
ON DECOMPOSITION SPACES,
ALEXANDROFF SPACES AND RELATED TOPICS

SHOJI YOKURA’

1. INTRODUCTION

This note is an extended version of the author’s talk with the same title at the workshop “Research
Trends on Set‐theoretic and Geometric Topology and their cooperation with various branches” held
at RIMS Kyoto University, June 12‐ 14, 2017.

2. A VERY NAIVE MOTIVATION

Let us consider the “natural” decomposition of the real line \mathbb{R} :

\mathbb{R}=(-\infty, 0)\mathrm{u}\{0\}\mathrm{u}(0, \infty) .

In fact, the origin is not important and one can consider the decomposition \mathbb{R}=(-\infty,p)\mathrm{u}\{p\}\sqcup
(p, \infty) “at any point p

At “the Intemational Conference on Set‐Theoretic Topology and Its Applications, Yokohama
2015”, held at Kanagawa University (Yokohama Campus), August 24‐ 26, 2015, I gave a talk
entitled “‘ “Counting” spaces and related topics in which using this decomposition I explained
why the Euler‐Poincaré characteristic has to be  V-E+F-\cdots , the alternating sum of the
number  V of vertices, the number E of edges, the number F offaces and so on. The reason is
roughly speaking as follows: The usual counting c of a finite set, i.e., the cardinality, satisfies the
following four properties for finite sets:

\bullet  A\cong A' (set‐theoretic isomorphism) \Rightarrow c(A)=c(A') ,
\bullet  c(A)=c(B)+c(A\backslash B) for B\subset A
\bullet  c(A\times B)=c(A)\cdot c(B)
\bullet  c(one element) =1

Similarly we let c be a “counting” of“nice” topological spaces such that

(1) X\cong X' (homeomorphism = topological isomorphism) \Rightarrow c(X)=c(X') ,
(2) c(X)=c(\mathrm{Y})+c(X\backslash Y) for a closed subset Y\subset X

(3) c(X\times Y)=c(X)c(\mathrm{Y})
(4) c( \mathrm{o}\mathrm{n}\mathrm{e}‐point space) =1

We apply this “counting”c to the above decomposition. Then we get

 c(\mathbb{R})=c((-\infty, 0))+c(\{0\})+c((0, \infty

Since (-\infty, 0)\cong \mathbb{R}\cong(0, \infty) , the conditions (1), (2) and (4) imply that c(\mathbb{R})=-1 and (3) implies
that c(\mathbb{R}^{n}) = (-1)^{n} . As further generalizations I gave a quick survey about motivic Hirzebruch
class [11] (cf. [43]) as a related topic. For the extended version of this talk, see [44].

(^{*}) Partially supported by JSPS KAKENHI Grant Numbers 16\mathrm{H}03936.
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The “Euler‐Poincaré characteristic” story about the decomposition \mathbb{R}=(-\infty, 0)\mathrm{u}\{0\}\sqcup(0, \infty)
is kind of “algebraic topological” (= algebra + topology) . In the present work, we consider a
“general topological” aspect of the decomposition \mathbb{R}=(-\infty, 0)\sqcup\{0\}\mathrm{u}(0, \infty) .

Let \mathcal{D}=\{(-\infty, 0), \{0\}, (0, \infty)\} be the decomposition set and let N=(-\infty, 0) , O=\{0\}, P=

(0, \infty) (where N stands for “negative”, O ongin”, P “positive”). Considering each decomposition
piece as a point, or by introducing the equivalence relation x\sim \mathcal{D} y \Leftrightarrow boử]  x and y belong to one
decomposition piece, and then taking the set of the equivalence classes, we get the quotient map

$\pi$_{\mathcal{D}}:\mathbb{R}\rightarrow \mathbb{R}/\mathcal{D}=\{N, O, P\}.

