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ABSTRACT. In this note, we survey several criteria for knots and
links to be quasi‐alternating by using polynomial invariants such
as Q‐polynomials and Kauffman polynomials. Also, we mention
two new generalizations of quasi‐alternating links.

1. INTRODUCTION

Alternating knots and links give a classical but remarkable class of
knots and links. The definition is described through diagrams, but it
is very recent that a characterization without involving diagrams was
found by Greene [8] and Howie [12] independently.

On the other hand, there are a lot of generalizations of alternating
knots and links in knot theory. Here is a list of adjectives, which is not
complete.

\bullet almost alternating,  m‐almost alternating (Adams et al. [1])
\bullet toroidally alternating (Adams [2])
\bullet adequate (Lickorish‐Thistlethwaite [17])
\bullet semi‐alternating (Lickorish‐Thistlethwaite [17])
\bullet alternative (Kauffman [14])
\bullet pseudo‐alternating (Mayland‐Murasugi [19])
\bullet n‐semi‐alternating (Beltrami [3])
\bullet algebraically alternating (Ozawa [20])
\bullet quasi‐alternating (Ozsváth‐Szabó [21])

The objects of this note are quasi‐alternating knots and links intro‐
duced by Ozsváth and Szabó in their Heegaard Floer homology theory.

 Qua\mathcal{S}i‐alternating links (abbreviated as QA links) are defined recur‐
sively as follows.

(1) The unknot is QA.
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(2) If a link L has a diagram with QA‐crossing, then L is QA.
Here, a QA‐crossing is a crossing where two resolutions

L_{\infty}, L_{0} as illustrated in Figure 1 satisfy that
(a) both L_{\infty} and L_{0} are QA, and
(b) \det L=\det L_{\infty}+\det L_{0}.

) ( \wedge\vee
 L L_{\infty} L_{0}

FIGURE 1. Two resolutions L_{\infty} and L_{0}

For a link L , its determinant \det L is a non‐negative integer. We
should remark that if a link L is QA, then \det L>0 . Also, Ozsváth‐
Szabó [21] showed that any alternating knot and non‐split alternating
link are QA.

Because of its recursive definition, it is not easy to identify whether
a given knot or link is QA or not.

Problem 1.1. Decide whether a given knot or link is QA or not.

Example 1.2. The knot 8_{21} is non‐alternating, but QA. As illustrated
in Figure 2, the marked crossing in the first diagram is a QA‐crossing.
For, each of two resolutions is alternating, so QA, and we have the
desired equality among their determinants.

There are several properties of QA links:
\bullet The double branched cover is an  L‐space.
\bullet The double branched cover bounds a negative‐definite 4‐manifold

 W with H_{1}(W)=0.
\bullet Homologically thin (knot Floer, reduced Khovanov, and re‐

duced odd Khovanov homologies are thin, i.e. supported on a
single diagonal.)

Here is a digression. Let  K be the (-2)‐twist knot, which is the knot
5_{2} in the knot table. See Figure 3.

Since K is 2‐bridge, its double branched cover is a lens space, which
is a typical L‐space as its name suggests. Then, how about the 3‐fold
cyclic branched cover? A direct approach is to calculate its Heegaard
Floer homology. As far as we know, there are some references [9, 16]
concerning Heegaard Floer homology of cyclic branched covers. Al‐
though we do not deny this approach, it would be hard to execute.
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8_{2^{1}}

\nearrow

\searrow

\det=15

FIGURE 2. The knot 8_{21} is QA.

\nearrow^{2} \nwarrow^{3}

sv

\nwarrow^{3} \nearrow^{2}
3‐fold cover of K

FIGURE 3. The 3‐fold cyclic branched cover of the knot
5_{2} is an L‐space.

