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Abstract

This paper presents categorical structures on classical measure spaces and

quantum measure spaces in order to deal with canonical maps associated with

conditional measures as morphisms. We extend the Riesz‐Markov‐Kakutani rep‐

resentation theorem and the Gelfand duality theorem to an equivalence of cate‐

gories between them. From this categorical viewpoint, we introduce a quantum

version of conditional measures as a dual concept of the classical one.
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1 Introduction

This paper focuses on category structures on measure (probability) spaces, i.e.,

on morphisms between two given measure spaces. Several researchers have al‐

ready introduced notions of moĩphisms between measure or probability spaces

[IH92], [Gir82], [Lyn] for various purposes.

A natural approach is to define morphisms as measurable maps that preserve

measures. Specifically, a morphism f : ( $\Omega$, \mathcal{F}', $\mu$) \rightarrow ($\Omega$', \mathcal{F}'\prime,$\mu$') between two

measure spaces can be defined as a measurable map f : ( $\Omega$, F)\rightarrow($\Omega$',\mathcal{F} sat‐

isfying  $\mu$(f^{-1}(A))=$\mu$'(A) for each A\in \mathcal{F} However, the above equality is too

strict for the categorical treatment of morphisms. For example, let B be a mea‐

surable subspace in a measure space ( $\Omega$, F', $\mu$) . It yields the conditional measure

space (B, F_{B}',$\mu$_{B}) by restricting the original measure space onto B . Thus, it is

equipped with the canonical inclusion i : (B,F_{B}') \rightarrow ( $\Omega$, F but it does not

preserve measures in general.

This paper aims to extend the class of measure‐preserving maps to inclu‐

sions associated with conditional measures. Our approach is based on the no‐

tion of bounded liner operators on normed spaces. We introduce the concept

of norm for measurable maps and the class of bounded measurable maps. The

category CMS of measure spaces with bounded measurable maps consists of

canonical inclusions associated with conditional measure spaces as morphisms

whose norm is 1.

On the other hand, quantum probability theory was developed as an alge‐

braic analog of classical probability theory [HO07], [AO03]. We derive a cat‐

egory structure on quantum measure (probability) spaces with bounded homo‐

morphisms, denoted by QMS, similarly to the case of CMS. A quantum mea‐

sure space (A, $\varphi$) consists of \mathrm{a}* ‐algebra A and a positive linear map  $\varphi$ . When
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 A is a commutative C^{*} ‐algebra, it can be expressed as a classical measure space

by the Riesz‐Markov‐Kakutani (RMK) representation theorem and the Gelfand

duality theorem. This paper extends it to an equivalence of categories between

the full subcategories of CMS and QMS.

Main Theorem 1 (Theorem 2.17). The category ofBorel measure spaces as a

full subcategory of CMS is equivalent to the opposite category ofcommutative

C^{*} ‐measure spaces as a full subcategory ofQMSop.

From the viewpoint of this duality, we provide a quantum version of con‐

ditional measure spaces. The classical conditioning on a measure space is es‐

sentially based on choosing subspaces and restricting them. According to the

duality, we define quantum conditioning as choosing ideals of an algebra and

taking quotients based on them. Given a quantum measure space (A,  $\varphi$) with an

ideal I, we establish a quantum measure on the quotient algebra A/I using the

Gelfand‐Naimark‐Segal (GNS) construction [KR97]. We call it the quantum

conditional measure of (A,  $\varphi$) on A/l . The following theorem justifies it as a

natural quantum analog of a classical conditional measure.

Main Theorem 2 (Theorem 3.5). Any quantum conditional measure ofa com‐

mutative C^{*} ‐measure space is isomorphic to the induced measure from a clas‐

sical conditional measure in QMS#.

The remainder of this paper is organized as follows. The first part of Section

2 presents a category structure on classical measure spaces. We define mor‐

phisms on measure spaces as bounded measurable maps, similarly to bounded

liner operators on norms spaces. This is advantageous for dealing with condi‐

tional measures and describing normalized probabilities for measures in terms

of adjoint functors. The second part of Section 2 is a quantum analog of the
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first part, based on quantum probability theory. In addition, it presents typical

examples of quantum measure spaces. The final part of Section 2 examines

relationships between the categories of classical and quantum measure spaces.

We extend the RMK representation theorem to an equivalence of categories be‐

tween Borel measure spaces and commutative C^{*} ‐measure spaces.

Section 3 discusses conditioning in quantum measure spaces. Classical con‐

ditional measures are defined by subspaces and restrictions, whereas quantum

conditional measures are defined Uy ideals and quotients. In the commutative

case, quantum conditional measures of C^{*} ‐measure spaces are essentially de‐

rived from classical conditional measures.

