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Free boundary problems in magnetohydrodynamics

E. Frolova (St. Petersburg State University)

1 Introduction

We consider the free boundary problem governing the motion of a finite mass of a viscous
incompressible electrically conducting capillary liquid. The liquid is moving under the action
of magnetic field, mass and capillary forces. We assume that the liquid is contained in a
bounded variable domain §;; whose boundary consists of two disjoint components: the free
boundary I'; and the fixed surface ¥ that is also a boundary of the fixed domain D . The
domain D U Qy; is surrounded by a bounded vacuum region §2o; with the exterior boundary
S. The given surfaces I'g, S, and ¥ are homeomorphic to a sphere, [¢NS =@, (NI = 2.

The problem consists of determination of the variable domains Qj, ¢ = 1, 2, together with
the velocity vector field v(z, t), the pressure p(z,t), ¢ € Qy:, and the magnetic field H(z,t),
z € Q13 U Qy;. Equations in Q4; have the form

v+ (v -VIv—V -T(v,p) -V -Ty(H) = f, V -v(z,t) =0, (1.1)
pH¢+ o~ trotrotH — pyrot(v x H) =0, V- -H(z,t)=0,

where v is the kinematic viscosity, & - conductivity, p; - magnetic permeability in ;. We
assume that v, o, y; are positive constants, the density of the fluid is equal to 1.
T(v,p) = —pl + vS(v) is the viscous stress tensor,

S(v) = Vv + (Vo)T = (%;— + %)id:l 03 is the doubled rate—of—strain tensor,

Ty(H) = p(H ® H — 31|H|?) is the magnetic stress tensor.
Magnetic field in the vacuum region (y; satisfies the equations

rotH =0, V.H(z,t)=0. (1.2)

Equations (1.1), (1.2) are supplied with the following boundary conditions on the free bound-
ary ,

(T(v,p) + [Tu(H)[)n = on#,
Va=v-n, (1.3)
[uH -n]=0, [H,]=0, z€ly, t>0.

Here o is the coefficient of the surface tension, # is the doubled mean curvature of 'y, V,
is the velocity of evolution of the surface I'; in the direction of the exterior normal n to Iy,
[u] = u® — u® is the jump of u(z) on T;. The dynamic boundary condition (1.3); follows
from conservation of momentum under the assumption that the free surface is subject to
capillary forces. The kinematic boundary condition (1.3)2 means that the transfer of mass
through the surface is excluded and particles of the liquid not leave the free surface.



On the given surfaces S and ¥ we set

H(z,t) -n(z)=0, z€8, t>0,
H(z,t) - n(z) =0, (rotH); =0, v(z,t)=0, z€X, t>0, (1.4)
where by (rotH), we denote the tangential part of rotH.
Finally, we add the initial conditions

v(x,0) = vo(z), =€ o, H(z,0) = Ho(z), x € Q10U Q0. (1.5)

Problems of magnetohydrodynamics in fixed simply connected domains were studied by
0.A. Ladyzhenskaya and V.A. Solonnilov in the classical papers [1], [2]. In 2010 M. Padula
and V.A. Solonnikov proved local in time solvability of the problem similar to (1.1)—(1.5) but
without a rigid domain D [3]. The solution is obtained in anisotropic Sobolev-Slobodetskii
spaces W22 HIH/ 2, 1/2 < I < 1 for a closed surface T'g of arbitrary shape such that €29 and
Q10 U Qg are simply connected.

In [4] we proved solvability of problem (1.1) — (1.5) with f = 0 in an infinite time interval
under the additional assumptions that the initial position of the free boundary is close to a
sphere and initial data are sufficiently small. We demonstrated that when t — +o00, then the
free boundary tends to a sphere of the same radius. In general, this sphere has a different
center, because the barycenter point of the liquid can move. In [5] we extend this result to
problem (1.1) — (1.5) under additional smallness assumptions on the force f. As the region
occupied by the fluid is unknown, we assume that force f is given in the wider domain

Q10 ULy U Q9. We add the rigid domain D by technical reasons. It helps us to pi'ove the

exponential decay for the solution of corresponding homogeneous linear problem.
Sobolev-Slobodetskii space W, */2(Qr) in the cylindrical domain Q7 = 2 x (0,T) can be
defined as W2°(Qr) N Wy"*/*(Qr) with the norm

T
101 o= [ 1960 By e+ [ 16) Bay 5 (16)
0 Q

The first term in (1.6).is the square of the norm in W°(Qr) = L2((0, T), W5 (S2)), the second
is the square of the norm in We*/*(Qr) = La(Q, W¢/(0,T)). By W§(R) with non-integer
8 > 0 we mean the space of functions u(z), z € Q with the finite norm

2 _ e ] 2 dxdy
I u”w;(n)—”u ”Wé"](ﬂ) + Z //IDau(:z:)—D"‘u(y)l I?:W;_W,
lal=[s]q @
lu = Y [ 0@ de.
Wy ()
0<|of<[s]

