,\ \delta$}(\mathrm{R})\ni f\mapsto W_{ $\psi$}f\in V_{ $\nu$,h}^{ $\mu$+ $\delta,\ \mu$+ $\delta$}(\mathrm{R}_{+}\times \mathrm{R})
is continuous.
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