2 Categories of classical and quantum measure spaces

In this section, we investigate morphisms between measure (probability) spaces.

Several approaches have been adopted in this regard, such as measure‐preserving

maps [IH92], maps for statistics [Gir82], and measurable maps excluding mea‐

sures [Lyn]. Here, we introduce another notion. For basic category theory, we

refer the readers to Mac Lane�s book [Mac98].

2.1 Classical measure spaces and their category

A measurable space ( $\Omega$, F) consists of a set  $\Omega$ and a  $\sigma$‐field \mathcal{F}' on  $\Omega$. \mathrm{A} (clas‐

sical) measure space ( $\Omega$, \mathcal{F}', $\mu$\rangle consists of a measurable space ( $\Omega$, \mathcal{F}') with a

measure function  $\mu$ : \mathcal{F}\rightarrow \mathbb{R}_{\succeq 0} . When  $\mu$( $\Omega$)=1 , we call it a probability space.

Throughout this paper, we only deal with finite measure spaces.

Definition 2.1. Given two measure spaces ( $\Omega$,F, $\mu$) and ($\Omega$',F'\prime,$\mu$') , a neasur‐

able map f : ( $\Omega$,F) \rightarrow ($\Omega$', \mathcal{F} is bounded with respect to  $\mu$ and  $\mu$' if there
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exists M>0 such that

 $\mu$(f^{-1}(A))\leq M$\mu$'(A)

for any A\in F In this case, we define

|f|=\displaystyle \inf\{M>0| $\mu$(f^{-1}(A))\leq M$\mu$'(A),A\in \mathcal{F}

and call it the norm of f . Furthermore, we say that f is measure‐preserving

if  $\mu$(f^{-1}(A))=$\mu$'(A) for any A\in \mathcal{F}' . A measure‐preserving map is obviously

bounded with norm 1.

It is straightforward from the definition that  $\mu$(f^{-1}) is absolutely continuous

with respect to $\mu$' if f is bounded with respect to  $\mu$ and  $\mu$' . When the map f is

measure‐preserving, the measure $\mu$' is called the induced measure by f.

A bounded measurable map is an analog of bounded linear operators on

normed spaces. Let CMS denote the category of measure spaces and bounded

measurable maps, and let \mathrm{C}\mathrm{M}\mathrm{S}_{8} denote its subcategory of measure spaces and

measure‐preserving maps.

Example 2.2. Let ( $\Omega$, \mathcal{F}', $\mu$) Ue a measure space. The identity map ( $\Omega$,\mathcal{F}', $\mu$)\rightarrow

( $\Omega$,F, 2 $\mu$) is an isomorphism in CMS with norm 1/2. Further, the inverse map

is given by the identity ( $\Omega$, F, 2 $\mu$)\rightarrow( $\Omega$, \mathcal{F}', $\mu$) with norm 2.

Example 2.3. Let ( $\Omega$,F, $\mu$) be a measure space, and let (B,\mathcal{F}_{B}',$\mu$_{B}) be the con‐

ditional measure space for a subspace B\in \mathcal{F}' . The inclusion i : (B,F_{B},$\mu$_{B})\leftrightarrow

( $\Omega$, \mathcal{F}^{-}, $\mu$) is bounded with norm 1.

Let CPS denote the full subcategory of CMS consisting of probability spaces.

The canonical normalization functor

N:\mathrm{C}\mathrm{M}\mathrm{S}\rightarrow \mathrm{C}\mathrm{P}\mathrm{S}
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is given by N( $\Omega$, \mathcal{F}^{-}, $\mu$) = ( $\Omega$, F, $\mu$/ $\mu$( $\Omega$)) . Note that, for a bounded measure

map f : ( $\Omega$,\mathcal{F}', $\mu$)\rightarrow($\Omega$', \mathcal{F}'\prime,$\mu$') , we define Nf to be f as a map; however, its

norm is different from that of f :

|Nf|=\displaystyle \frac{$\mu$'($\Omega$')}{ $\mu$( $\Omega$)}|f|.
Proposition 2.4. The canonical inclusion functor \mathrm{C}\mathrm{P}\mathrm{S}\rightarrow CMS is left adjoint

to the normalizationfunctor  N.

