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This note is about the stability of Prandtl boundary layer expansions, in the context of the

two‐dimensional Navier‐Stokes equation. We explain the main arguments behind the recent

analysis of [5], which shows an optimal Gevrey stability result for expansions of shear flow

type. The core of the reasoning is a resolvent estimate for the fourth order Orr‐Sommerfeld

equation, which is derived by an iterative process reminiscent of splitting methods in numerical

analysis. This iteration is explained here in an abstract setting, that might be helpful to other

applications.

1 Introduction

The general concern of the present work is the dynamics of a viscous fluid near a solid

boundary, in the regime of high Reynolds number. The starting point of the work is the  2\mathrm{D}

incompressible Navier‐Stokes equation,

\left\{\begin{array}{l}
\partial_{t}u+u\cdot\nabla u+\nabla p- $\nu \Delta$ u=f, \mathrm{x}\in $\Omega$,\\
\mathrm{d}\mathrm{i}\mathrm{v}u=0, \mathrm{x}\in $\Omega$,\\
u|_{\partial $\Omega$}=0,
\end{array}\right. (1.1)

set in the half‐plane  $\Omega$=\{\mathrm{x}= (x, y) \in $\Gamma$\times \mathbb{R}_{+}\} . The parameter 0< \mathrm{v}\ll 1 is the inverse

Reynolds number. The third line in (1.1) is a no‐slip condition on the fluid velocity u , which

reflects the experimental observation that viscous fluids stick to sohd boundaries, no matter

the Reynolds number.

This Dirichet condition, typical of the parabolic nature of Navier‐Stokes, is incompatible with

the formal hmit of the system when \mathrm{v}\rightarrow 0 , namely the incompressible Euler equation: it is

well‐known that this equation is well‐posed under a simple no‐flow condition u\cdot n|_{\partial $\Omega$} =0,
and the tangential velocity is in general non‐zero at the boundary. This �discontinuity� of

the boundary condition at \mathrm{v}=0 has a strong consequence on the asymptotics  $\nu$\rightarrow 0 . If u^{ $\nu$}

and u^{E} are respectively the Navier‐Stokes and Euler solutions, it tells us that

u^{ $\nu$}\neq u^{E} in H^{S}( $\Omega$) for any s>\displaystyle \frac{1}{2}.
More generally, convergence does not hold in any functional space on which the trace is

continuous. In particular, \nabla u^{ $\nu$} can not be Umiformly bounded in \mathrm{v} in the vicinity of the
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boundary. This is the so‐called boundary layer effect: a thin layer of fluid with high velocity
gradients develops near the boundary. The boundary layer prevents  u^{ $\nu$} of being a regular
function of v , and requires a refined asymptotic description.

A key step of this description was provided by Ludwing Prandtl in 1904 [12], who suggested
an asymptotic expansion of the following type:

\left\{\begin{array}{l}
u_{1}^{ $\nu$}\approx U^{E}(t, x, y)+U^{BL}(t, x,y/\sqrt{ $\nu$})\\
u_{2}^{ $\nu$}\approx V^{E}(t, x, y)+\sqrt{ $\nu$}V^{BL}(t, x, y/\sqrt{ $\nu$})
\end{array}\right. (1.2)

where u^{E}=(U^{E}, V^{E})(t, x, y) is the Euler solution, and u^{BL}(t, x, \mathrm{Y})=(U^{BL}, V^{BL})(t, x, \mathrm{Y}) is

a boundary layer corrector, which depends on the variable \mathrm{Y}=y/\sqrt{ $\nu$}. Thus, in the Prandtl

model, the boundary layer has variations of typical length \sqrt{ $\nu$} , which is natural considering
the heat part of the Navier‐Stokes equation. Note that the vertical component is rescaled by
a factor \sqrt{ $\nu$} in view of the incompressibility condition. Denoting by

U^{P}(t,x, Y)=U^{E}(t, x, 0)+U^{BL}(t, x, Y) , V^{P}(t, x, \mathrm{Y})=\mathrm{Y}\partial_{y}V^{E}(t, x, 0)+V^{BL}(t, x, \mathrm{Y})

the �full� velocity in the boundary layer, and inserting the previous expansion in the Navier‐

Stokes equation, one derives the famous Prandt system

\left\{\begin{array}{l}
\partial_{t}U^{P}+U^{P}\partial_{x}U^{P}+V^{P}\partial_{\mathrm{Y}}U^{P}+\partial_{x}p^{P}-\mathrm{a}\mathrm{e}P=0,\\
\partial_{\mathrm{Y}}p^{P}=0,\\
\partial_{x}U^{P}+\partial_{\mathrm{Y}}V^{P}=0,
\end{array}\right. (1.3)

endowed with the boundary conditions

U^{P}|_{\mathrm{Y}=0}=V^{P}|_{\mathrm{Y}=0}=0, U^{P}\rightarrow U^{E}(t, x, 0) , p^{P}(t, x, \mathrm{Y})\rightarrow p^{E}(t, x, 0) as \mathrm{y}\rightarrow+\infty.

The Prandtl system is characterized by three features. First, we see from the second line

and the boUmdary condition that the pressure is not an unknown: p^{P}(t, x, \mathrm{Y}) =p^{E}(t, x, 0)
for all Y . Second, there is no evolution equation on v^{P} , which is simply recovered through
the divergence‐free condition. Third, the tangential diffusion is not kept in the equation for

u^{P} . For these reasons, the description of the boundary layer flow by the Prandtl system (1.3)
is very appealing, as it is much easier to simulate than the full 2\mathrm{D} Navier‐Stokes equation.
Unfortunately, the formal expansion (1.2) turns out to have a limited range of validity, due

to strong instabilities.