The quotient topology $\tau$_{$\pi$_{D}}, of the quotient map, i.e., the strongest or largest topology on the target
\mathbb{R}/\mathcal{D} such that the quotient map  $\pi$ \mathcal{D} : \mathbb{R}\rightarrow \mathbb{R}/\mathcal{D} becomes continuous is

$\tau$_{ $\pi$}D=\{\emptyset, \{N, O, P\}, \{N\}, \{P\}, \{N, P

Consider another decomposition \mathcal{D}' of \mathbb{R}, similar to the above \mathcal{D} :

\mathcal{D}'=\{(-\infty, -1) , [−1, 1], (1, \infty

and the quotient map $\pi$_{D'} : \mathbb{R} \rightarrow \mathbb{R}/\mathcal{D}' . For the target \mathbb{R}/\mathcal{D}' we use the same symbols N =

$\pi$_{\mathcal{D}'}((-\infty, -1)) , O=$\pi$_{D'}([-1,1]) and P=$\pi$_{\mathcal{D}'}((1, \infty The quotient topology for \mathbb{R}/\mathcal{D}' is the
same as above: \{\emptyset, \{N, 0, P\}, \{N\}, \{P\}, \{N, P

It is easy to see that the quotient map $\pi$_{\mathcal{D}'} : \mathbb{R} \rightarrow \mathbb{R}/\mathcal{D}’ is not an open map, since the image
$\pi$_{\mathcal{D}'}((0,1))=\{O\} is a closed set, not an open set, although (0,1) is an open set of \mathbb{R} . However the
quotient map  $\pi$ \mathcal{D} : \mathbb{R}\rightarrow \mathbb{R}/\mathcal{D} is an open map. One needs to prove it; for example the proof goes as
follows. Let U be an open set of \mathbb{R} . Then either 0\in U or 0\not\in U . If 0\not\in U, then $\pi$_{D}(U) is \{N\},
\{P\} or \{N, P\} , which is an open set. If  0\in  U, then by the definition of an open set of \mathbb{R} , there
exists an open interval (- $\epsilon$,  $\epsilon$) such that  0\in (- $\epsilon$,  $\epsilon$) \subset  U where  $\epsilon$>0 , hence U\cap(-\infty, 0) \neq\emptyset
and  U\cap(0, \infty)\neq\emptyset . Therefore, if  U is an open set and 0\in U , then $\pi$_{\mathcal{D}}(U)=\{N, O, P\} , which
is an open set. Thus the quotient map $\pi$_{\mathcal{D}} : \mathbb{R}\rightarrow \mathbb{R}/\mathcal{D} is an open map.

We can imagine that if a given decomposition \mathcal{D} of a topological space X has lots of pieces, say
100 pieces, then it would be not easy or quite tedious to check whether the quotient map $\pi$_{\mathcal{D}} :  X\rightarrow

 X/\mathcal{D} is open or not. In fact we can see the openness of the quotient map via the proset‐structure of
the quotient space X/\mathcal{D}, which we will discuss below.

3. DECOMPOSITIONS AND DECOMPOSITION SPACES

Before going on to prosets, in this section we recall some basic facts of decompositions and
decomposition spaces, for later use.

Let \mathcal{D}=\{D_{ $\lambda$}| $\lambda$\in $\Lambda$\} be a decomposition of a topological space X , i.e.,

(1)  D_{ $\lambda$}\cap $\mu$=\emptyset if  $\lambda$\neq $\mu$,
(2) X=\displaystyle \bigcup_{ $\lambda$\in $\Lambda$}D_{ $\lambda$}.

Let $\pi$_{D} : X \rightarrow X/D be the quotient map. Let $\tau$_{ $\pi$}\mathcal{D} be the quotient topology on the target X/\mathcal{D}.
Then the topological space (X/\mathcal{D}, $\tau$_{ $\pi$}) is called the decomposition space and the continuous map
$\pi$_{\mathcal{D}} : X\rightarrow(X/\mathcal{D}, $\tau$_{ $\pi$}) is called the decomposition map. If the content is clear, we sometimes delete
the topology $\tau$_{$\pi$_{\mathcal{D}}} . The decomposition map $\pi$_{\mathcal{D}} is also sometimes denoted simply by  $\pi$ for the sake
of simplicity.

