On some demonstrative embeddings into higher dimensional Thompson groups

Motoko Kato
Graduate School of Mathematical Sciences， The University of Tokyo

1 Intoduction

The Thompson group V is an infinite，simple and finitely presented group， described as a subgroup of the homeomorphism group of the Cantor set C ． Brin［1］defined n－dimensional Thompson group $n V$ for all natural number $n \geq 1$ ，where $1 V=V$ ．Brin［1］showed that V and $2 V$ are not isomorphic． Bleak and Lanoue［3］showed $n_{1} V$ and $n_{2} V$ are isomorphic if and only if $n_{1}=n_{2}$ ．
V contains many groups，such as all finite groups and free groups，as its subgroups．The class of subgroups of V are closed under taking the direct product of finitely many members．However，the class is not closed under taking the free products．Bleak and Salazar－Díaz［4］proved that $\mathbb{Z}^{2} * \mathbb{Z}$ does not embed in V ，although there are many embeddings of \mathbb{Z} and \mathbb{Z}^{2} in V ．They defined a class of well－behaved subgroups of V ，demonstrative subgroups，and showed that the free product of two demonstrative subgroups can be embedded into V ．It follows that any embedded \mathbb{Z}^{2} in V is not demonstrative．

Recently，Corwin and Haymaker［5］determined which right－angled Artin groups embed into V ．Belk，Bleak and Matucci［2］showed that every right－ angled Artin group and its finite extensions embed into $n V$ with sufficiently large n ．

In this paper，we consider embeddings of right－angled Coxeter groups into higher dimensional Thompson groups．It follows from the result of［2］ that every right－angled Coxeter group embeds into some $n V$ ．We explicitly construct demonstrative embeddings of each right－angled Coxeter group into $n V$ ，where n is the number of＂complementary edges＂in the defining graph．

This work was supported by the Program for Leading Graduate Schools， MEXT，Japan．

2 Right-angled Artin groups and right-angled Coxeter groups

Let Γ be a finite graph with a vertex set $V(\Gamma)=\left\{v_{i}\right\}_{1 \leq i \leq m}$ and an edge set $E(\Gamma)$. Let

$$
\bar{E}(\Gamma)=\left\{\left\{v_{i}, v_{j}\right\} \mid v_{i} \neq v_{j} \in V(\Gamma) \text { are not connected by edges. }\right\}
$$

We call the elements of $\bar{E}(\Gamma)$ complementary edges.
The right-angled Artin group corresponding to Γ, denoted by A_{Γ}, is a group defined by the presentation

$$
\left.A_{\Gamma}=\left\langle g_{1}, \ldots, g_{m}\right| g_{i} g_{j}=g_{j} g_{i} \text { for all }\left\{v_{i}, v_{j}\right\} \in E(\Gamma)\right\rangle
$$

The right-angled Coxeter group corresponding to Γ, denoted by W_{Γ}, is a group defined by the presentation

$$
\left.W_{\Gamma}=\left\langle g_{1}, \ldots, g_{m}\right| g_{i}{ }^{2}=1, g_{i} g_{j}=g_{j} g_{i} \text { for all }\left\{v_{i}, v_{j}\right\} \in E(\Gamma)\right\rangle
$$

For example, $\mathbb{Z}^{2} * \mathbb{Z}$ is a right-angled Artin group corresponding to the graph with three vertices and an edge.

To construct embeddings of free groups, the ping-pong lemma of F. Klein is known to be a useful tool. Besides the standard one, there is also the ping-pong lemma for right-angled Artin groups ([8]). It might be helpful to state a version for right-angled Coxeter groups here.