First, instabilities take place at the level of the Prandtl model itself. Briefly, in the case

of data that are non‐monotonic in y , this model allows for strong exponential growth of

high frequêncies. This leads to \mathrm{m}‐posedness of system (1.3) in the Sobolev setting, while

well‐posedness results are only available in Gevrey spaces of low enough exponent. The

understanding of the stability properties of the Prandtl model has benefited from many recent

advances, and we refer to [4, 11, 3, 6, 1, 9] on these aspects.

Still, even when the Prandtl expansion can be constructed and yields a Navier‐Stokes solution

with an arbitrarily small source term (say O(\mathrm{v}^{N}) for any N), this solution can be very unstable

at the level of the Navier‐Stokes equation. To discuss this issue of boundary layer flow stability,
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we restrict in this note to the special case of steady shear flows. Namely, we will consider

velocity fields of the type

\displaystyle \overline{u}^{ $\nu$}(t, x, y)= (U^{E}(y)+U^{BL}(\frac{y}{\sqrt{ $\nu$}}), 0) . (1.4)

For simplicity, we will assume that the source term f in (l.la) is such that u^{ $\nu$} is an exact

solution of the Navier‐Stokes equation. A perturbation u to u^{ $\nu$} will then obey the following
system:

\left\{\begin{array}{l}
\partial_{t}u+(U^{E}+U^{BL}())\partial_{x}u\overline{\sqrt{ $\nu$}}+u_{2}\frac{d}{dy}(U_{E}+U^{BL}())e_{1}\overline{\sqrt{ $\nu$}}+u\cdot\nabla u+\nabla p- $\nu \Delta$ u=0, \mathrm{x}\in $\Omega$,\\
\mathrm{d}\mathrm{i}\mathrm{v}u=0, \mathrm{x}\in $\Omega$,\\
u|_{\partial $\Omega$}=0.
\end{array}\right.
(1.5)

The main stability question is then: if u_{0} = u|_{t=0} is small, does u remain small over a

reasonable period of time, namely independent of  $\nu$ ? The difficulty raised by this question
can be seen from a standard  L^{2} estimate: it involves the integral term \displaystyle \int_{ $\Omega$}u2\partial_{y}(U(\cdot/\sqrt{ $\nu$}))u_{1},
which through a naive estimate yields

\displaystyle \partial_{t}\Vert u\Vert_{L^{2}}^{2}\leq\frac{C}{\sqrt{ $\nu$}}\Vert u\Vert_{L^{2}}^{2},
as \displaystyle \partial_{\mathrm{y}}U=O(\frac{1}{\sqrt{ $\nu$}}) . It gives the poor control \Vert u(t)\Vert_{L^{2}}^{2} \leq \Vert u_{0}\Vert_{L^{2}}e^{Ct\sqrt{ $\nu$}} . In particular, if u_{0}=

O(\mathrm{v}^{N}) for large N
, this yields a stability estimate only over times of order \sqrt{ $\nu$}|\ln(\mathrm{v})|.

It turns out that this estimate is, in full generality, optimal. Indeed, it was shown by Grenier

in [7] that for some shear flow profiles U^{BL} with inflexion points (and zero U^{E}), there exist

perturbations that have an approximate behaviour of the form

u(t, x, y)\approx e^{ $\lambda$}e^{i^{x}}\hat{u}^{ $\nu$}(y) (1.6)

with {\rm Re} $\lambda$>0 . Let us stress that the tangential frequency k=\displaystyle \frac{1}{\sqrt{ $\nu$}}\gg 1 experiences a growth
at rate  $\sigma$=\displaystyle \frac{\mathrm{B} $\epsilon \lambda$}{\sqrt{ $\nu$}}={\rm Re} $\lambda$ k , that is proportional to the frequency. This suggests that stability
over times of order O(1) can only be achieved for analytic data u_{0} , in coherence with the

stability results in [14, 10]. The instability mechanism exhibited by Grenier comes from a

linear instability for the Euler equation

\displaystyle \partial_{ $\tau$}u+U^{BL}\partial_{X}u+u_{2}\frac{d}{dY}U^{BL}e_{1}+\nabla_{X,Y}p=0,
after proper rescaling. The necessary condition that U^{BL} has an inflexion point comes from

the celebrated Rayleigh criterion. But in the context of boundary layer problems, it is asso‐

ciated to the so‐called region of separation, or reverse flow, for which the Prandtl model itself

is known to badly behave in many ways [2, 4].

Hence, from this perspective, it is more natural to consider concave increasing boundary layer
profiles U^{BL} , which are linearly stable for Euler. Stil, as known from the celebrated works

of Tollmien and Schlichting, and recently revisited in [8], viscosity has a destabilizing effect.
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Roughly, when properly rescaled, this Tollmien‐Schlichting instability provides approximate
solutions of (1.5) of the form

u(t, x, y)\approx e^{$\lambda$_{ $\nu$}t}e^{i$\nu$^{-3/8}x}\hat{u}^{v}(y) (1.7)

with {\rm Re}$\lambda$_{ $\nu$} = O($\nu$^{-1/4}) . Let us note that in this case, the high‐frequency instability is

weaker than in the case with inflexion points: frequency k = \mathrm{v}^{-3/8} \gg  1 is amplified at a

rate $\sigma$_{ $\nu$} = O($\nu$^{-1/4}) = O(k^{2/3}) . In view of this remark, one may hope to show stability of

boundary layer flows (1.4) for a more general class of initial data, namely of Gevrey class

with exponent less than \displaystyle \frac{3}{2} . This is exactly the kind of result that is obtained in [5] and that

we will now explain.