Proof. For a measure space ( $\Omega$, F, $\mu$) and a probability space ($\Omega$', \mathcal{F} P) , a mea‐

surable map f : ( $\Omega$,F')\rightarrow ($\Omega$',F with respect to  $\mu$ and  P is bounded if and

only if it is bounded with respect to  $\mu$/ $\mu$( $\Omega$) and P . Hence, the normalization

functor yields a natural isomorphism:

N : \mathrm{C}\mathrm{M}\mathrm{S} (( $\Omega$, F', $\mu$), ($\Omega$',\mathcal{F} P))\cong \mathrm{C}\mathrm{P}\mathrm{S}(( $\Omega$, F', $\mu$/ $\mu$( $\Omega$)), ($\Omega$',F', P

\square 

2.2 Quantum measure spaces and their category

Quantum probability theory was developed in the 1980\mathrm{s} as an algebraic ana‐

log of classical probability theory [HO07], [AO03]. The commutative case can

essentially be regarded as classical probability theory; hence, quantum probabil‐

ity theory is also referred to as non‐commutative probability theory. A quantum

measure (probability) space is defined in purely algebraic terms.

Definition 2.5. \mathrm{A}* ‐algebra A is a \mathbb{C}‐algebra equipped with \mathrm{a}* ‐operator. Through‐

out this paper, assume that \mathrm{a}* ‐algebra A has a unit e \in A . Denote the set of

positive elements of A by A_{+}=\{a^{*}a|a\in A\}. \mathrm{A} \mathbb{C}‐homomorphism  $\varphi$ :  A\rightarrow \mathbb{C}

is called a quantum measure or is said to Ue positive if  $\varphi$(a)\geq 0 for each a\in A_{+}.
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A quantum measure space is a pair (A,  $\varphi$) of \mathrm{a}* ‐algebra A and a quantum mea‐

sure  $\varphi$ :  A\rightarrow \mathbb{C} . When  $\varphi$ preserves the unit, i.e.,  $\varphi$(e)= 1 , we call it a state or

an expectation on A. A quantum probability space is a quantum measure space

(A,  $\varphi$) in which  $\varphi$ is a state on  A.

The class of quantum measure spaces admits a similar categorical structure

to CMS.

Definition 2.ó. Given two quantum measure spaces (A,  $\varphi$) and (A',  $\varphi$ \mathrm{a}*-

algebra homomorphism f : A \rightarrow  A' is said to be bounded with respect to  $\varphi$

and  $\varphi$' if there exists M>0 such that

$\varphi$'(f(a))\leq M $\varphi$(a)

for any positive element a\in A_{+} . In this case, we define

|f|=\displaystyle \inf\{M>0|$\varphi$'(f(a))\leq M $\varphi$(a), a\in A_{+}\}

and call it the norm of f. Furthermore, f is said to be measure‐preserving.if

$\varphi$'(f(a)) =  $\varphi$(a) for any a \in A . Let QMS, QMS#, and QPS denote the cat‐

egory of quantum measure spaces with bounded homomorphisms, the subcat‐

egory consisting of quantum measure spaces with measure‐preserving homo‐

morphisms, and the full subcategory consisting of quantum probability spaces,

respectively.

The quantum version of the normalization functor,

N:\mathrm{Q}\mathrm{M}\mathrm{S}\rightarrow \mathrm{Q}\mathrm{P}\mathrm{S},

is given by N(A,  $\varphi$)=(A,  $\varphi$/ $\varphi$(e)) . Here, we use the same notation as that in the

classical case. The following proposition can be shown similarly to Proposition

2.4.
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Proposition 2.7. The canonical inclusion functor \mathrm{Q}\mathrm{P}\mathrm{S}\rightarrow \mathrm{Q}\mathrm{M}\mathrm{S} is left adjoint

to the normalizationfunctor N.

Let us recall some examples of quantum measure spaces. It is well known

that two types of commutative quantum measure spaces are induced from clas‐

sical measure theory: W^{*} ‐measure spaces and C^{*} ‐measure spaces. A quantum

measure space (A,  $\varphi$) is called a W^{*} ‐measure (resp. C^{*} ‐measure) space when A

is a W^{*} ‐algebra (resp. C^{*} ‐algebra).

Example 2.8. Let ( $\Omega$, F, $\mu$) be a measure space. Let L^{\infty}( $\Omega$) be the W^{*} ‐algebra

of essentially finite measurable functions f :  $\Omega$ \rightarrow \mathbb{C} . It is equipped with a

quantum measure $\varphi$_{ $\mu$} given by

$\varphi$_{ $\mu$}(f)=\displaystyle \int_{ $\Omega$}fd $\mu$.
The pair (L^{\infty}( $\Omega$), $\varphi$_{ $\mu$}) is called the W^{*} ‐measure space associated with ( $\Omega$, F, $\mu$) .