Spaces of functions defined on the smooth surfaces are introduced in a standard way, with
the help of local maps and partition of unity.
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2 Main result

In this section we formulate the result of [5)].
_ Imagine the domain D is also filled with a liquid of the density 1, denote by £2; the domain
D U Qy;, and define Ry by the relation

SRS =19l

We assume that the initial pos1t10n of the free boundary I’y is a small normal perturbation
of the sphere Sg,. Precisely,

To={z=y+N®po(y), y€ESr}

where N(y) = Tz)lf is the exterior normal to Sg, and po is a given small function. It is clear
that

f ((Ro + po)® — R3)dS = 0. (2.1)

We introduce the function

E()_lﬂl/x m‘—lgl/(ﬂ/v(z‘r)dx)dr,

which is the barycenter point of the domain §2; filled with the hquld of the density 1. We
assume that at the 1n1t1a,1 moment of time the barycenter point is located at the Ol'lglIl, it
implies

/ %i((Ro+po)* — Rg)dS =0, i=1,2,3. (2.2)
Sry -
We are looking for I'; in the form

Ii={z=y+N@er(y,t)+£t), v€Sr}
where the functions p(y,t), £€(t) are unknown.
Theorem 1.[5] Let vo € Wit (o), po € Wit (SR,), Ho € Wit (Qy,), i = 1,2, with
a certain | € (1/2,1), satisfy natural compatibility conditions and condztzons (2. 1) (2.2).
Let f € W3"2(Q x (0,+00)), VF € Wi'*(Q x (0,400)), D2f € La( x (0,+00)), © =
Q10 UTo U Q. We assume that the following smallness conditions

||vo||W21+z(Qw) + ”Po||W§+z(SRo) + i§2 “HOIIWZH"(Qio) <eg (2.3)

" ebtvf "W"I/Z(QX(O +00)) + " ebtf ”Wl’l/2(Qx(0 +00)) + ” D2f ”Lz(Qx(O,-}—oo))S &, ‘ b>0

are valid. Let at the initial moment of time dist{I'o,X} > 3dy, dzst{I‘o,S} > 3dp, do >
(C* + 1)e (C* is defined in (5.17)).

There exists a small €, such that problem (1.1) — (1.5) has a unique solution in.an infinite
time interval with the following properties: for any t > 0, the free boundary Iy is located in
the layer 0 < Ro — do < |y| < Ro + do,

p(t) € Wit (Sro),  pel(,t) € Wyt (SRo), w(t) € Wpt(Que),  HO(, 1) € Wyt (Quy).

The solution is decaying exponentially as t tends to +oo.
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3 Coordinate transformation

In order to take into account the displacement of the barycenter point, we modify the Hanzawa
coordinate transformation used in [3]. We introduce the mapping

T=y+ N"@)p* (1) +x®ER) =epe(y), veEQ, (3.1)

where x(y) is a smooth non-negative cut-off function, which is equal to 1, when y belongs to
the layer Ry — dy < |y| < Ro + dp and vanishing outside the layer Ry — 2dy < |y| < Ro + 2do,
N*(y) and p*(y,t) are sufficiently regular extensions of N and p from Sg, into €, such that
0*(y,t) = 0 near S and X, C'-norm of p* is small. We denote by L(y, p*,€) the Jacobi matrix
of the transform (3.1), L = det £. Transformation (3.1) maps the domain Q@ = Q;; UT'; U Qg
to Q@ = F; U Sg, U Fa, where F is the domain bounded by ¥ and Sg, and F» = Q@ \ Fy;
8F; = SU Sg,.

With the help of (3.1), we pass from the free boundary problem (1.1)—(1.5) to a nonlinear
problem in the fixed domain Q = F; U Sg, U F?, for the unknown functions u(y,t) = voe,g,
q(y,t) =poe,e— 29 h(y,t) = LL ™ (y, p*,&)(H o ep,¢)- The given function f is transformed
to

1
flepsrt) = fly)+ / VI(y+s(N*p" +x€), t)ds (N*(y)p" (3:1) + x()€(2)) -
0

We separate linear and nonlinear parts in this problem and obtain

up —vV?u+ Vg = fy) + (f (epe,t) — F()) + l1(u, g, b, p),
V-u='l2(u,p), yeF1, t>0,
) =0
w@,t)| =0
I/HoS(u)N = l3('u,, p),
— g+ vN - S(u)N(y) + oBop = la(u, h, p) + Is(p),

1
pt—u-N(y)+m/fludy~N(y)—le(u,p), Y€ Spy, t>0, (3:2)

pihi + o trotroth = lz(h,u,p), V-h=0, ye€F, t>0,
roth = rotlg(h,p), V-h=0, y€F,,

[uh-N1=0, [h]=1s(h,p), y€Smy t>0,

h(y,t) -n(y) =0, yeSUXL, (roth);=0, yex, t>0,
w(y,0) =uo(y), y€F1, h(y0)=ho(y), yeFAUF,
Py, 0) =po(y), ¥ € Sry,

here Ilyw = w — N{(w - N), the expression Byp is the first variation of (H + %) with respect
to p and has the form