2 An optimal Gevrey stability result

In this note, we restrict to steady shear flow solutions of (1.1) of boundary layer type:

\overline{u}^{ $\nu$}(t, x, y)=(U^{E}(y)-U^{E}(0)+U(y/\sqrt{ $\nu$}))e_{1}
with U satisfying a strict concavity condition. We will remind the Gevrey stability estimate

established in [5] in this special context. Let us emphasize that more general stability results

are available in [5] (for time dependent, weakly concave shear flows of boundary layer type).
Still, the steady and strictly concave case contains key ideas of the more global results. More

precisely, we assume that the functions U^{E} and U^{BL} that appear in (1.4) satisfy

(a) U^{E}, U\in BC^{2}(\mathbb{R}_{+}) , U|_{Y=0}=0, \displaystyle \lim_{Y\rightarrow\infty}U=U^{E}|_{y=0}>0 , and

\displaystyle \sum_{k=0,1,2}\sup_{Y\geq 0}(1+\mathrm{Y})^{k}|U^{(k)}(\mathrm{Y})|<\infty . (2.1)

(b) There exists  M>0 such that -MU''(\mathrm{Y})\geq(U'(Y))^{2} for \mathrm{Y}\geq 0.

Conditions (\mathrm{a})-(\mathrm{b}) imply that U'(\mathrm{Y}) > 0 and U''(\mathrm{Y}) < 0 for all Y \geq  0 . Although the

requirement U''|_{Y=0} \neq  0 is a bit restrictive, it simplifies the whole stability argument and

allows to recover the optimal Gevrey exponent, which is far from trivial even under (\mathrm{a})-(\mathrm{b}) .

We then write the Navier‐Stokes equation (1.1) in perturbative form: u^{ $\nu$} = \overline{u}^{ $\nu$}+u , with

\left\{\begin{array}{ll}
\mathrm{a}u+\mathrm{A}_{ $\nu$}u = -\mathbb{P}(u\cdot\nabla u) , & t>0,\\
u|_{t=0} = a. & 
\end{array}\right. (2.2)

Here, u=(u_{1}(t, x, y), u_{2}(t, x, y)) , (x, y) \in $\Omega$= $\Gamma$\times \mathbb{R}_{+} (  2 $\pi$‐periodic in  x), and \mathbb{P} :  L^{2}( $\Omega$)^{2}\rightarrow
 L_{ $\sigma$}^{2}( $\Omega$) is the Helmholtz‐Leray projection. The linear operator \mathrm{A}_{\mathrm{v}} is defined as

\mathrm{A}_{ $\nu$}u = - $\nu$ \mathbb{P} $\Delta$ u+\mathbb{P}((U^{E}+U^{BL})\partial_{x}u+u_{2}\partial_{y}(U^{E}+U^{BL})\mathrm{e}_{1}) , (2.3)

with the domain D(\mathrm{A}_{ $\nu$})=W^{2,2}( $\Omega$)^{2}\cap W_{0}^{1,2}( $\Omega$)^{2}\cap L_{ $\sigma$}^{2}( $\Omega$) . To state the main result in [5], we

need to introduce a few more notations. Let

(\displaystyle \mathcal{P}_{n}f)(y) = f_{n}(y)e^{inx}, f_{n}(y) = \frac{1}{2 $\pi$}\int_{0}^{2 $\pi$}f(x, y)e^{-inx}\mathrm{d}x, n\in \mathbb{Z} , (2.4)
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be the projection on the Fourier mode n in x, n\in \mathbb{Z} . We then introduce, for  $\gamma$\in(0,1 ], d\geq 0,
and K>0 the Banach space X_{d, $\gamma$,K} as

X_{d, $\gamma$,K} =\displaystyle \{f\in L_{ $\sigma$}^{2}( $\Omega$) | \Vert f\Vert x_{d, $\gamma$,K}=\sup_{n\in \mathbb{Z}}(1+|n|^{d})e^{K|n|^{ $\gamma$}}|!^{\mathrm{p}_{n}}f\Vert_{L^{2}( $\Omega$)}<\infty\} . (2.5)

Fields in this space have L^{2} regularity in y , and Gevrey regularity in x , of class s for any

s\displaystyle \geq\frac{1}{ $\gamma$} . We are now ready to state our main result.

Theorem 1 ([5]). Suppose that assumptions (a)-(b) hold. For any  $\gamma$ \in [\displaystyle \frac{2}{3} , 1), d \geq  3 , and

K > 0 , there exist C, T'K' > 0 such that the (following statement holds for all sufficiently
smal l $\nu$ > 0 . If \Vert a\Vert_{X_{l, $\gamma$,I $\zeta$}}, \leq $\nu$^{\frac{1}{2}+ $\beta$} with  $\beta$ = \displaystyle \frac{21- $\gamma$)}{ $\gamma$} then the system (2.2) admiis a unique

solution u\in C([0,T'];L_{ $\sigma$}^{2}( $\Omega$))\cap L^{2}(0, T';W_{0}^{1,2}( $\Omega$)^{2}) satisfying the estimate

\displaystyle \sup_{0<t\leq T}, (\Vert u(t)\Vert_{X_{d. $\gamma$,K}}, +( $\nu$ t)^{\frac{1}{4}}\Vert u(t)\Vert_{L^{\infty}( $\Omega$)}+(\mathrm{v}t)^{\frac{1}{2}}\Vert\nabla u(t)\Vert_{L^{2}( $\Omega$)})\leq C\Vert a\Vert_{X_{d,\cdot,,K}} . (2.6)

Our result can be seen as improving the celebrated result of Sammartino and Caflisch, ded‐

icated to the stability of Prandtl expansions in analytic regularity, see [13, 14]. Note nev‐

ertheless that article [13] treats general x‐dependent boundary layer expansions, while ours

restricts to the case of shear flows. Extension of our result to arbitrary (meaming x‐dependent)
expansions is a very interesting open problem.

The heart of the proof is the derivation of a growth bound for the semigroup generated by the

operator \mathrm{A}_{ $\nu$} in (2.3). Once the estimate for the semigroup is obtained, the proof of Theorem

1 follows from Duhamel�s formula; for details, see [5, Section 7]. As the operator \mathrm{A}_{ $\nu$} has

constant coefficients in x , one can proceed independently for each Fourier mode n . The key
estimates are contained in the following

Theorem 2 ([5]). Suppose that (a)-(b) hold. There exist C, C_{0}, C_{1}, K_{0} > 0 such that the

following estimates hold for any  $\gamma$\displaystyle \in[\frac{2}{3},1] and for all sufficiently small  $\nu$>0.