The W^{*} ‐algebra L^{\infty}( $\Omega$) is commutative for a measure space ( $\Omega$, F', $\mu$) . For

the characteristic function \mathcal{X}E of E \in  F (given by \mathrm{X}E(x) = 1 if x \in  E and

$\chi$_{E}(x)=0 otherwise), we have $\varphi$_{ $\mu$}(XE) = $\mu$(E) . Hence, (L^{\infty}( $\Omega$), $\varphi$_{ $\mu$}) contains a

considerable amount of statistical information regarding ( $\Omega$,F, $\mu$) .

Another commutative example is a C^{*} ‐measure space.

Example 2.9. Let X be a compact Hausdorff space and let  $\mu$ be a regular Borel

measure on  X . We denote the C^{*} ‐algebra of continuous \mathbb{C}‐valued functions Uy

C(X) . It is equipped with a quantum measure $\varphi$_{ $\mu$} given by

$\varphi$_{ $\mu$}(f)=\displaystyle \int_{X}fd $\mu$.
The pair (C(X),$\varphi$_{ $\mu$}) is called the C^{*} ‐measure space associated with (X, B(X), $\mu$) .
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Conversely, for any quantum measure  $\varphi$ on  C(X) , the RMK representation

theorem [Rud87] determines a unique regular Borel measure  $\mu$ on  X such that

$\varphi$_{ $\mu$} =  $\varphi$ . Furthermore, for any commutative  C^{*} ‐algebra A , the Gelfand dual‐

ity theorem [GN94] determines a unique compact space X up to isomorphism

such that A \cong  C(X) . The following fact follows from these two well‐known

theorems.

Theorem 2.10 (Theorem 2.60 of[AO031). For a commutative C^{*} ‐measure space

(\mathrm{A},  $\varphi$), there exists a regular Borel measure  $\mu$ on a compact Hausdorff space  X

such that (A, $\varphi$)\cong(C(X), $\varphi$_{ $\mu$}) in QMS#.

On the other hand, the next two examples are typical non‐commutative mea‐

sure spaces.

Example 2.11. Let M_{n}(\mathbb{C}) Ue the n‐th matrix algebra over \mathbb{C} . The trace tr :

M_{n}(\mathbb{C})\rightarrow \mathbb{C} is positive, and we call it the trace measure on M_{n}(\mathbb{C}) . The trace

state is the normalization of the trace measure given by \mathrm{t}\mathrm{r}(T)/n for T\in M_{n}(\mathbb{C}) .

Example 2.12. Let B(H) be the algebra of bounded linear operators on a Hilbert

space H . Fix an object h\in H . The vector measure w_{h} : B(H)\rightarrow \mathbb{C} is defined by

\langle h,  $\eta$ h\rangle for  $\eta$\in B(H) . When |h|= 1 , the vector measure w_{h} is called the vector

state on B(H) .

2.3 Gelfand duality on categories of measure spaces

We describe relations between classical and quantum measure spaces in terms

of functors. A measure space ( $\Omega$,\mathcal{F}, $\mu$) is associated with a W^{*} ‐measure space

(L^{\infty}( $\Omega$), $\varphi$_{ $\mu$}) , and a measurable map f : ( $\Omega$, \mathcal{F}', $\mu$) \rightarrow ($\Omega$', \mathcal{F}'\prime,$\mu$') induces \mathrm{a}*-

homomorphism L^{\infty}f : L^{\infty}($\Omega$')\rightarrow L^{\infty}( $\Omega$) Uy composition with f.
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Proposition 2.13. L^{\infty} : \mathrm{C}\mathrm{M}\mathrm{S}\rightarrow \mathrm{Q}\mathrm{M}\mathrm{S}^{\mathrm{o}\mathrm{p}} is a functor.

Proof. For a bounded morphism f : ( $\Omega$, \mathcal{F}', $\mu$) \rightarrow ($\Omega$', F',$\mu$') in CMS, it suf‐

fices to verify that L^{\infty}f : (L^{\infty}($\Omega$'), $\varphi$_{$\mu$'}) \rightarrow (L^{\infty}( $\Omega$), $\varphi$_{ $\mu$}) is bounded in QMS.

Note that a positive element in L^{\infty}($\Omega$') is a function taking non‐negative real val‐

ues. Since there exists M>0 satisfying  $\mu$(f^{-1}(A))\leq M $\mu$'(A) for each A\in F',

we have the following inequality for any positive function g :

$\varphi$_{ $\mu$}(L^{\infty}f(g))=$\varphi$_{ $\mu$}(g\displaystyle \circ f)=\int_{ $\Omega$}(g\circ f)d $\mu$\leq M\int_{$\Omega$'}gd$\mu$'=M$\varphi$_{$\mu$'}(g) .