However, there is a detour. Since K is 2‐bridge, it admits a cyclic pe‐
riod of order two. The image of K under this cyclic action is denoted
by k in Figure 3. There, A is the image of the axis. We can see that
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the factor knot k is unknotted. Hence the 3‐fold cyclic branched cover
of k remains to be the 3‐sphere, and the lift of A gives the knot 9_{49}.
Thus, the 3‐fold cyclic \mathrm{b}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{c}\mathrm{h}\mathrm{e}\mathrm{d}^{\backslash }cover of the original knot K is home‐
omorphic to the double branched cover of 9_{49} . In fact, 9_{49} is QA, so
its double branched cover is an L‐space. By the same technique, the
4‐ and 5‐fold cyclic branched covers of K are shown to be L‐spaces
without any calculation of Heegaard Floer homology [26, 11].

2. CRITERIA BY Q‐POLYNOMIAL

As mentioned before, it is not easy to determine whether a given knot
or link is QA or not, in general. However, Qazaqzeh and Chbili [22]
found a very simple criterion for QA links in terms of Q‐polynomials.

Theorem 2.1 ([22]). If a link L is QA_{f} then
\deg Q_{L}\leq\det L-1,

where \deg QL is the maximal degree of the  Q ‐polynomial QL of L.

We recall the definition of Q‐polynomials [4, 10]. Let L be an un‐
oriented link. Then its Q‐polynomial Q_{L}(x) is a Laurent polynomial
satisfying the following.

(1) Q_{U}=1 , where U is the unknot.
(2) Q_{L_{+}} +Q_{L_{-}} = x(Q_{L_{\infty}} +Q_{L_{0}}) holds for the skein quadruple

(L_{+}, L_{-}, L_{\infty}, L_{0}) as illustrated in Figure 4.

) (
L_{+} L_{-} L_{\infty} L_{0}

FIGURE 4. The skein quadruple

For knots, their Q‐polynomials have no negative powers of x.

Example 2.2. Let K be the knot 8_{19} , which is non‐alternating. In
fact, K is the (3, 4)‐torus knot. Then \deg Q_{K} = 7 and \det K = 3.

Hence K is not QA by Theorem 2.1.

The key of the argument of Qazaqzeh and Chbili [22] is the next
observation.

Lemma 2.3. Let L be a linkf and let L_{0} and L_{\infty} be two resolutions at
some crossing of a diagram of L. Then

\displaystyle \deg Q_{L}\leq\max\{\deg Q_{L_{0}}, \deg Q_{L_{\infty}}\}+1.
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Proof of Theorem 2.1. It is an induction on determinant. Let L be a
QA link. If dèt L = 1 , then L is the unknot. Hence Q_{L} = 1 , so the
inequality \deg Q_{L}\leq\det L-1 holds.

Suppose \det L > 1 . Let L_{0} and L_{\infty} be two resolutions at a QA‐
crossing of L . Thus these are QA, and \det L_{*}<\det L\mathrm{f}\mathrm{o}\mathrm{r}*\in\{0, \infty\}.
By Lemma 2.3,

\deg QL \leq \displaystyle \max\{\deg Q_{L_{0}}, \deg Q_{L_{\infty}}\}+1
< \displaystyle \max\{\det L_{0}, \det L_{\infty}\}+1
\leq \det L_{0}+\det L_{\infty}=\det L.

\square 

In [24], we gave an improvement of the criterion (Theorem 2.1) of
Qazaqzeh and Chbili.

Theorem 2.4 ([24]). If a link L is QA_{f} then one of the following holds.
(1) L is a(2, n) ‐torus link (n\neq 0) and \deg Q_{L}=\det L-1 ; or
(2) \deg Q_{L}\leq\det L-2.

Example 2.5. Here are two examples which show that the evaluation
of Theorem 2.4(2) is optimal.

(1) Let K be the figure‐eight knot. It is alternating, so QA, and
\deg Q_{K}=3, \det K=5.

(2) Let L be the connected sum of two Hopf links. Since L is non‐
split alternating, it is QA. And \deg Q_{L}=2, \det L=4.

Example 2.6. Each of non‐alternating knots 12_{n0025}, 12_{n0093}, 12_{n0115},
12_{n0138} , 12_{n0199} , 12_{n0355}, 12_{n0374} has \deg Q = 10, \det = 11 . None of
these is QA by our criterion (Theorem 2.4). This cannot be deduced
by Theorem 2.1.