1
Bop = — 53 (Bs,0 +2p),
0
Ag, is the Laplacean on the unit sphere S;. By l; — ly we denote the nonlinear terms.

Expressions for the nonlinear terms are given in [4].
Theorem 1 follows from the existence result for problem (3.2) in an infinite time interval.
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Theorem 2. Let all the assumptions of Theorem 1 be fulfilled. Then problem (3.2) has
a unique solution with the following regularity properties:

Wyt HRQL), Vae Wy P (@QL),  p e W0, +00; W3 *(Sk,)),
pt€W§/2+l,3/4+l/2(G°°), h(,‘ €W22+l 1+l/2( 00),

where Qi = F; x (0,40), Goo = Sg, X (0,+00), h® = hl,ez, i = 1,2. The solution
satisfies the inequality

X000y (€70, €9, 9tp, e%h) < c(|]uo||W21+:(ﬁ) + leollwz+icsyy) (3.3)
2 N )
+ 3 I Moyt € F Twnaraancorony + 1 €V st o sccy )
1=

with a certain small 0 < a < b. Here we use the notation

X(tl,tz) (u7 a,p, h) II’U.” 2+’ 1+l/2(.7-'1x(t1 t2)) + ”Vq” ”/2(]:1)(@1 42)) + ”P” Uz(t:,tz W5/2(SRO))

+“pt“W3/2+l SIS (G0 (11,12) -+ Z uh H 2H, 1+l/2(.7")>((t1,t2)) (3.4)

4 Exponential decay for solutions to linear problems

To prove global solvability, we first have to obtain the exponential decay for the corresponding
linear problems in Sobolev norms. Omitting all the nonlinear terms in (3.2), we arrive at the
linear problem which can be decomposed in two parts: hydrodynamical and magnetic.

The hydrodynamical problem has the form -

v~ vV2u+Vp=f(y,t), V-v=0, yeF,

oS(w)N =0,
—p+vN-S@)N +0Byp =0,

4.1
pi= (o=l [ o) N =0, ye S, (“1)
1
'v(y,t) =0, yex,
v(Y,0)=v(y), y€F, p0)=poy), YESr-
Linearization of (2.1) (2.2) leads to the following orthogonality conditions
[ mwis=o, [ wm@ds=o, i=123. (42)
SRO SRO '

Theorem 3. Let vo € Wit (F1), po € Wit (Sg,), f € Wé’l/z(]-'l x (0,T)), T € (0,+o0],
conditions (4.2) and natural compatibility conditions be satisfied. The given function f is
decaying exponentially as t — +o0o and

”ealtané'l/2(-FlX(O,T)) < +00, a1 > 0. (4.3)



Then problem (4.1) has a unique solution: v € W22+l’1+l/ 2(Q}~), Vp € W, ”/ 2(QT) p €
W20, T; Wa'*(Sgy)), pr € Wl2T3/44Y2(Gry QL = Fy x (0,T), Gr = s&, x (0,T), and
the estimate .

at at at
e v”Wﬁ"’"”‘”(Q}) + e Vp||W;,z/2(Q%‘) + |le pllWé/z(O,T;Wzs/z(SRO))_i-
||e“tpt||W21+s/2,z/z+a/4(GT) + sup lle*v (., Ollwr+izy + sup lle**p(-, llwz+(s,) (4.4)
. at
< c("”0||W21+’(]:1) + ||P0”W22+l(sno) +lle f"wé,l/2(Q%‘))

holds with a cérta,in constant 0 < a < a;.

Proof. Existence of a solution to the hydrodynamical linear problem with such regularity
properties is proved in (3], [4]. Here we explain the proof of estimate (4.4). To deduce the
energy estimate, we multiply the first equation in (4.1) by v, integrate over Fj, and integrate
by parts. We arrive at the relation
1d ‘
3T (0 I, + I S() N7, + / (-vS()N-v+pv-N)ds = /.f'mfy- (4.5)
OF F1

Due to the boundary conditions, the surface integral equals
/aBop(pt+ % |/'v(y,t)dy N)ds— /aptBopds+a / Bopt’ (t) - Nds. (4.6)
Ro Ro Sro

The first term at the right-hand side of (4.6) can be written in the form

_ o d 2_o.2
w / (Bsip+20)puds = 57 /S (1Vupl? — 26%)ds = 52 M(2),
where
a
M =—/ V.| = 20%)ds.
(t) B Js, (IVwol® —20°%)

It can be easily demonstrated (see [4]) that if the orthogonality conditions (4.2) are fulfilled
at the initial moment of time, then the same conditions are fulfilled for the solution p(y,t) of
the problem (4.1) at any time ¢ > 0. It means that p is orthogonal to the first and the second
eigenfunctions of Laplace-Beltarmi operator Ag,. It implies that M(t) is positively defined:

M@)>C| P(',t) ”%V.}(SRO) . (4-7)

The second term at the right-hand side of (4.6) is equal to zero due to the condition ByN; = 0.
Consequently, (4.5) takes the form

35 (1960 Bymy +M®) + 5 1 50) Boyiry= [ 5o (48)
F1

To add the dissipative term for p, we use the so-called ”free energy” method, introduced by
M.Padula.
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Lemmal([7],[8]) Assume that p € W.‘,l/ 2%(Sg, x (0,T)), has the time derivative p; €
La(Sry % (0,T)), and satisfies the orthogonality condition [ p(y,t)ds = 0. There exists a

Sro

vector field w(-,t) € W}(F1), such that wy(-,t) € La(F1), and

V-w =0, y € F1, t>0, 'w|2=0, w- N = p.
. SRo
This vector field satisfies the estimates
” w(7t) ”W"(]"l)S c ” p(vt) “ 1/2(5 o)’ ” ’l.U( t) ||L2(.7"1)< c ” p( t) "LZ(SRO)’ »

e, 1) o< e(l 21 8) leacsmg) + 11 2G5 8) lpprags,,  )-

We multiply the first equation in (4.1) by the auxiliary vector field w, integrate over F1, and
integrate by parts. Taking into account boundary conditions, we arrive at

;t/v wdz + — /S(v) S(w)dz—/v wtd:c+M(t)_/f wdy. (4.9)
A #

We multiply (4.9) by a small positive number v and add it to (4.8), it gives

331 (B®) + Do) = / fvdy+o / f - wdy, (4.10)

where
E(t) =] v(,t) ||%2(j-1) +2’y}! v - wdz + M(t),
1

D(t)=% | S(v) “%2(}-1) +’y§j! S(v) : S(w)dz —'y]! v - widz +YM(t).

- Due to the condition v = 0 on the surface ¥, we can use the Korn inequality. For the
sufficiently small +y, it helps us to demonstrate that (see details in [4])

1/2( rv(>2) Zamy TM @) < E@) <3/2( ] v(,0) 13,7, +M(2)),
D(t) = o || v(-,t) ||W1(,1) +M(t)), a>0. (4.11)

We multiply (4.10) by e with a certain 0 < ¢ < 2a;, and obtain

d

dt( e B(t)) ~ Se B(t) + e D(t) = / e - (v + yw)dy. (4.12)

F1

At first, we fix « in such a way that (4.11) hold. Then, we choose so small ¢ that
c
D) - $EW®) > a1 (I v(,) I,z +M(D), 1 >0. (4.13)

We introduce the notations

CtE(t) = UA(E), et (D(t) - %E(t)) = R2(t).
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Identity (4.12) reads
d

L @Pw) + () = / e f - (v -+ yw)dy. (4.14)

8F

DN =

We estimate the right-hand side of (4.14) by the Hélder inequality, making use of Lemma 1
and (4.7)

[ et|f - wryw)dy < e || £ oy (10 lzam) +7 1 @ o)

F1
< Crest | £ 1) o) U

Consequently, (4.14) gives

d e
E(L{(t)) <Cre? || f iy -

It follows that .

U) < s [ 87 £,7) zagr dr +UO). (415)
0
Estimate (4.15), implies the exponential decay for the solution in Ly norms. Multiplying
(4.15) by e3Pt where ¢ — > 0, we have
. t
u(t)e_%(c—ﬂ)t S Cl /6_%(0-‘ﬁ)(t—‘r)eg‘r ” f(.’-’-) ||L2(.7'-1) dar +e_‘;‘(0"ﬂ)tu(0)- (4.16)
0

From inequality (4.16) it follows that the expression

T 2 T
/ (e—%<c—ﬂ)tu(t)) dt = / PUE(t)dt
0 0

is controlled by
T
8
J 185601zt +1200)
0
As a result we obtain

T
[ (o0 O,y + 10Dy 5, )

T
g
<l lwollZ, iz + leolifyse ) + S ez FC O,y | (4.17)
) 3 (5r) ) (F1)

with a certain positive 8 < ¢ < 2a;.
We introduce the functions:

U= eat,v’ p= eatp’ p= ea,tp’ } = eatf, 0<a< g <ay,



These functions satisfy the relations

D— vV +Vp=av+F, V-9=0, yeF,

MoS(®)N =0,

~p+uN - S(®)N + 0Bop =0,

Pt = (i’_ IQUI_IL ﬁ(yyt)dy) N +ap, yE€ Sr,,
1

f’(y’t) =0, yezy )
9(y,0) =vo(y), w€F, p=,0)=po(y), yE€ESr,-

(4.18)

We use the estimate of a solution to the hydrodynamical linear problem [4] and apply interpo-
lation inequalities for the terms ||1')||Wé,z/2(% y ||ﬁ||w$+3/z,z/2+3/4(GT). To estimate || v || La@by

| & “%[,21 eI use (4.17). As a result, we obtain (4.4) with a certain a < a;. O
The homogeneous magnetic problem has the form

pHy +a rotrotH =0, V-H=0, z€JF,

rotH=0, V-H=0, z€F,,

[WH-N]=0, [H; =0, y€Sg,, (4.19)
H-n=0, yeSUx, (rotH),=0, ye€X,

H(y,0)=Ho(y), y€F1UF.