\Vert \mathcal{P}_{n}e^{-t\mathrm{A}_{ $\nu$}}\Vert_{L^{2}\rightarrow L^{2}}\leq \left\{\begin{array}{l}
Ce^{C_{1}t} |n|\leq C_{0},\\
Ce^{-\frac{1}{4},f^{2} $\nu$ t}, |n|\geq C_{0}v^{-\frac{3}{4}},\\
C|n|^{2(1- $\gamma$)}e^{K_{0}|n|^{ $\gamma$}t}, C_{0}\leq|n|\leq C_{0}\mathrm{v}^{-\frac{3}{4}}.
\end{array}\right. (2.7)

The hard part of this theorem is the last estimate, in the regime \mathcal{O}(1)\leq|n|\leq \mathcal{O}($\nu$^{-\frac{3}{4}}) . It is

deduced from a bound on the resolvent equation:

(( $\mu$+in(U^{E}+U^{BL}(\overline{\sqrt{ $\nu$}}))) û + û2 \displaystyle \frac{d}{dy}(U_{E}+U^{BL}(\overline{\sqrt{ $\nu$}}))e_{1}+(in\partial_{y})\hat{p}- $\nu$(\partial_{y}^{2}-n^{2})u=\hat{f}
After introduction of the stream function and use of the rescaled variable \mathrm{Y} = -\mathrm{A}\sqrt{ $\nu$} � this

resolvent equation can be expressed in terms of an Orr‐Sommerfeld equation:

- $\epsilon$( $\Phi-\alpha$^{2})^{2} $\Phi$+(U-c)(\mathrm{a}\mathrm{e}-$\alpha$^{2}) $\Phi$-U'' $\Phi$=H, (2.8)

where  $\alpha$=n\sqrt{ $\nu$},  $\epsilon$=-\displaystyle \frac{i}{n},  c=\mathrm{A}i $\alpha$ . See [5] for details. This fourth‐order�equation is completed
by both a Dirichlet and Neumann condition on the stream function  $\varphi$ . To show the second

estimate of Theorem 2, we must be able to control  $\Phi$ in terms of  H for any c with \mathcal{I}m\mathrm{c}
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large compared to n^{ $\gamma$-1} . In particular, for  $\gamma$\in [ \displaystyle \frac{2}{3} , 1[, \mathcal{I}mc can take small values, while the

standard estimates only provide a control for \mathcal{I}mc\gg  1 , that is for  $\gamma$= 1 . Hence, the case

 $\gamma$ < 1 requires new ideas, and as we discussed in the introduction, it should rely on the

concavity of U.

A core idea in [5] is to solve the Orr‐Sommerfeld by an iterative process, based on the alternate

resolution of the inviscid part (Rayleigh equation) and viscous part (Airy type equation) of

the equation. This Rayleigh‐Airy iteration is reminiscent of splitting methods in numerical

analysis, and finds its origin in the work of [8], about the hnear instability of monotonic shear

flows in the Navier‐Stokes equation. However, we stress that the approach in [8] is dedicated

to a specific regime of spectral parameter and Fourier frequency, for which the fundamental

solutions of the Rayleigh and Airy equations have quite explicit expressions, The specific
regime of [8] is enough to construct an unstable eigenfunction, but is far from sufficient here.

The next section is dedicated to the presentation of the iteration argument from [5]. We

will describe it in an abstract setting, to illustrate the main steps and the robustness of the

method. We hope that it will be useful in this way to other problems.

3 Abstract iteration argument

In this section we consider the abstract form of the Rayleigh‐Airy iteration used in [5]. This

method in [5] is simple and robust, and in fact, it can be modeled by the analysis of a

suitable combination of self‐adjoint operators in a general Hilbert space. The keypoint is

that, after multiplication by \pm i (depending on the sign of n), the Orr‐Sommerfeld equation
can be written in the form:

L_{ $\lambda,\ \epsilon$} $\Phi$=h, h\in H (3.1)

where  $\lambda$\in \mathbb{C},  $\epsilon$>0 and

L_{ $\lambda,\ \epsilon$}= $\epsilon$ A^{2}- $\lambda$ A+i(-B_{1}A+B_{2}) (3.2)

for suitable self‐adjoint operators A, B_{1}, B_{2} . Namely, A is the Laplace operator (\partial_{y}^{2}-$\alpha$^{2}) ,

while each B_{j} is a multiplication by a real‐valued function. One important remark here is

that this iteration method is useful in constructing a solution to (2.8) but subject to only one

boundary condition, e.g., the Dirichlet boundary condition when A=(\partial_{y}^{2}-$\alpha$^{2}) is realized with

the Dirichlet boundary condition. Recovering the second boundary condition (the Neumann

boundary condition) in the case of (2.8) is another problem and requires an additional (hard)
work. The latter problem is more specific to the actual boundary problem and is not handled

in the abstract framework. Nevertheless, to construct solutions with one boundary layer
condition using the iteration method is certainly one of the core parts in [5] and can be

explained in the abstract setting. With this remark in mind we shall make the following
abstract assumption:

Assumption 1. Let H be a Hilbert space.

(i) -A is self‐adjoint in H and positive, i. e. , there exists  $\alpha$>0 such that \langle-Au, u)_{H}\geq$\alpha$^{2}\Vert u||_{H}^{2}
for all u\in D(A) .

(ii) B_{1} and B_{2} are bounded self‐adjoint in H, B_{1}B_{2} = B_{2}B_{1} , and B_{2} is injective and

nonnegative. Moreover, D(A) \subset  D(AB_{1}) and there exists C > 0 such that \Vert B^{\frac{1}{2^{2}}}u\Vert_{H}+
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\Vert[B_{1}, -A]u\Vert_{H} \leq  C\Vert(-A)^{\frac{1}{2}}u\Vert_{H} for all u \in  D(A) . Here [B_{1}, -A] is the fo7mal commuta‐

tor [B_{1}, -A]=B_{1}(-A)-(-A)B_{1}.