\square 

Proposition 2.14. A measurable map f : ( $\Omega$,F, $\mu$)\rightarrow($\Omega$',\mathcal{F}^{\prime;},$\mu$') on measure

spaces is bounded ifand only if L^{\infty}f is bounded. In that case, |f|=|L^{\infty}f|.

Proof. The proof of Proposition 2.13 implies that L^{\infty}f is bounded iff is bounded,

and |L^{\infty}f|\leq|f| . Conversely, if L^{\infty}f is bounded, then the characteristic function

$\gamma$_{A} for A\in F' induces the following inequality:

 $\mu$(f^{-1}(A))=$\varphi$_{ $\mu$}($\chi$_{f^{-1}(A)})=$\varphi$_{ $\mu$}(\mathrm{x}_{A}\circ f)\leq|L^{\infty}f|$\varphi$_{$\mu$'}(XA)=|L^{\infty}f|$\rho$'(A) .

This implies that f is bounded, and |f|\leq|L^{\infty}f|. \square 

Next, we focus on the case of C^{*} ‐measure spaces associated with Borel

measure spaces. Let BMS denote the category of regular Borel measure spaces

on compact Hausdorff spaces with bounded continuous maps, as a subcategory

of CMS. Similarly to the case of L^{\infty} the continuous function space C

gives rise to a functor from BMS to QMSop. It sends (X, B(X), $\mu$) to (C(X), $\varphi$_{ $\mu$})

and a bounded continuous map f to C(f) given by composition with f.

Proposition 2.15. C : \mathrm{B}\mathrm{M}\mathrm{S}\rightarrow \mathrm{Q}\mathrm{M}\mathrm{S}^{\mathrm{o}\mathrm{p}} is a functor.
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Proof. The proof is similar to that of Proposition 2.13. \square 

Proposition 2.1ó. A continuous map f : (X, B(X),$\mu$_{X})\rightarrow(\mathrm{Y}, B(Y),$\mu$_{Y}) between

Borel measure spaces is bounded if and only if Cf is bounded. In that case,

|f|=|Cf|.

Proof. If f is bounded, then Cf is bounded and |Cf|\leq|f| by Proposition 2.15.

The converse inequality is slightly different from that in the case of Proposition

2.14 because the characteristic map  $\chi$(A) is not continuous for A \in  B(\mathrm{Y}) in

general. However, we can take a sequence of positive continuous functions

\{g_{n}\} on \mathrm{Y} converging to $\chi$_{A} in L^{2}(\mathrm{Y}) . If Cf is bounded, then the inequality

$\varphi$_{$\mu$_{X}}(g_{n}\circ f)\leq|Cf|$\varphi$_{$\mu$_{\mathrm{Y}}}(g) for each n induces $\mu$_{X}(f^{-\mathrm{I}}(A))\leq|Cf|$\mu$_{Y}(A) by n\rightarrow\infty.

This implies that f is bounded, and |f|\leq|Cf|. \square 

The Gelfand duality theorem involves the functor C as an equivalence of

categories between the category of compact Hausdorff spaces and the category

of commutative C^{*} ‐algebras. Let us extend it to an equivalence between BMS

and the category of commutative C^{*} ‐measure spaces, denoted by CCMS, as a

full subcategory of QMS.

Theorem 2.17. The functor C : BMS \rightarrow CCMSop is an equivalence of cate‐

gories.

Proof. It suffices to show the essential surjectivity and full faithfulness of  C by

Theorem 1 of Section 4.4 in [Mac98]. Theorem 2.I0 states that C is essen‐

tially surjective. The faithfulness of C follows immediately from the Gelfand

duality theorem by forgetting measures. Moreover, for a bounded morphism

f : C(X) \rightarrow  C(Y) in CCMSop, there,exists a continuous map g :  X\rightarrow \mathrm{Y} be‐

tween compact Hausdorff spaces such that Cg=f. By Proposition 2.16, we
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have |g| = |Cg| = |f| < \infty . Hence, we can conclude that  g is a morphism in

BMS and confirm the fullness of C. \square 

The functor C can be restricted to C : \mathrm{B}\mathrm{M}\mathrm{S}_{\#} \rightarrow \mathrm{C}\mathrm{C}\mathrm{M}\mathrm{S}_{\#}^{\mathrm{o}\mathrm{p}} , where \# de‐

notes the subcategory consisting of the same objects and measure‐preserving

morphisms. We can show that a measurable map  f between measure spaces

is measure‐preserving if and only if Cf is measure‐preserving by an argument

similar to that in the proof of Proposition 2.16. In addition, Theorem 2.10 in‐

volves the essential surjectivity of the restricted functor \mathrm{B}\mathrm{M}\mathrm{S}_{\#} \rightarrow \mathrm{C}\mathrm{C}\mathrm{M}\mathrm{S}_{\#}^{\mathrm{o}\mathrm{p}} of

C . Hence, we can obtain the following corollary.