Theorem 4. For arbitrary Hy € WatY(F), i = 1,2, satisfying the natural compatibslity
conditions, problem (4.19) has a unique solution H® ¢ W§+l’1+l/ 2 (Q.’r) The inequality

18 S |

try(i try(i i

; (||ea H® ”W22+l’l+l/2(Q§~) + fllg le® H(’)(-,t)”W;H(]:i)) < cz; ”HO ”W.‘}'H(.F.-) (4.20)

= i=
holds with a certain a > 0 and with the constant c independent of T'.

Theorem 4 is proved in [3], [4]. 'To obtain (4.20), problem (4.19) is rewritten in the form

of the Cauchy problem
Ht+AH=0, H|t=0=H0,

where the operator A is defined on the space H?(f2) (space of solenoidal vector fields from
W2(Q), satisfying boundary conditions (4.19)). The characteristic property of A is
/ pAH - hdz =a™! / rotH -rothdz, Vh,H € H2.
1] F1

A is a positive defined self-adjoint operator. The spectrum of —A consists of a countable
number of real negative eigenvalues with the accumulation point at —oo. This guarantees
the weighted estimate (4.20) (see details in [9]).
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5 Nonlinear problem

In this section we outline the main ideas of the proof of Theorem 2. We start with the
existence result on the finite time interval [0, T]. We separate initial conditions in (3.2) in two
parts . , Y , . ,

uo =1uy +uy, po=po+po, ho=nho+hy,
where the functions ug, pg, hg satisfy the same compatibility conditions as ug, po, ho in
nonlinear problem (3.2):

" 1 1
[ #iBawyds =~ / RIS - 712 S/ A(Rov)ds,

S1
" 1 1 .
/ Yipo (Roy)dS = — == [ virg(Roy)dS — =5 / viPs(Roy)dS — — / yirg(Roy)dS, i=1,2,3,
J Ro R2 y 4R3 J
1 1 1

V- ug = lp(uo, po), ¥ € ]"1,

Vg, S(ug)N(y) = Is(to, p0), ¥ € Spyy ug =0, yET,
rothy = rotlg(h$®, po), y€Fa, V-hy=0, yeFUF,
[ho,) = lo(ho,po), Y € Sryr [hg - N1 =0, y € Sg,,
hy-N =0, yeSUS, (rothy),=0, yeI,

and have the order 2

" " 2
|20 "Wg“(sao) + || ”W21+’(J-'1) < C(”POHW;“(SRO) + ”uollwé“(]:l)) . (5.1)
: 6 2
" 2
i_Zl "h0”W21+’(};) < C(z; uho ||W21+l(]:,.) + ”Pollwg“(snn)) . (5-2)‘
- =

Possibility of constructing such functions follows from inverse trace theorems and proved in

3], [6].

To simplify the presentation, we introduce the notation

2
Y(t)= ”u('vt)”W;“(}'l) + "p(.’t)”W;z“(SRo) + Z [h(,t) "W21+1(.7".')’
i=1

and denote by Y'(t), Y"(t) the same expression for the functions u’, p’, k' or 'u, PN
Henceforth, we also use the notation X, 4, (u,q, p, h) introduced in (3.4).

The functions uO, pO, h,o evidently satisfy compatibility cond1t10ns in linear problem (4.1),
(4.19). By Theorems 3,4, this problem has a unique solution u’,q, p, h’. In accordance with
(4.4), (4.20), we have

X(O,T) (eatu', ea,tq’,eatp’, eath/) <ec (YI(O)+ ll ea,tf ”W;Uz(Q'}‘)) ’ (53)



: 1/2
Y'() < ae | Y'0)+ ( [ e s ymy dr> , (5.4
0

with a certain 0 < a < b. ,
The functions w”, ¢°, p’, R we find from the following nonlinear system

1
u, — vV + Vg = /Vf(y +5(N*(p + ") +x€),8)ds (N* (5 +0")" +x€)
0

+h +u" ¢ +q W +h" 0 +p),

Vou' =b +u' 0 +p"), in F, ¥, )],z =0,

VIS(u' )N = l3(u +u”,p + "),

—¢ +uN - S(u")N(y) +0Bop =l +u",h' +h", o +p") +15(s + '),

n

p; —u - N(y) + || /u"dz N@) =l +u",p' +p"), on Sg,, (5.5)

. FA

pih; +a ‘rotroth” = l;(W +h" v +u 0 +p'), V-h =0, in F,

roth’ = rotlg(h’ + R+ p”), V-h'=0, in F,

[uh” -N)=0, [h]=ls(h' +h",0+p"), on S,

h'(y,t) - n(y) =0, on SUB, (roth"),=0, on X,

U”(y,o)=u3(y), y€]:11 h”(yao)=hg(y)7 yG}-IU]:%

P (y,0) = po¥), Y€ Sr,
We choose T so big that cye™*T <  (c; is the constant in (5.4)). Problem (5.5) can be solved
for t € [0, T}, provided ¢ is sufficiently small.