Here is a brief sketch of the proof of Theorem 2.4. The proof uses
an induction on determinant. Let L be a non‐trivial QA link. Then
the resolution at a QA crossing gives two QA links L_{\infty} and L_{0} . The
argument is split into three cases.

(1) Neither L_{\infty} nor L_{0} is \mathrm{a}(2, n)‐torus link. By the inductive hy‐
pothesis, \deg Q_{L_{*}} \leq\det L_{*}-2\mathrm{f}\mathrm{o}\mathrm{r}*\in\{\infty, 0\} . Then,

\deg QL \leq \displaystyle \max\{\deg Q_{L_{\infty}}, \deg Q_{L_{0}}\}+1
= \deg Q_{L_{ $\alpha$}}+1 (\{ $\alpha$,  $\beta$\}=\{\infty, 0\})
\leq (\det L_{ $\alpha$}-2)+1
= (\det L-\det L_{ $\beta$})-1
\leq \det L-2.
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(2) The case where one of L_{\infty}, L_{0} is \mathrm{a}(2, n) ‐torus link is also easy.
(3) If both are (2, *)‐torus links, then we need another argument

involving Dehn surgery. See [24].

3. CRITERIA BY KAUFFMAN POLYNOMIAL

The previous argument in Section 2 works for Kauffman polynomial,
which is a two‐variable generalization of Q‐polynomial [13].

Theorem 3.1. For a QA link L , either

(1) L is a(2, n) ‐torus link (n\neq 0) , and \deg_{z}F_{L}=\det L-1 ; or
(2) \deg_{z}F_{L}\leq\det L-2.

For a diagram D of an oriented link L, $\Lambda$_{D}(a, z) is defined with
forgetting its orientation as follows:

(1) $\Lambda$_{D} is a regular isotopy invariant;
(2) For the unknot diagram without crossing U, $\Lambda$_{U}=1 ;
(3) $\Lambda$_{L+}+$\Lambda$_{L_{-}} =z($\Lambda$_{L_{\infty}}+$\Lambda$_{L_{0}}) ;

(4) $\Lambda$_{\mathrm{b}^{-}}=a$\Lambda$_{\vee} $\Lambda$_{6}\backslash =a^{-1}$\Lambda$_{\mathrm{v}}

If D has writhe w , then the Kauffman polynomial of L is defined as

F_{L}(a, z)=a^{-w}$\Lambda$_{D}(a, z) .

Since F_{L}(1, z)=Q_{L}(z) , we have \deg Q_{L}\leq\deg_{z}F_{L} , where \deg_{z}F_{L} is
the maximal degree of variable z.

For alternating ones among QA links, a classical fact by R. Crowell
[6] implies the following.

Theorem 3.2. For a non‐split alternating link L , either

(1) L is a(2, n) ‐torus link (n\neq 0) , and \deg_{z}F_{L}=\det L-1 ;
(2) L is the figure‐eight knot or Hopf link \# Hopf link, and \deg_{z}F_{L}=

\det L-2 ; or

(3) \deg_{z}F_{L}\leq\det L-3.

For non‐alternating QA links, we have the following.

Theorem 3.3 ([25]). For non‐alternating QA link L , either
(1) d\mathrm{e}\mathrm{g}_{z}F_{L}\leq\det L-3 ; or
(2) L has exactly 3 components, each of which is unknotted. More‐

over, L is obtained from the Hopf link by a banding on one
component.

We expect that the second possibility of Theorem 3.3 would not hap‐
pen, but we could not erase it. As an immediate corollary of Theorem
3.3, we have the following criterion for non‐alternating QA knots.
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Corollary 3.4. For a non‐alternating QA knot K_{\mathrm{Z}} we have

\deg Q_{K}\leq\deg_{z}F_{K}\leq\det K-3.

Example 3.5. The evaluation of Corollary 3.4 is sharp. Let K be
the (-3,2, n)‐pretzel knot, n \geq  3 odd. This knot has the following
properties.

\bullet  K is non‐alternating QA.
\bullet \det K=n+6.
\bullet \deg Q_{K}=\deg_{z}F_{K}=n+3.