(iii) There exists C>0 such that \Vert B_{2}^{-\frac{1}{2}}[B_{1}, -A]u\Vert_{H}\leq C\Vert(-A)^{\frac{1}{2}}u\Vert_{H} for all u\in D(A) .

Since B_{2} is nonnegative and injective its square root and its inverse are defined by the spectral

resolution of B_{2} . Note that B_{2}^{-\frac{1}{2}} is not necessarily bounded. In the actual application to the

boundary layer problem, we take H = L^{2}(\mathbb{R}_{+}) , A = \partial_{\mathrm{y}}^{2}-$\alpha$^{2} . The condition \Vert B^{\frac{1}{22}}u\Vert_{H} \leq

 C\Vert(-A)^{\frac{1}{2}}u\Vert_{H} corresponds to the Hardy inequality. The non‐negativity of B_{2} stated in (ii) is

nothing but the non‐negativity of the multiplier function, which corresponds to the concavity
of the boundary layer profile: -U''\geq 0 . The last condition (iii) describes the strong concavity
condition assumed in [5], i.e., -MU'' \geq (U')^{2} for some constant M > 0 (cf the previous

section).
In the search for good estimates of equation (3.1), we shall consider first the invertibility of

L_{ $\lambda$,0} under Assumption 1 (i), (ii).

Lemma. 1. Suppose that the conditions (i) and (ii) of Assumption 1 hold. Let {\rm Re} $\lambda$ \neq  0.

Then L_{ $\lambda$,0}:D(A)\rightarrow H is invertible. Moreover,

||AL_{ $\lambda$,0}^{-1}h\displaystyle \Vert_{H}\leq\frac{C}{ $\alpha$|{\rm Re} $\lambda$|}(\frac{1+|\mathcal{I}m $\lambda$|}{|{\rm Re} $\lambda$|}+1)\Vert h\Vert_{H}, h\in H , (3.3)

\displaystyle \Vert AL_{ $\lambda$,0}^{-1}h\Vert_{H}\leq\frac{C}{|{\rm Re} $\lambda$|}\Vert B_{2}^{-\frac{1}{2}}h\Vert_{H} , if B_{2}^{-\frac{1}{2}}h\in H . (3.4)

Here C depends only on \Vert B_{j}\Vert_{H\rightarrow H}, j=1 , 2.

Proof. Since L_{ $\lambda$,0}=i\{(B_{1}-i $\lambda$)(-A)+B_{2}\} it suffices to consider

(B_{1}-i $\lambda$)(-A) $\varphi$+B_{2} $\varphi$=h,

which is equivalent with

-A $\varphi$+(B_{1}-i $\lambda$)^{-1}B_{2} $\varphi$=(B_{1}-i $\lambda$)^{-1}h (3.5)

. since B_{1} is self‐adjoint and {\rm Re} $\lambda$\neq 0 . It suffices to show the a priori estimate of the solution

to (3.5). For the actual construction of the solution, we replace -A by -A+ $\mu$ with  $\mu$\gg 1
first, in which the unique solvability falls into the standard Neumann series argument, and

then we take  $\mu$ \rightarrow  0 together with the a priori estimates of solutions which we will show

below. Note that the argument below holds even if we replace -A by -A+ $\mu$ with  $\mu$\geq 0,
and the estimates are independent of  $\mu$\geq 0 . The details on this process are omitted here.

Taking the inner product with  $\varphi$ in (3.5), we have

\Vert(-A)^{\frac{1}{2}} $\varphi$\Vert_{H}^{2}+\langle B_{2}\grave{ $\varphi$}, (B_{1}+i\overline{ $\lambda$})^{-1} $\varphi$\rangle_{H}=\{h, (B_{1}+i\overline{ $\lambda$})^{-1} $\varphi$\}_{H} . (3.6)

Set  f=(B_{1}+i\overline{ $\lambda$})^{-1} $\varphi$ . Then

\{B_{2 $\varphi$}, f\rangle_{H}=\{B_{2}(B\mathrm{i}+i\overline{ $\lambda$})f, f\rangle_{H}=\langle B_{2}B_{\mathrm{i}}f, f\rangle_{H}+i\overline{ $\lambda$}\langle B_{2}f, f\rangle_{H}.

Hence we have from B_{2}B_{1}=B_{1}B_{2},

{\rm Re}\{B_{2} $\varphi$, f\rangle_{H}=\{(B_{1}+\mathcal{I}m $\lambda$)B_{2}f, f\}_{H}
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and

\mathcal{I}m\langle B_{2} $\varphi$, f\}_{H}={\rm Re} $\lambda$\Vert B^{\frac{1}{22}}f\Vert_{H}^{2}.
Taking the real part and the imaginary part of (3.6), we obtain for f=(B_{1}+i\overline{ $\lambda$})^{-1} $\varphi$,

\Vert(-A)^{\frac{1}{2}} $\varphi$\Vert_{H}^{2}+\{(B_{1}+\mathcal{I}m $\lambda$)B_{2}f, f\}_{H}={\rm Re}(h, f\}_{H} , (3.7)

and

\displaystyle \Vert B^{\frac{1}{22}}f\Vert_{H}^{2}=\frac{1}{{\rm Re} $\lambda$}\mathcal{I}m\{h, f\}_{H} . (3.8)

Since B_{1}B_{2}=B_{2}B\mathrm{i} we have B_{1}B_{2}f=B^{\frac{1}{2^{2}}}B_{1}B^{\frac{1}{2^{2}}}f , which yields

|\{B_{1}B_{2}f, f\}_{H}|=|\{B_{1}B^{\frac{1}{22}}f, B^{\frac{1}{22}}f\}_{H}|\leq\Vert B_{1}\Vert_{H\rightarrow H}\Vert B^{\frac{1}{22}}f\Vert_{H}^{2},
where we have used the boundedness of B_{1} . Thus we have from (3.7) and (3.8),