Theorem 5. Let all the assumptions of Theorem 1 be fulfilled. The functions u, q', pl,
h' are subject to (5.3), (5.4). For a given T > 0, there ezists such € > 0 that if the given

functions satisfy smallness conditions (2.3) with this €, then problem (5.5) is uniquely solvable
on the time interval [0,T] and the solution satisfies the estimate

X'. ull , II, II’ h” + su Y” t
©.1) ( 9P ) sup Y™ (¢)
< a(D)e (YO+ I £ lyaarngay + 1 V5 lyarzaniomy) (5.6)

Theorem 5 is proved in [5] by the successive approximations method. Estimates of the
nonlinear terms are given in [3], [4], [6]. The functions

u=ul+uﬂ, q=ql+qll, p=p’+p"’ h=h’+h"

is a solution to problem (3.2) on time interval [0, T]. Now we choose such € that co(T)e in
(5.6) is not grater then %. In consequence of (5.4), (5.6), solution to problem (3.2) satisfies
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the estimate
Y(T) < %Y(O) +% (” F ”W;’IN(Q}) + ” vf YIIW;"/z(Qx(o,T)))

[T 1/2
+1 ( of I e £ 12,0 dT) . (5.7)

The existence result in an infinite time interval is proved step by step. Let us have proved
existence of a solution to problem (3.2) on time interval [0,k77]. Let |€(t)| be uniformly
bounded for ¢ € [0, kT, and the estimate

iT 1/2

YOT) S 3Y(G=0T)+ ¢ [Flil+ | [ 1 Dgn B ar| | 69)
(i-1)T

where

Fal =l £l Wh2(F x -1y T Ivf ”W"’/’(nx((i-nTiT))
holds for i = Ly k. On time interval [(z - 1)T iT], the solution can be decomposed in two
parts: u = u’ +u g=q +q,p=p +p", h=h"+h", satisfying the following estimates

Xianyrar (w506 B") < 3 (¥ (6= DT) + Fi), (5.9)

Xi—1yr] (ea(t—-(i—l)T)u’, at=G-1T) g eali—G=1)T) ' calt—(i-1)T) h')

<c (Y((i — DT || eCIDF |y a<b. (5.10)

(F1 x((i—l)Tﬂ'T))) ’

We consider uxr = u(-, kT), prr = p(-,kT), hgr = h(-,kT) as initial data at ¢ = kT and
repeat the above scheme on [kT, (k+1)T]. Due to the conservation of volume, condition (2.1)
holds for pxr. The barycenter is located at the point £(kT'), which not necessarily coincides
with the origin. We have

/ zidr = §i(kT)§7rR§ = &(kT) / dz, i=1,2,3.
Qe Qr
We pass to the spherical coordinates with the center at the point £(kT), and see that the
linear part of (2.2) for pyrr has the same form as for py, precisely, [ y;p(Roy,kT)dS = 0.
51

Consequently, we can use all the results of section 4.
We again separate the data at ¢ = kT in two parts

" 1 " 1 " ’
UkT = Ut + Upr, PRT = Prr + Prrs  Pkr = Ryr + Py,
where the functions u;;T, pZT, hZT satisfy the same compatlbﬂlty conditions in (3.2) as ur,

pkT, b and ha.ve the order €2. The solution v, ¢ , p ,h to linear problem (4.1), (4.19) with
initial data wyp, prp, hyr satisfies (4.4), (4.20) on time interval (kT (k + 1)T7]. It gives

(k+1)T 1/2

YEn)+ | [ et 056 By dr (5.11)
kT

Y((k+1)T) < ¢
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and (5.10) for i =k + 1.
To apply Theorem 5 on time interval [kT, (k + 1)7T7], we have to take care of the term

sup  [£(8)]-

ET<t<(k+1)T

It is clear that &(t) — £ (kT) is estimated by || w || Lo(F1x (kT (k+1)T))» and it remains to estimate
[€(KT)|. We use (5.8) for ¢ = 1,..., k., and deduce

) 1/2
k iT
1 1 . —(i—
Y(T) € YO+ Y gz | Fll+ | [ N80 iy | |- 612)
=1 i—1)T

Under our assumptions on f, (5.12) gives

: 1 ¢ t
YD S gz, Ty (YO 18 hygom o ooy *+ 1€V Dyt o o) -
' (5.13)
This implies the exponential decay for Y (). In particular,

"u('7t)|IL2(}'1) < ce™ (Y(0)+ ” eatf IlWé””(QX[O,-FDO)) + ” eatvf "W2’v’/2(9x[0,+°°))) < 3ce %e

with a certain o > 0. In consequence of (5.9), (5.10), Jacobian L is uniformly bounded for
t € [0, kT]. Using this fact and the Holder inequality, we obtain

€GT)| = | f dt | v(a)da| < [37 dt [, luw, lILIdy
<c f lw(, )l 2o (mydt < 1 f ce~¥di < Ce, (5.14)
0 0

. with the constant C independent of kT and ¢.