That the decomposition map  $\pi$ :  X\rightarrow X/\mathcal{D} is open (closed) means that for any open (closed)
set G of X the image  $\pi$(G) is open (closed) in X/\mathcal{D} , which implies by the definition of the quotient
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topology on the decomposition space X/\mathcal{D} that $\pi$^{-1}( $\pi$(G)) is open (closed). Here we note that

$\pi$^{-1}( $\pi$(G))=\cup\{D_{ $\lambda$}|D_{ $\lambda$}\cap G\neq\emptyset\}.
Thus the decomposition map  $\pi$ :  X\rightarrow X/\mathcal{D} is open (closed) ifand only if\cup\{D_{ $\lambda$}|D_{ $\lambda$}\cap G\neq\emptyset\}
is open (closed) for any open (closed) set G . Here we remark that given a subset G of X each
D_{ $\lambda$} either intersects G or does not intersect G , i.e., either  D_{ $\lambda$}\cap G\neq \emptyset or  D_{ $\lambda$}\cap G= \emptyset , namely
 D_{ $\lambda$}\subset G^{c}=X\backslash G . Thus we can split the decomposition \mathcal{D} into two disjoint parts:

X=\displaystyle \bigcup_{ $\lambda$\in $\Lambda$}D_{ $\lambda$}= (\cup\{D_{ $\lambda$}|D_{ $\lambda$}\cap G\neq\emptyset\})\cup(\cup\{D_{ $\lambda$}|D_{ $\lambda$}\subset X\backslash G\}) .

\cup\{D_{ $\lambda$}|D_{ $\lambda$}\cap G\neq\emptyset\} is open (closed) if and only \mathrm{i}\mathrm{f}\cup\{D_{ $\lambda$}|D_{ $\lambda$}\subset X\backslash G\} is closed (open). If G is
open (closed), then G^{c}=X\backslash G is closed (open). Therefore we can also say that the decomposition
map  $\pi$ :  X\rightarrow X/\mathcal{D} is open (closed) ifand only if\cup\{D_{ $\lambda$}|D_{ $\lambda$}\subset F\} is closed(open)for any closed
(open) set F. Therefore we can see the following:

Proposition 3.1. Let \mathcal{D} be a decomposition ofa topological space X and let  $\pi$ :  X\rightarrow X/\mathcal{D} be the
decomposition map.

(1) The decomposition map  $\pi$:X\rightarrow X/\mathcal{D} is open ifand only if\cup\{D_{ $\lambda$}|D_{ $\lambda$}\cap U\neq\emptyset\} is open
for any open set U in X, or\cup\{D_{ $\lambda$}|D_{ $\lambda$}\subset F\} is closedfor any closed set F ofX.

(2) The decomposition map  $\pi$ :  X \rightarrow X/\mathcal{D} is closed if and only if\cup\{D_{ $\lambda$}|D_{ $\lambda$}\cap F\neq \emptyset\} is
closedfor any closed set F in X, or\cup\{D_{ $\lambda$}|D_{ $\lambda$}\subset U\} is openfor any open set U ofX.

Remark 3.2. This proposition is just a paraphrasing of the definition and it does not help much to
see if the decomposition map is an open map or a closed map or not.

Here we recall the following classical definitions:

Definition 3.3 (R. L. Moore [32], cf. [33]). Let \mathcal{D} be a decomposition of a topological space X.

(1) \mathcal{D} is called an upper semicontinuous decomposition \mathrm{i}\mathrm{f}\cup\{D_{ $\lambda$}|D_{ $\lambda$} \subset U\} is open for any
open set U of X (thus, the decomposition map  $\pi$ :  X\rightarrow X/\mathcal{D} is closed).

(2) \mathcal{D} is called a lower semicontinuous decomposition \mathrm{i}\mathrm{f}\cup\{D_{ $\lambda$}|D_{ $\lambda$} \subset F\} is closed for any
closed set F of X (thus, the decomposition map  $\pi$ :  X\rightarrow X/\mathcal{D} is open).