\Vert(-A)^{\frac{1}{2}} $\varphi$\Vert_{H}^{2}\leq(\Vert B_{1}\Vert_{H\rightarrow H}+|\mathcal{I}m $\lambda$)\Vert B^{\frac{1}{22}}f\Vert_{H}^{2}+{\rm Re}\langle h, f\}_{H}

=\displaystyle \frac{\Vert B_{1}\Vert_{H\rightarrow H}+|\mathcal{I}m $\lambda$|}{{\rm Re} $\lambda$}\mathcal{I}m\langle h, f\}_{H}+{\rm Re}\langle h, f\rangle_{H}
Since

\displaystyle \Vert f\Vert_{H}=\Vert(B_{1}+i\overline{ $\lambda$})^{-1} $\varphi$\Vert_{H}\leq\frac{1}{|{\rm Re} $\lambda$|}\Vert $\varphi$\Vert_{H} (3.9)

we obtain also from \Vert $\varphi$\Vert_{H}\leq$\alpha$^{-1}\Vert(-A)^{\frac{1}{2}} $\varphi$\Vert_{H} by (i) of Assumption 1,

\displaystyle \Vert(-A)^{\frac{1}{2}} $\varphi$\Vert_{H}\leq\frac{1}{ $\alpha$|{\rm Re} $\lambda$|}(\frac{\Vert B_{1}\Vert_{H\rightarrow H}+|\mathcal{I}m $\lambda$|}{|{\rm Re} $\lambda$|}+1)\Vert h\Vert_{H} . (3.10)

Then

\displaystyle \Vert B^{\frac{1}{22}}f\Vert_{H}^{2}\leq\frac{1}{|{\rm Re} $\lambda$|^{2}}\Vert h\Vert_{H}\Vert $\varphi$\Vert_{H}
\displaystyle \leq\frac{1}{$\alpha$^{2}|{\rm Re} $\lambda$|^{3}}(\frac{\Vert B_{1}\Vert_{H\rightarrow H}+|\mathcal{I}m $\lambda$|}{|{\rm Re} $\lambda$|}+1)\Vert h\Vert_{H}^{2} . (3.11)

Therefore,

\Vert(-A) $\varphi$\Vert_{H}=\Vert(B_{1}-i $\lambda$)^{-1}h-(B_{1}-i $\lambda$)^{-1}B_{2} $\varphi$\Vert_{H}

\displaystyle \leq\frac{1}{|{\rm Re} $\lambda$|}\Vert h\Vert_{H}+\Vert(B_{1}-i $\lambda$)^{-1}(B_{1}+i\overline{ $\lambda$})B_{2}f\Vert_{H}
\displaystyle \leq\frac{1}{|{\rm Re} $\lambda$|}\Vert h\Vert_{H}+3\Vert B_{2}f\Vert_{H}
\displaystyle \leq\frac{1}{|{\rm Re} $\lambda$|}\Vert h\Vert_{H}+3\Vert B_{2}\Vert_{H\rightarrow H}\Vert B^{\frac{1}{22}}f\Vert_{H} . (3.12)
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Combining (3.11) with (3.12), we obtain (3.3). If B_{2}^{-\frac{1}{2}}h\in H in addition, then

\displaystyle \Vert B^{\frac{1}{22}}f\Vert_{H}^{2}=\frac{1}{{\rm Re} $\lambda$}\mathcal{I}m\langle h, f\}_{H}\leq\frac{1}{|{\rm Re} $\lambda$|}\Vert B_{2}^{-\frac{1}{2}}h\Vert_{H}\Vert B^{\frac{1}{22}}f\Vert_{H}
which gives \displaystyle \Vert B^{\frac{1}{22}}f\Vert_{H}\leq\frac{1}{|\mathrm{B}\mathrm{a}\mathrm{e} $\lambda$|}\Vert B_{2}^{-\frac{1}{2}}h\Vert_{H} . Then (3.12) yields (3.4). The proof is complete.

We now turn to the existence of the solution to (3.1) for sufficiently small  $\epsilon$ > 0 when

| $\lambda$| \leq  1 with {\rm Re} $\lambda$ > 0 . Due to the boundedness of B_{1} and B_{2} the solvability for the case

| $\lambda$|\gg 1 is in fact not difficult. This is the reason why we focus only on the case | $\lambda$|\leq 1 as a

typical case of | $\lambda$|\leq \mathcal{O}(1) . The basic strategy is to construct the solution around the solution

to L_{ $\lambda$,0}$\varphi$_{0}=h , which is already solved in Lemma 1 since {\rm Re} $\lambda$\neq 0 . Clearly we have

L_{ $\lambda,\ \epsilon$}$\varphi$_{0}=h+ $\epsilon$ A^{2}$\varphi$_{0} , (3.13)

where the equation should be considered in the weak sense due to the lack of the regularity
of $\varphi$_{0} , i.e.,

 $\epsilon$\{A$\varphi$_{0}, A $\chi$\rangle_{H}- $\lambda$\{A$\varphi$_{0},  $\chi$)_{H}+i\{(-B_{1}A+B_{2})$\varphi$_{0},  $\chi$\}_{H}=\{h,  $\chi$\}_{H}+ $\epsilon$(A$\varphi$_{0}, A $\chi$\}_{H},  $\chi$\in D(A) .