Corollary 2.18. The functor C induces an equivalence of categories between

\mathrm{B}\mathrm{M}\mathrm{S}_{8} and CCMS \#\mathrm{o}\mathrm{p}.

We can also restrict the functor C to probability spaces. Let BPS (resp.

BPS#) denote the full subcategory of BMS (resp. BMS#) consisting of proba‐

bility spaces, and let CCPS (resp. CCPSH) denote the full subcategory of CMS

(resp. CCMSH) consisting of quantum probability spaces.

Corollary 2.19. The functor C induces an equivalence of categories between

BPS (resp. BPS#) and CCPSop (resp. \mathrm{C}\mathrm{C}\mathrm{P}\mathrm{S}_{\#}^{\mathrm{o}\mathrm{p}}).

3 Quantum conditional measure

A classical conditional measure is essentially based on subspaces and restriction

of a measure space. By focusing on the duality between classical and quantum

measure spaces, as we have seen in the last part of Section 2, considering ideals

and quotients of an algebra is a natural way to formulate quantum conditional

measures. Accordingly, for a quantum measure space (A,  $\varphi$) and a two‐sided
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ideal I (simply referred to as �ideal� throughout this paper) of A , we aim to

construct a quantum measure $\varphi$_{I} on the quotient algebra A/I.

To build such a positive linear map, we will use orthogonal decomposition of

Hilbert spaces. First, let us recall the GNS construction, which is a technique for

establishing a \mathrm{H}\mathrm{i} ]bert space from a quantum measure space [Arv76], [KR97].

Definition 3.1. For a quantum measure space (A, $\varphi$) , let N_{ $\varphi$} denote the left ideal

of A given Uy \{a \in A |  $\varphi$(a^{*}a) = 0\} . The quotient vector space A/N_{ $\varphi$} admits

an inner product \langle[a]_{ $\varphi$}, [b]_{ $\varphi$}\rangle = $\varphi$(a^{*}b) . The Hilbert space H_{ $\varphi$} is defined as the

completion of A/N_{ $\varphi$} with respect to the above inner product. Multiplication on

A induces an algebra map  $\pi$ :  A\rightarrow B(H_{ $\varphi$}) such that  $\pi$(a)[b]_{ $\varphi$}=[ab]_{ $\varphi$} for a\in A,

[b]_{ $\varphi$}.\in A/N_{ $\varphi$} . The cyclic vector  $\xi$\in H_{ $\varphi$} is defined as [e]_{ $\varphi$} for the unit e of A.

The original quantum measure  $\varphi$ on  A can be expressed as  $\varphi$(a)=w_{ $\xi$}( $\pi$(a))=

\langle $\xi$,  $\pi$(a) $\xi$\rangle by using the vector measure on  B(H_{ $\varphi$}) in Example 2.12. The triple

(H_{ $\varphi$}, $\pi,\ \xi$) is called the GNS construction associated with (\mathrm{A},  $\varphi$) .

Construction 3.2. For a quantum measure space (A,  $\varphi$) , and an ideal I on A,

let us construct a positive linear map $\varphi$_{J} : \mathrm{A}/I\rightarrow \mathbb{C} as follows. Suppose that

(H_{ $\varphi$}, $\pi,\ \xi$) is the GNS construction associated with (A,  $\varphi$) in Definition 3.1. Con‐

sider the composition of the canonical projection and the inclusion to the com‐

pletion

(-)_{ $\varphi$}:A\rightarrow A/N_{$\varphi$^{\mathrm{L}}}\rightarrow H_{ $\varphi$}.