Lemma 2.1. Let W_{Γ} be a right-angled Coxeter group with generators $\left\{g_{i}\right\}_{1 \leq i \leq m}$ acting on a set X. Suppose that there exist subsets $S_{i}(1 \leq i \leq m)$ of X, satisfying the following conditions:
(1) If g_{i} and $g_{j}(i \neq j)$ commute, then $g_{i}\left(S_{j}\right)=S_{j}$.
(2) If g_{i} and g_{j} do not commute, then $g_{i}\left(S_{j}\right) \subset S_{i}$.
(3) There exists $x_{0} \in X-\bigcup_{i=1}^{m} S_{i}$ such that $g_{i}\left(x_{0}\right) \in S_{i}$ for all i.

Then this action is faithful.
Proof. In the following, we assume that the action is a left action. We identify words and the group elements. A prefix w_{1} for a word w is a subword such that $w=w_{1} w_{2}$ as words, for some subword w_{2}.

Let w be a nonempty reduced word of $\left\{g_{1}, \ldots, g_{n}\right\}$. We claim that $w\left(x_{0}\right) \in$ S_{j} for some j, and w has a prefix of the form $w_{1} g_{j}$, where w_{1} is either empty or a word of generators commuting with g_{j}.

We show the claim by induction on the length of w. The base case is ensured by the condition (3). We suppose that the claim holds true for reduced words with length less than l. Let $w=g_{k} w^{\prime}$ be a reduced word of length l. By the induction hypothesis, there is some j such that $w^{\prime}\left(x_{0}\right) \in S_{j}$. There is a prefix for w^{\prime} of the form $w_{1}^{\prime} g_{j}$ where w_{1}^{\prime} is either empty or a word of generators commuting with g_{j}.

We first consider the case where $k \neq j$. If g_{k} and g_{j} commute, $w(x)=$ $g_{k} w^{\prime}(x) \in S_{j}$, by condition (1). There is a prefix $w_{1} g_{j}$ for w, where $w_{1}=g_{k} w_{1}^{\prime}$. If g_{k} and g_{j} do not commute, $w(x)=g_{k} w^{\prime}(x) \in S_{k}$, by condition (2). There is a prefix g_{k} of w.

Next we consider the case when $k=j$. However this case does not happen, because the reduced word w cannot have a prefix of the form $g_{j} w_{1}^{\prime} g_{j}$. Therefore, the claim holds true also in the case of $|w|=l$.

We have shown that $w\left(x_{0}\right) \neq x_{0}$ for any nontrivial $w \in W_{\Gamma}$. Therefore, the action W_{Γ} on X is faithful.

3 Demonstrative embeddings into higher dimensional Thompson groups

Now we focus on the Thompson group V and its generalizations. The subgroup structure of V is not well understood. It is known that V contains free groups and many free products of its subgroups. On the other hand, there is a nonembedding result on the free product of subgroups of V.

Theorem 3.1 ([4], Theorem 1.5). The group $\mathbb{Z}^{2} * \mathbb{Z}$ does not embed in V.
This free product is the only obstruction for right-angled Artin groups to embed into V.

Theorem 3.2 ([5]). A right-angled Artin group A_{Γ} embeds into V if and only if $\mathbb{Z}^{2} * \mathbb{Z}$ does not embed into A_{Γ}.

In the following, we consider embeddings of right-angled Artin groups and right-angled Coxeter groups into higher dimensional Thompson groups.

We describe the definition of higher dimensional Thompson groups with notations in $[1]$. The symbol I denotes the half-open interval $[0,1)$. An n dimensional rectangle is an affine copy of I^{n} in I^{n}, constructed by repeating "dyadic divisions". An n-dimensional pattern is a finite set of n-dimensional rectangles, with pairwise disjoint, non-empty interiors and whose union is I^{n}. A numbered pattern is a pattern with a one-to-one correspondence to $\{0,1, \ldots, r-1\}$, where r is the number of rectangles in the pattern.

Let $P=\left\{P_{i}\right\}_{0 \leq i \leq r-1}$ and $Q=\left\{Q_{i}\right\}_{0 \leq i \leq r-1}$ be numbered patterns of the same dimension, containing the same number of rectangles in each. We define $v(P, Q)$ to be a map from I^{n} to itself which takes each P_{i} onto Q_{i} affinely so as to preserve the orientation.