Example 3.6. Let K=9_{46} , which is the (-3,3,3)‐pretzel knot. Then
it satisfies:

\bullet  K is non‐alternating.
\bullet \det K=9.

\bullet \deg Q_{K}=\deg_{z}F_{K}=7.
Hence, K is not QA by Corollary 3.4. This fact was known by its thick
Khovanov homology (see [5, page 2456

Finally, we propose a problem on the a‐span, denoted by \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}_{a}F_{L},
of the Kauffman polynomial F_{L}(a, z) for QA link L . If L is non‐split
alternating, then \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}_{a}F_{L} is equal to its crossing number by [27]. Hence
the inequality \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}_{a}F_{L}\leq\det L holds. We expect that this would hold
for QA links.

Problem 3.7. Let L be a QA link.

(1) Show that \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}_{a}F_{L}\leq\det L.
(2) Show that \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}_{a}F_{L} \leq span  V_{L} \leq \det L_{f} where V_{L} is the Jones

polynomial of L.

These are verified for all QA knots up to 11 crossings. The second
inequality \mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}V_{L}\leq\det L of Problem 3.7(2) is mentioned in [22].

4. Q‐POLYNOMIAL VERSUS KAUFFMAN POLYNOMIAL

It is possible that \deg Q_{L}<\deg_{z}F_{L} . Hence there is a chance that the
criterion (Theorem 3.3) by the Kauffman polynomial is strictly stronger
than one (Theorem 2.4) by the Q‐polynomial. The next shows that it
can happen.

Theorem 4.1. There exist infinitely many hyperbolic knots and links
L_{n} such that

(1) L_{n} is not QA ;
(2) \deg Q_{L_{r $\iota$}}=\det L_{n}-4 ; and
(3) \deg_{z}F_{L_{n}}=\det L_{n}.
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FIGURE 5. The link L_{n}

In fact, it can be shown ([25]):
\bullet  L_{n} is a knot if n is odd, has two components if n is even.
\bullet \det L_{n}=n+10.
\bullet \deg Q_{L_{ $\tau \iota$}}=n+6(n\geq 3) .

\bullet \deg_{z}F_{L_{n}}=n+10(n\geq 1) .

Thus L_{n} is detected to be non‐QA by Theorem 3.3, but not by
Theorem 2.4.

5. QA LINKS WITH SMALL DETERMINANT

Greene [7] conjectures that there are only finitely many QA links
with a given determinant. He determined all QA knots and links with
determinant \leq 3 as shown in Table 1.

TABLE 1. QA links with determinant \leq 3

We proved in [24, 25] the followings.

Theorem 5.1. If L is a QA link with \det L=4 , then L is the (2, \pm 4)-
torus link_{J} or L has 3 components, each of which is unknotted, and
\deg_{z}F_{L}\leq 2.

Theorem 5.2. If L is a QA link with \det L=5_{f} then L is either the
figure‐eight knot or the (2, \pm 5) ‐torus knot.
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After that, Lidman and Sivek [18] classified all QA links with \det\leq 7
based on the determination of all formal L‐spaces with order at most
7.

Theorem 5.3 ([18]). QA links with \det\leq 7 are 2‐bridge or a connected
sum of 2‐bndge links.

Thus all QA links with \det\leq 7 are determined as in Table 2.

TABLE 2. QA links with determinant \leq 7

Problem 5.4. (1) Solve Greenefs conjecture.
(2) Determine QA links with \det=8.

We remark that the pretzel link P(-3,2,2) is non‐alternating QA
and \det=8.

6. WEAKLY QUASI‐ALTERNATING LINKS

In the remaining two sections, we mention two recent generalizations
of QA links. The first one is weakly quasi‐alternating links introduced
by D. Kriz and I. Kriz [15].

Weakly quasi‐alternating links (abbreviated as WQA links) are de‐
fined recursively as follows.

(1) The unknot and unlinks are WQA.
(2) If a link L has a diagram with WQA‐crossing, then L is WQA.