Let I_{ $\varphi$} \subset  H_{ $\varphi$} denote the closure of the image of I by the above map. It is

equipped with the orthogonal decomposition H_{ $\varphi$} = I_{ $\varphi$}\oplus I_{ $\varphi$}^{\perp} . We express the

decomposition of a vector x\in H_{ $\varphi$} as x_{I}+x_{I}^{\perp}\in I_{ $\varphi$}\oplus I_{ $\varphi$}^{\perp} . Define $\varphi$_{I} : A/I\rightarrow \mathbb{C} by

$\varphi$_{I}[a]=\langle$\xi$_{I}^{\perp},  a_{ $\varphi$}\rangle . This map is well defined, i.e., it does not depend on the choice

of the representative element, since  a_{ $\varphi$} = (a_{ $\varphi$})_{1} if a \in I and \langle$\xi$_{1}^{\perp}, (a_{ $\varphi$})_{l}\rangle = 0.
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Moreover, it is positive by the following calculation:

$\varphi$_{I}([a]^{*}[a])=\langle$\xi$_{1}^{\perp}, (a^{*}a)_{ $\varphi$}\rangle

=\langle$\xi$_{I}^{\perp}, $\pi$(a^{*})a_{ $\varphi$}\rangle

=\langle $\pi$(a)$\xi$_{I}^{\perp},a_{ $\varphi$}\rangle

=\langle(a_{ $\varphi$})_{I}^{\perp}, (a_{ $\varphi$})_{I}+(a_{ $\varphi$})_{I}^{\perp}\rangle

=\langle(a_{ $\varphi$})_{I}^{\perp}, (a_{ $\varphi$})_{I}^{\perp}\rangle\geq 0.

We call $\varphi$_{I} the quantum conditional measure on A/I induced from  $\varphi$ . It is

associated with the canonical projection  p : (A,  $\varphi$)\rightarrow(A/I, $\varphi$_{I}) . Furthermore, it

is not measure‐preserving, but it is bounded with norm 1 in QMS.

Example 3.3. Let ( $\Omega$, \mathcal{F}', $\mu$) be a measure space. The GNS construction associ‐

ated with (L^{\infty}( $\Omega$),$\varphi$_{ $\mu$}) designates the Hilbert space L^{2}( $\Omega$) . Given a subspace  B\in

\mathcal{F}', consider the conditional measure space (B,F_{B},$\mu$_{B}) . The inclusion i :  B\leftrightarrow $\Omega$

induces a surjective homomorphism  i^{*} : L^{\infty}( $\Omega$)\rightarrow L^{\infty}(B) given by the restric‐

tion of functions. We obtain an ideal I of L^{\infty}( $\Omega$) as the kernel \mathrm{K}\mathrm{e}\mathrm{r}i^{*}\cong L^{\infty}(B^{c}) .

Further, i^{*} induces an isomorphism L^{\infty}( $\Omega$)/I\rightarrow L^{\infty}(B) by the homomorphism

theorem. This can be extended to an isomorphism (L^{\infty}( $\Omega$)/l, ($\varphi$_{ $\mu$})_{I})\rightarrow(L^{\infty}(B), $\varphi$_{$\mu$_{B}})

in QMS#.
If  $\mu$=P is the probability and the ideal I=L^{\infty}(B^{c}) for a subspace B\in F

with P(B) \neq  0 , then the normalization of the quantum conditional measure

coincides with the classical conditional expectation [Rao05]:

N(($\varphi$_{P})_{I})[f]=\displaystyle \frac{($\varphi$_{P})_{I}[f]}{($\varphi$_{P})_{J}[ $\chi$( $\Omega$)]}=\frac{1}{P(B)}\int_{B}(f_{|B}(w))dP_{B}(w)=\int_{ $\Omega$}f(w)dP(w|B)=E_{B}(f) .

Example 3.4. Let (X, B(X), $\mu$) be a Borel measure space on a compact Haus‐

dorff space X . The GNS construction associated with (C(X), $\varphi$_{ $\mu$}) designates the

Hilbert space L^{2}(X) . Given a closed subspace B\in B(X) , consider the condi‐

tional measure space (B, B(B),$\mu$_{B}) on B . Note that the induced homomorphism
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i^{*} : C(X) \rightarrow  C(B) from the inclusion i :  B\rightarrow  X is not suijective in general.

Let I denote the kernel of j^{*} , which is an ideal of C(X) . We have the quantum

conditional measures ($\varphi$_{ $\mu$})_{I} on C(X)/I and $\varphi$_{$\mu$_{B}} on C(B) . Further, i^{*} induces the

following injection:

C(X)/I\cong{\rm Im} i^{*}\leftrightarrow C(B) .

This is a measure‐preserving homomorphism (C(X)/f, ($\varphi$_{ $\mu$})_{I})\rightarrow(C(B), $\varphi$_{$\mu$_{B}}) in

QMS#.