(3.14)

Now we observe that

L_{ $\lambda,\ \epsilon$}=-A(- $\epsilon$ A+i(B_{1}-i $\lambda$))+i[B_{1}, -A]+iB_{2} (3.15)

where [B_{1}, -A]=B_{1}(-A)-(-A)B_{1} without taking into account the relation on the domain

of the operators. To correct the error  $\epsilon$ A^{2}$\varphi$_{0} in (3.13), we consider the problem

- $\epsilon$ A $\psi$+i(B_{1}-i $\lambda$) $\psi$= $\epsilon$ h (3.16)

for a given h\in H . That is, we have dropped the lower order terms i[B_{1}, -A] and iB_{2} , and

we make use of the presence of the common factor A . The \cdot solvability of (3.16) is not difficult,
as stated below.

Lemma 2. Suppose that the conditions (i) and (ii) of Assumption 1 hold. Let {\rm Re} $\lambda$ > 0.

Then for any h\in H there exists a unique solution  $\psi$\in D(A) to (3.16) and satisfies

\displaystyle \Vert $\psi$\Vert_{H}\leq\frac{ $\epsilon$}{{\rm Re} $\lambda$}\Vert h\Vert_{H} , (3.17)

\displaystyle \Vert(-A)^{\frac{1}{2}} $\psi$\Vert_{H}\leq (\frac{ $\epsilon$}{{\rm Re} $\lambda$})^{\frac{1}{2}}\Vert h\Vert_{H} , (3.18)

\displaystyle \Vert A $\psi$\Vert_{H}\leq C((\frac{ $\epsilon$}{({\rm Re} $\lambda$)^{3}})^{\frac{1}{2}}+1)\Vert h\Vert_{H} . (3.19)

Here C depends only on the constant appearing in the condition (ü) of Assumption 1.

Proof. Again it suffices to show the a priori estimate. Taking the inner product with  $\psi$ in

(3.16), we have

 $\epsilon$\Vert(-A)^{\frac{1}{2}} $\psi$\Vert_{H}^{2}+i\{(B_{1}-i $\lambda$) $\psi$,  $\psi$\rangle_{H}= $\epsilon$\{h,  $\psi$\rangle_{H} . (3.20)
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The real part of (3.20) yields from the symmetry of B_{1},

 $\epsilon$\Vert(-A)^{\frac{1}{2}} $\psi$\Vert_{H}^{2}+{\rm Re} $\lambda$|| $\psi$\Vert_{H}^{2}= $\epsilon${\rm Re}\{h_{;} $\psi$\}_{H} . (3.21)

This gives the bounds (3.17) and (3.18). We will show (3.19). By taking the inner product
with -A $\psi$ in (3.16) we have

 $\epsilon$\Vert A $\psi$\Vert_{H}^{2}+i\langle(B_{1}-i $\lambda$) $\psi$, -A $\psi$\rangle_{H}= $\epsilon$\{h, -A $\psi$\}_{H}.

The real part of this identity gives

 $\epsilon$\Vert A $\psi$\Vert_{H}^{2}+{\rm Re} $\lambda$\Vert(-A)^{\frac{1}{2}} $\psi$\Vert_{H}^{2}=\mathcal{I}m\langle B_{1} $\psi$, -A $\psi$\}_{H}+ $\epsilon${\rm Re}(h, -A $\psi$\rangle_{H} . (3.22)

We observe that

\{B_{1} $\psi$, -A $\psi$\}_{H}=\{B_{1} $\psi$, -A $\psi$\}_{H}-\{-A $\psi$, B_{1} $\psi$\rangle_{H}+\{-A $\psi$, B_{1} $\psi$\rangle_{H}

=\{ $\psi$, [B_{1}, -A] $\psi$\rangle_{H}+\overline{\langle B_{1} $\psi$,-A $\psi$\rangle_{H}},

and thus,

|\mathcal{I}m\langle B_{1} $\psi$, -A $\psi$\displaystyle \rangle_{H}|=\frac{1}{2}|\langle $\psi$, [B_{1}, -A] $\psi$\displaystyle \rangle_{H}|\leq\frac{1}{2}\Vert $\psi$\Vert_{H}\Vert[B_{1}, -A] $\psi$\Vert_{H}
\leq C\Vert $\psi$\Vert_{H}\Vert(-A)^{\frac{1}{2}} $\psi$\Vert_{H}

\displaystyle \leq\frac{C}{{\rm Re} $\lambda$}\Vert $\psi$\Vert_{H}^{2}+\frac{{\rm Re} $\lambda$}{2}\Vert(-A)^{\frac{1}{2}} $\psi$||_{H}^{2} . (3.23)

Here we have used the condition (ii) of Assumption 1. Collecting (3.22) and (3.23) with

(3.17), we obtain (3.19). The proof is complete.

We define \{$\varphi$_{k}\}_{k=0}^{\infty} and \{$\psi$_{k}\}_{k=0}^{\infty} iteratively as follows. As already stated, $\varphi$_{0}\in D(A) is the

solution to L_{ $\lambda$,0}$\varphi$_{0}=h . Then $\psi$_{0}\in D(A) is defined as the solution to (3.16) with h=A$\varphi$_{0}.
Then  $\varphi$ 0+$\psi$_{0} solves L_{ $\lambda,\ \epsilon$}($\varphi$_{0}+$\psi$_{0})=h+i[B_{1}, -A]$\psi$_{0}+iB_{2}$\psi$_{0} in the weak form,

\{ $\epsilon$ A( $\varphi$ 0+$\psi$_{0}) , A $\chi$\rangle_{H}- $\lambda$(A( $\varphi$ 0+$\psi$_{0}),  $\chi$\}_{H}+i\{(-B_{\mathrm{i}}A+B_{2})( $\varphi$ 0+$\psi$_{0}),  $\chi$\rangle_{H}
(3.24)