Now we can repeat the proof of Theorem 5 on time interval [kT, (k + 1)T), replacing
everywhere Y (0) by Y(kT'). The constant c3(T") in (5.6) and, as a consequence, the value of &
can be chosen 1ndependent of k begmmng with & = 2. Taking a sum of solutions to problem
(5 5) with initial data w,q, ppp, Ry and to linear problem (4.1), (4.19) with initial data 2,
Pers Mer, We obtain a solution to problem (3.2) on time interval [kT, (k + 1)T]. We repeat
the above scheme for any k£ € IN and step by step obtain a solution to problem (3.2) on an
infinite time interval [0, +00).

By (5.9), (5.10), (5.13), we have

X1y '(ea(t—(i—l)T) u,edt—(-)T) g galt~(i—1)T) ' calt—(~1)T) h,') (5.15)
< ey (YO +2 1 €™ Iyt o ooy * 1€V lyiizanio, Jm),)
where the constant ¢ is independent of 7, and
Xi-1)T7) (u”, q, P",h”) (5.16)

1 t 13
< min{2,esT 1 (Y(0)+ ” e*f ||W2[’l/2(QX(0,+oo)) + ” e*Vf ||W;‘l/2(ﬂx(0,+oo))) .
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Estimates (5.15), (5.16) imply (3.3), provided that ¢*T < 2.
Theorem 1 follows from Theorem 2. We find the position of the free boundary for any
t > 0 by the formula

={z=y+N(@yo(y,t) +£(), €Sk}

make coordinate transform, and obtain a solution v, p, H to the free boundary problem
(1.1) — (1.5).

In accordance with (3.3), we can conclude that Jacobian of mapping (3.1) is uniformly
bounded for any t > 0, and exponential decay in Sobolev norms takes place for t — +o0o. By
the same reasonings as in (5.14), we have

+00

+00
+00
l€(+00)| < / dt / o(, 8)|dz < / s 8) |y < / ce=otdt < C*e.  (5.17)
0 Qe
0

0

It means that |£(¢)| is uniformly bounded for any ¢ > 0. To be sure that the free boundary do
not intersect the fixed parts of the boundary, we have to assume that at the initial moment
of time dist{T'g, £} > 3dp dist{T, S} > 3dp, do > (C* + 1)e (see assumptions of Theorem 1).

The same scheme can be applied to the free boundary problem describing the motion of
a finite paass of a viscous incompressible fluid when the external force is acting on the fluid,
but there is no magnetic field (see [10], [11]).

6 Free boundary problem of magnetohydrodynamics for two
liquids

The next step is to consider the motion of a finite mass of viscous incompressible electrically
conducting capillary liquid inside the other viscous incompressible liquid under the action
of magnetic field. In this case the domain Qg is also filled with a liquid. The interface
between the liquids is unknown. Let the bounded variable domain Q;; be filled by the liquid
of density d; and viscosity 1. The domain y; is surrounded by the bounded domain g,
filled by the liquid of density dz and viscosity 2. The boundary of 9 consists of two disjoint
components: the free boundary I'; and the fixed boundary S. We assume that both I’y and
S are homeomorphic to a sphere, dist{Ig, S} >4 > 0.

The problem consists of determination for ¢ > 0 the variable domains ;¢ 7 = 1,2 together
with the velocity vector field v, the pressure p(*), and the magnetic field HY. Equations
in €4 have the form

v, 4 (v . Vv —v. T(v®,p®) - v. Ty (HO) = 0,
piHD, + o7 trotrotH® — prot(v® x HO) =0, (6.1)
v.vd = 0, vV -H® = 0, z € Qis,

where y;, - magnetic permeability, v; - kinematic viscosity, a; - conductivity , d; - density.
We assume that v;, o, d;, u; are positive constants.
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On the free surface Iy, we have the following boundary conditions

(IT(v,p)) + [Ty (H)])n = onH,
V,=v-n, [v] =
[%(TOtH)-,-] = [U(V X H)T]a (6'2)
[WH-n|=0, [H,;]=0, zely

where o - coefficient of the surface tension, # - is the doubled mean curvature of I'y, V,, is the
velocity of evolution of the surface I'; in the direction of the normal n to I'y, which is exterior
with respect to the domain Qy;. Condition (6.2)3 on the jump of the tangential part of rotH
follows from the fact that on the interface tangential part of electric field is continuous and
Maxwell equations.