Conversely, every quantum conditional measure on a commutative C^{*} ‐measure

space is essentially derived from classical conditional measures. To formulate

it categorically, fix a C^{*\backslash } ‐measure space (A,  $\varphi$) and the associated Borel measure

space (X, B(X), $\mu$) . For a closed subspace B in X, the inclusion induces an alge‐

bra homomorphism C(X)\rightarrow C(B) . Let I_{B} denote the kernel of this map, which

is a closed ideal of C(X) .

Theorem 3.5. For any closed ideal I ofA, there exists a closed subspace B in

X such that (A/I, $\varphi$_{I})\cong(C(B), $\varphi$_{$\mu$_{B}}) in QMS#.

Proof. Let B denote the compact Hausdorff space associated with the C^{*} ‐algebra

A/I via Gelfand duality. The equivalence of categories C assigns a continuous

map j : B\rightarrow X such that j^{*} = C(f) : C(X) \rightarrow  C(B) corresponds to the pro‐

jection A \rightarrow  A/I . In particular, j^{*} is a suijection. To show the injectivity of

j , suppose that j(a) = j(b) for a, b \in  B . If a \neq  b , we can choose a continu‐

ous function f on B satisfying f(a) = 1 and f(b) = 0 by Urysohn�s lemma.

Since j^{*} is a surjection, there exists \tilde{f}:X\rightarrow \mathbb{C} such that \tilde{f}\circ j=f . However,

f(a)=\tilde{f}(j(a))=\tilde{f}(j(b))=f(b) contradicts the choice of function f. Hence, j
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is injective and B can be regarded as a closed subspace of X.

In the above commutative diagram, \tilde{ $\alpha$} preserves measures with respect to $\varphi$_{I} and

($\varphi$_{ $\mu$})_{I_{B}} since a preserves measures with respect to  $\varphi$ and  $\varphi$_{ $\mu$} . From Example 3.4,

we have

(A/I, $\varphi$_{f})\cong(C(X)/I_{B}, ($\varphi$_{ $\mu$})_{l_{B}})\cong(C(B),$\varphi$_{$\mu$_{B}})

in QMS#. \square 

We have seen some commutative cases of quantum conditional measures de‐

rived from classical conditional measures. On the other hand, the non‐commutative

case is quite different from the above commutative cases.

Remark 3.ó. A simple algebra does not have any proper two‐sided ideal. Hence,

a quantum measure on a simple algebra has no (non‐trivial) conditional mea‐

sure. For example, the trace measure on the n‐th matrix algebra M_{n}(\mathbb{C}) has no

quantum conditional measure.

Example 3.7. Let B(H) be the algebra of bounded linear operators on a separa‐

ble infinite‐dimensional Hilbert space H with the vector measure w_{h} :  B(H)\rightarrow

\mathbb{C} for h \in  H . The subse\mathrm{t}^{t}K(H) of compact operators on H forms an ideal of

B(H) . The quotient algebra C(H) = B(H)/\prime $\kappa$(H) is called the Calkin alge‐

bra. We have the quantum conditional measure (w_{h})_{7 $\zeta$(H)} on C(H) . The Calkin

algebra is simple; hence, Remark 3.6 implies that we cannot update (w_{h})_{7\mathrm{f}(H)}

anymore.

Remark 3.8. The classical Bayes� rule relates the probability P and the condi‐

tional probability P(-|B) for a subspace B with P(B)\neq 0 . Here, we can descriUe

99



the conditional probability as the normalization of the conditional measure. Let

us consider this situation in quantum probability spaces.

Given a quantum probability space (A,  $\varphi$) and a proper ideal I \mathrm{o}\mathrm{f}A , let  $\varphi$(-|I)

denote the state on A/I nomalized by the quantum conditional measure $\varphi$_{I} . Let

us express the ratio of $\varphi$_{I} and  $\varphi$ as  $\varphi$(I|a)=$\varphi$_{I}[a]/ $\varphi$(a) for  $\varphi$(a)\neq 0 . Then, for

a\in A , we have the formula

 $\varphi$([a]|I)=\displaystyle \frac{ $\varphi$(I|a)}{$\varphi$_{I}[e]} $\varphi$(a)
as an analog of Bayes� rule. Obviously, when A=L^{\infty}( $\Omega$) and I=L^{\infty}(B^{C}) for

some classical probability space (  $\Omega$ , f7,  P) with a subspace  B\in \mathcal{F}^{-}, the above

equahty represents the classical Bayes� rule Uy applying it to the characteristic

function \mathrm{X}(A) :

P(A|B)=\displaystyle \frac{P(B|A)}{P(B)}P(A) .
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