Here, a WQA‐crossing is a crossing where two resolutions
L_{\infty}, L_{0} satisfy
(a) both L_{\infty} and L_{0} are WQA, and
(b) \det L=\det L_{\infty}+\det L_{0}.

For a split link, its determinant is 0 . Hence, any split link is WQA.
Thus we think that this class would be too wide.

Kriz‐Kriz [15] showed:

Theorem 6.1 ([15]). (1) Any WQA link is BOS thin.
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(2) The double branched cover of a WQA knot i\mathcal{S} an L ‐space.

Baldwin‐Ozsváth‐Szabó cohomology H_{BOS} is an invariant of oriented
links. A link L is BOS thin if

rank H_{BOS}^{i}(L)= \left\{\begin{array}{ll}
\det L, & \mathrm{i}\mathrm{f} i= $\sigma$(L)/2,\\
0, & \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}.
\end{array}\right.
For QA links, Greene conjectures that there are only finitely many

QA links with a given determinant, but the same thing does not hold
for WQA links.

Theorem 6.2. Let d\geq 0 be a multiple of 4 or a square (> 1) . Then
there exist infinitely many WQA, non‐QA links with \det=d.

Example 6.3. The (-2,2, n) ‐pretzel link P_{n} has \det=4 for any inte‐
ger n . For example, P_{0} is Hopf link \# Hopf link,  P_{1} is the (2, 4)‐torus
link. Also, \deg Q_{P_{n}}=|n|+2 . Hence P_{n} is \mathrm{n}ot QA if |n| \geq 2 , but P_{n} is
WQA as illustrated in Figure 6.

\rightarrow 00

\searrow_{P_{4}}\rightarrow 00

\searrow P_{3} \searrow_{P_{2_{\searrow_{P_{1}=\mathrm{Q}\mathrm{A}}}^{\rightarrow}}}\rightarrow 00_{00}
FIGURE 6. WQA links P_{n} with \det=4

Although we do not give the proof of Theorem 6.2, the pretzel link
P(-l, l, m) (3 \leq l \leq m) gives an example for a square determinant.
Let L=P(-l, l, m) . Then \det L=l^{2} , and any crossing in the m‐twist
strand is WQA. By [7], L is not QA.

Also, any Kanenobu knot is shown to be WQA. They have determi‐
nant 25, and it is known that there are only finitely many QA Kanenobu
knots (22).

Question 6.4. Let 1 \leq  d \leq  3 . Is there a WQA, non‐QA link with
\det=d^{l}?
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7. TWO‐FOLD QUASI‐ALTERNATING LINKS

Scaduto and Stoffregen [23] introduced two‐fold quasi‐alternating
links. We will not give full details (see [23]). For a link, a marking
w assigns 0 or 1 to each component of L . The weight 1 is expressed as
one dot on the čomponent. The total number of dots is required to be
even. After a resolution, the dots are carried in the natural way.

Two‐fold quasi‐alternating links (abbreviated as TQA links) are de‐
fined recursively as follows.

(1) The unknot with trivial marking is TQA.
(2) A split union of two odd‐marked links is TQA.
(3) L is TQA if it has TQA crossing where two resolutions L_{\infty} and

L_{0} satisfy
(a) both of L_{\infty} and L_{0} are TQA,
(b) \det L=\det L_{\infty}+\det L_{0}.

It is not hard to see that \mathrm{Q}\mathrm{A}\Rightarrow \mathrm{T}\mathrm{Q}\mathrm{A}\Rightarrow \mathrm{W}\mathrm{Q}\mathrm{A} , in general. As a
typical example, Figure 7 shows that the non‐QA knot 11_{n50} is TQA.
(Dots on the same component is counted \mathrm{m}\mathrm{o}\mathrm{d} 2. )

FIGURE 7. The non‐QA \mathrm{k}\mathrm{n}\mathrm{q},\mathrm{t} 11_{n50} is TQA.

It is shown in [23] that a TQA link is \mathrm{m}\mathrm{o}\mathrm{d} 2 Khovanov thin. Also,
the framed instanton homology of the double branched cover of a TQA
link is examined there.
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