=\{h+i[B_{1}, -A]$\psi$_{0}+iB_{2}$\psi$_{0},  $\chi$\rangle_{H},  $\chi$\in D(A) ,

and i[B_{1}, -A]$\psi$_{0}+iB_{2}$\psi$_{0} is the new error term. Note that the term [B_{1}, -A]$\psi$_{0} makes sense

by Assumption 1 and $\psi$_{0}\in D(A) . We iterate this process. That is, set $\varphi$_{k+1} is the solution

to

L_{ $\lambda$,0}$\varphi$_{k+1}=-i[B_{1}, -A]$\psi$_{k}-iB_{2}$\psi$_{k} , (3.25)

while $\psi$_{k+1} is set as the solution to (3.16) with h=A$\varphi$_{k+1} . Then $\Phi$_{N}=\displaystyle \sum_{k=0}^{N}$\varphi$_{k}+\sum_{k=0}^{N}$\psi$_{k}
solves L_{ $\lambda,\ \epsilon$}$\Phi$_{N}=h+i[B_{1}, -A]$\psi$_{N}+iB_{2}$\psi$_{N} in the weak form,

\{ $\epsilon$ A$\Phi$_{N}, A $\chi$\rangle_{H}- $\lambda$\{A$\Phi$_{N},  $\chi$\rangle_{H}+i\{(-B_{1}A.+B_{2})$\Phi$_{N},  $\chi$\}_{H}
(3.26)

=\langle h+i[B_{1}, -A]$\psi$_{N}+iB_{2}$\psi$_{N},  $\chi$\}_{H} ,  $\chi$\in D(A) .
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Then our aim is to show that the series \displaystyle \sum_{k=0}^{N}$\varphi$_{k} and \displaystyle \sum_{k=0}^{N}$\psi$_{k} converge in D(A) when

 N\rightarrow\infty . Indeed, once we have shown this convergence, the limit  $\Phi$=\displaystyle \lim_{N\rightarrow\infty}$\Phi$_{N} belongs
to D(A) and solves L_{ $\lambda,\ \epsilon$} $\Phi$=h in the weak sense:

\{ $\epsilon$ A $\Phi$, A $\chi$\}_{H}- $\lambda$\{A $\Phi$,  $\chi$\rangle_{H}+i\{(-B_{1}A+B_{2}) $\Phi$,  $\chi$\rangle_{H}=\{h,  $\chi$\rangle_{H},  $\chi$\in D(A) . (3.27)

By the fact that - $\lambda$ A $\Phi$+i(-B_{1}A+B_{2}) $\Phi$\in H , the identity (3.27) implies that A $\Phi$\in D(A) ,

that is,  $\Phi$\in D(A^{2}) and  $\Phi$ solves  L_{ $\lambda,\ \epsilon$} $\Phi$=h in the classical sense.

It remains to check the convergence of \displaystyle \sum_{k=0}^{\infty}$\varphi$_{k} and \displaystyle \sum_{k=0}^{\infty}$\psi$_{k} . Let us recall that | $\lambda$| \leq 1
and {\rm Re} $\lambda$>0 . We will assume all conditions of Assumption 1. For k\geq 0 we see from (3.25)
and Lemma 1,

\displaystyle \Vert A$\varphi$_{k+1}\Vert_{H}\leq\frac{C}{|{\rm Re} $\lambda$|}(||B_{2}^{-\frac{1}{2}}[B_{1}, -A]$\psi$_{k}\Vert_{H}+\Vert B^{\frac{1}{2^{2}}}$\psi$_{k}\Vert_{H})
\displaystyle \leq\frac{C}{|{\rm Re} $\lambda$|}\Vert(-A)^{\frac{1}{2}}$\psi$_{k}\Vert_{H}.

Here we have used the key condition (iii) as well as (ii) of Assumption 1. Since $\psi$_{k} is the

solution. to (3.16) with h=A$\varphi$_{k} , Lemma 2 imphes ||(-A)^{\frac{1}{2}}$\psi$_{k}\displaystyle \Vert_{H}\leq(\frac{ $\epsilon$}{\mathrm{B}e $\lambda$})^{\frac{1}{2}}\Vert A$\varphi$_{k}\Vert_{H} . Thus we

obtain

\displaystyle \Vert A$\varphi$_{k+1}\Vert_{H}\leq C(\frac{ $\epsilon$}{({\rm Re} $\lambda$)^{3}})^{\frac{1}{2}}\Vert A$\varphi$_{k}\Vert_{H}, k\geq 0 . (3.28)

Lemma 2 also implies

\displaystyle \Vert A$\psi$_{k}\Vert_{H}\leq C((\frac{ $\epsilon$}{({\rm Re} $\lambda$)^{3}})^{\frac{1}{2}}+1)\Vert A$\varphi$_{k}\Vert_{H}, k\geq 0 . (3.29)

Therefore, we conclude from (3.28) and (3.29) that the series \displaystyle \sum_{k=0}^{\infty}$\varphi$_{k} and \displaystyle \sum_{k=0}^{\infty}$\psi$_{k} converges

in D(A) if | $\lambda$| \leq  1 and \displaystyle \frac{ $\epsilon$}{(\mathrm{B} $\epsilon \lambda$)^{3}} is sufficiently small. In the end, this results in the following
theorem.

Theorem 8. Suppose that Assumption 1 holds. Let | $\lambda$| \leq  1 and {\rm Re} $\lambda$ > 0 . If \displaystyle \frac{ $\epsilon$}{({\rm Re} $\lambda$)^{3}} \dot{r}s

sufficiently small then for any h \in Hthere exists a solution  $\Phi$ \in  D(A^{2}) to the problem
L_{ $\lambda,\ \epsilon$} $\Phi$=h satisfying the estimate

\Vert A $\Phi$\Vert_{H}\leq C\Vert AL_{ $\lambda$,0}^{-1}h|\{H . (3.30)

Here C is independent of  $\lambda$,  $\epsilon$,  $\alpha$ , and  h.

When applied in the context of the Orr‐Sommerfeld equation, this theorem allows to

solve the resolvent estimate for P_{n}\mathrm{A}_{ $\nu$} , in a range of spectral parameters appropriate to the

semigroup estimates of Theorem 2, as expected;
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