The n-dimensional Thompson group $n V$ is the group which consists of maps with the form $v(P, Q)$, where P and Q are the n-dimensional numbered patterns. The definition of $1 V$ is equivalent to the definition of V.

Theorem 3.3 ([2], Theorem 1.1 and Corollary 1.3). For every finite graph Γ, the right-angled Artin group A_{Γ} embeds into $n V$, where $n=|V(\Gamma)|+|\bar{E}(\Gamma)|$. Furthermore, every finite extension of A_{Γ} embeds into $n V$.

By Theorem 3.3 and the fact that every right-angled Artin group is contained in some right-angled Coxeter group as a finite index subgroup [6], it follows that every right-angled Coxeter group embeds into some higherdimensional Thompson group.

The following is the main result of this paper.
Theorem 3.4. Let Γ be a graph with the vertex set $V(\Gamma)=\left\{v_{i}\right\}_{1 \leq i \leq m}$. Suppose that there are nonempty subsets $\left\{D_{i}\right\}_{1 \leq i \leq m}$ of $\{1, \ldots n\}$, such that $D_{i} \cap D_{j}=\emptyset$ if and only if v_{i} and v_{j} are connected by an edge.
(1) The right-angled Artin group A_{Γ} embeds into $n V$.
(2) The right-angled Coxeter group W_{Γ} embeds into $n V$.

Compared to Theorem 3.3, we get a better estimate for the dimension of the Thompson groups which contain A_{Γ}. We construct embeddings of rightangled Coxeter groups into higher-dimensional Thompson groups explicitly.

For the proof of Theorem 3.4, we borrow some notations and a lemma from [7]. For a nonempty subset D of $\{1, \ldots, n\}$, a D-slice of I^{n} is an n dimensional rectangle $S=\prod_{d=1}^{n} I_{d}$, where $d \in D$ if and only if I_{d} is properly contained in $[0,1)$.

Lemma 3.5. For nonempty subsets $\left\{D_{i}\right\}_{1 \leq i \leq m}$ of $\{1, \ldots, n\}$, we may take a set of n-dimensional rectangles $\left\{S_{i}\right\}_{1 \leq i \leq m}$ satisfying
(1) For every i, S_{i} is a D_{i}-slice of I^{n}.
(2) $S_{i} \cap S_{j}=\emptyset$ if and only if $D_{i} \cap D_{j} \neq \emptyset$.
(3) $\bigcup_{i=1}^{m} S_{i} \varsubsetneqq I^{n}$.

Proof of Theorem 3.4. The proof for right-angled Artin groups is given in [7]. Here we state the proof only for right-angled Coxeter groups.

We take $\left\{S_{i}\right\}_{1 \leq i \leq m}$ with respect to given $\left\{D_{i}\right\}_{1 \leq i \leq m}$, according to Lemma 3.5. Let $g_{i} \in n V$ be a map which permute S_{i} and $[0,1)^{n}-S_{i}$.

We may take g_{i} as to change d-th coordinate of $[0,1)^{n}$ only if $d \in D_{i}$. That is, when we write $g_{i}(x)=g_{i}\left(\left(x_{d}\right)_{1 \leq d \leq n}\right)=\left(g_{i, d}(x)\right)_{1 \leq d \leq n}, g_{i, d}(x) \neq x_{d}$ only if $d \in D_{i}$. With this assumption, g_{i} and g_{j} commute when v_{i} and v_{j} are connected by an edge. Therefore, we may define a group homomorphism $\phi: W(\Gamma) \rightarrow n V$ by $\phi\left(v_{i}\right)=g_{i}$. Here, we are using the same symbols for the vertices of Γ and the corresponding generators of W_{Γ}.