We assume that the fixed boundary S is a perfectly conducting bounded closed surface.
Boundary conditions on S have the form

H-n=0, (rotH),=0, v=0, z€S. (6.3)
‘We add the initial conditions
V(IL‘,O) = Vo(:l:), H(CE, 0) = Ho(z), z € Q9 U Qgo. (64)

We assume that the initial position of the free boundary I'p can be regarded as a small
normal perturbation of the given smooth closed surface G

To={z=y+N@)oo(y), y€G}

where N(y) is the external normal to the surface G, po € WZT(Q) is a given function, and
[po| £ %. We are looking for the free boundary in a similar form

= {z=y+N@)pw 1), yeGl,

where the function p(y,t) is unknown.

We denote by F; the domain bounded by G, by F; the domain bounded by G and S. We
construct the mapping which transforms Q = F; UG U F3 to Q = Q3 UT'; U Q. To this end,
we extend N and p into Q. By N* we mean a smooth non-vanishing vector field in Q which
coincides with N on G. By p*(y,t) we denote an extension of unknown function p(y,t) from
G into 2 with preservation of class, which vanishes in a éf neighborhood of the surface S

and satisfies the condition a—”;%a ‘G = 0. We introduce this mapping by the relation

z=y+ N*(y)p*(y,t) = ep(y)- | (6.5) -

When p is sufficiently small (which is certainly the case for small t), transform (6.5) establishes
one-to-one correspondence between F; and £, i = 1,2. We denote by L(y, p*) the Jacobi
matrix of the transformation (6.5), L = detL, L = LL™Y is the cofactor matrix. The normal
n to the free boundary is connected with N by the formula

LN(@y)

n(e,(y)) = NG|

(6.6)
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Let
V(em t) = u(y’t), p(ep, t) = Q(y, t)'

To simplify the calculations, we introduce the new unknown function
h = LH(e,,t).

As it is demonstrated in [3], h is a solenoidal vector field and satisfies the homogeneous
condition [ph - N] = 0, y € G. Transformation (6.5) converts the problem (6.1) — (6.4) to a
nonlinear problem in the fixed domain Q = F; U G U F2. We separate linear and nonlinear
‘parts in this problem and write the boundary condition (6.2); for the tangential and normal
parts separately, then it can be written in the following form:

ul? -1, v2u® 4 %Vq“) =10u®,¢9,n9,p), yeF

(]
v ’ u(i) = lg)(u(i),p), - Y € ]:ia
MHoSN] =1 (u,p), yE€G,

- [3+ PN S@N@)| +0Bp = l(w b,p), y€G,

pt—u-N=1I5(u,p), [u=0 yeGqG, (6;7)
uih(? + a7 trotroth® =1 (0, u®, ), y e 7,
V-h =0, yeF,

: 1
[/‘l‘h * N] = 07 [hT] = 17(h7 P), [E(TOth)T] = 18(h5 u, P) Yy € G?

h®.n=0, (roth®?),=0, u®=0 yes,

u®(y,0)=ui’(y), W90 =hP@), yeF, @0 =m), yeG.

Here Ilju = u — N(u - N) is the tangential part of the vector field u, —Bp is the first

variation of H with respect to p. The nonlinear terms 1§") — 17 are similar to the nonlinear
terms calculated in {3], [4] The nonlinear term lg has the form

Iy = [é(roth),.] - [é (roth — (roth - N)N)]
1 1 rl
+15 (G Lrott™ 22 n(ep)m)(ep) = (roth - NN )]
= LTO.L n(e,)n)(e,) — (ro
+ 1 (£7"u x h— ((C7'a x h) - n(ey)n(ey)))],
where n(e,) is given in (6.6).
Here we formulate the local solvability result for problem (6.7). The proof will be given

in subsequent publications.
Theorem 6. Letug; € W21+l (Fi), Ho; € W21+l (Fi),i=1,2,p0 € W22+I(G) with a certain



1€ (1/2,1) and the following compatibility conditions

Voud =i, ), yeF,

[VHOS(UO)N] = 13(1.10, p0)1 S G7

v-b{) =0, yeF,

1

[/'l'hO : N] = 01 [(hO)T] = 17(h05p0)1 [E(TOthO)‘r] = IS(hO; uOyPO)’ [uO] =0 Yy e G)
h(()z) -n=0, (roth((]z)),. =0, u(()z) =0 yes

hold. We assume that the smallness condition

”P0||W22+l(c) <e

is satisfied. Then problem (6.7) has a unique solution on a certain small time interval (0,T)
with the following regularity properties

p € WG n WY ((0,T), Wy(@)),  pe € WP Gy,

u® e WHNHY(E 5 (0,1)),  h® e WEHHE(F x (0,T)),
g € W, (@) nwy (0,7 W, 2(@)), - Vg e Wy*(Fi x (0,T)).
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