If g_{i} and $g_{j}(i \neq j)$ commute, then $D_{i} \cap D_{j}=\emptyset$. In this case, S_{j} is determined only by d-th coordinates for $d \in D_{j}$, which are unchanged by g_{i}. Therefore $g_{i}\left(S_{j}\right)=S_{j}$, and the condition (1) in Lemma 2.1 is satisfied.

If g_{i} and g_{j} do not commute, S_{i} and S_{j} are disjoint. Therefore. $g_{i}\left(S_{j}\right) \subset$ $g_{i}\left([0,1)^{n}-S_{i}\right) \subset S_{i}$, and the condition (2) in Lemma 2.1 is satisfied.

Condition (3) in Lemma 2.1 follows from the third assumption for $\left\{S_{i}\right\}_{1 \leq i \leq m}$ in Lemma 3.5.

We note that Theorem 3.4 does not give the best estimate for dimensions of the Thompson groups which contain W_{Γ}. For Γ with $|E(\Gamma)| \geq 1$, we need two or more dimensions to realize the conditions required in Theorem 3.4. On the other hand, many W_{Γ} with $|E(\Gamma)| \geq 1$ can be embedded into V. The argument of demonstrative subgroups in [4] is useful to get examples of such embeddings.

Suppose that a group G acts on a space X. A subgroup H of G is demonstrative over X if there is an open set $U \subset X$ so that for any two elements $g_{1}, g_{2} \in G, g_{1} U \cap g_{2} U \neq \emptyset$ if and only if $g_{1}=g_{2}$. We call U a demonstration set.

By definition, there is a canonical action of V on the half open interval I. Instead of this action, sometimes we consider the action of V on the Cantor set C. We identify I with the Cantor set C : the dyadic division of I corresponds to trisecting the unit interval and then taking two of them to produce open sets of C.

There are demonstrative subgroups of V over C, isomorphic to all finite groups and \mathbb{Z}. The class of demonstrative subgroups of V over C is closed under taking subgroups, and taking the direct product of any finite member with any member.

There is an embedding result on the free product of demonstrative subgroups.
Theorem 3.6 ([4], Theorem 1.4). If groups K_{1} and K_{2} are isomorphic to some demonstrative subgroups of V over C, then $K_{1} * K_{2}$ embeds in V.

According to this result, for example, we may embed free products of finite groups such as a right-angled Coxeter group $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) * \mathbb{Z}_{2}$ into V.

Remark 3.1. We identify I with C, and consider the canonical action of $n V$ on C^{n}. Theorem 3.4 gives demonstrative subgroups of $n V$ over C^{n}. For each subgroup, any open set in C^{n} which corresponds to n-dimensional rectangles in $[0,1)^{n}-\cup_{i=1}^{m} S_{i}$ is the demonstration set.

References

[1] M. G. Brin, Higher dimensional Thompson groups, Geom. Dedicata, 108, 163-192, 2004.
[2] J. Belk, C. Bleak and F. Matucci, Embedding right-angled Artin groups into Brin-Thompson groups, preprint, arXiv:math/1602.08635.
[3] C. Bleak and D. Lanoue, A family of non-isomorphism results, Geom. Dedicata, 146, 21-26, 2010.
[4] C. Bleak and O. Salazar-Díaz, Free products in R. Thompson's group V, Trans. Amer. Math. Soc. 365.11, 5967-5997, 2013.
[5] N. Corwin and K. Haymaker, The graph structure of graph groups that are subgroups of Thompson's group V, preprint, arXiv:math/1603.08433.
[6] M. Davis and T. Januszkiewicz, Right-angled Artin groups are commensurable with right-angled Coxeter groups, J. Pure Appl. Algebra 153, 229-235, 2000.
[7] M. Kato, Embeddings of right-angled Artin groups into higher dimensional Thompson groups, preprint, arXiv:math/1611.06032.
[8] T. Koberda, Ping-pong lemmas with applications to geometry and topology, IMS Lecture Notes, Singapore, 2012.