(3) \mathcal{D} is called a continuous decomposition if it is both upper semicontinuous and lower semi‐
continuous.

Proposition 3.4. Let f : X\rightarrow \mathrm{Y} be a surjective continuous map. Iff is open or closed, then the
topology of \mathrm{Y} is equal to the quotient topology induced by the map f.

Remark 3.5. The converse statement does not hold, as seen below.

Using Propostion 3.4 we can show the following:

Proposition 3.6. Let \mathcal{D}_{i} (1 \leqq i \leqq n) be a lower semicontinuous decomposition of a topological
space X_{i}((1\leqq i\leqq n Then the product \mathcal{D}_{1} \times\cdots \mathcal{D}_{n} is a lower semicontinuous decomposition
of the product X_{1}\times\cdots\times X_{n} and we have the homeomorphism

(X_{1}\times \cdots \times X_{n})/(\mathcal{D}_{1}\times \cdots \times \mathcal{D}_{n})\cong(X_{1}/\mathcal{D}_{1})\times \cdots\times(X_{n}/\mathcal{D}_{n}) .

Remark 3.7. The decomposition theory of decomposing \mathrm{a} (metric) space into continuum (i.e.,
compact connected space) was developed by R. L. Moore in 1920\mathrm{s} and later by R. H. Bing in 1950\mathrm{s}

(e.g., see [13]). Moore’s famous theorem [32] is that if \mathcal{D} is an upper semicontinuous decompo‐
sition of the 2‐dimensional Euclidean space \mathbb{R}^{2} into continua, none of which separates \mathbb{R}^{2} , then
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the decomposition space \mathbb{R}^{2} is homeomorphic to the Euclidean space \mathbb{R}^{2} : \mathbb{R}^{2}/\mathcal{D} \cong \mathbb{R}^{2} . How‐
ever, as to the 3‐dimensional Euclidean space \mathbb{R}^{3} , it is not the case, which was proved by R. H.
Bing [5]: There exists an upper semicominuous decomposition \mathcal{D} of the 3‐dimensional Euclidean
space \mathbb{R}^{3} into continua, none of which separates \mathbb{R}^{3} , such that the decomposition space \mathbb{R}^{2}/\mathcal{D} is
neither homeomorphic to the Euclidean space \mathbb{R}^{3} nor a manifold. But this decomposition space
\mathbb{R}^{2}/\mathcal{D} satisfies that (\mathbb{R}^{3}/\mathcal{D}) \times \mathbb{R}^{1} \cong \mathbb{R}^{4} (see [6]). This decomposition space \mathbb{R}^{2}/\mathcal{D} is the famous
Bing’s dogbone space. It should be noted that this kind of topology is called wild topology and a
similar wild topology and decomposition theory was used in M. Freedman’s famous proof of the
4‐dimensional Poincare conjecture.

4. PROSETS AND ALEXANDROFF SPACES

A preorder on a set P is a relation \leqq which is reflexive (a\leqq a) and transitive (a\leqq b,  b\leqq c\Rightarrow
 a\leqq c) . A set (P, \leqq) equipped with a preorder \leqq \mathrm{i}\mathrm{s} called a proset (preordered set). If a preorder
is anti‐symmetric (a\leqq b, b\leqq a\Rightarrow a=b) , then it is called a partial order and a set with a partial
order is called a poset (partial ordered set). a\leqq b is also denoted by a\rightarrow b using arrow.

Definition 4.1 (Alexandroff topology [1]). Let X be a topological space. If the intersection ofany
family of open sets is open (or equivalently, the union ofanyfamily ofclosed sets is closed), then the
topology is called an Alexandroff topology and the space is called an Alexandroffspace (cf. [35]).

We note that any finite topological space, i.e., a finite set with a topology, is an Alexandroff
space. For finite topological spaces, e.g., see [4, 26, 27, 28, 29, 30, 36].

Given a proset (X, \leqq) , we define U\subset X to be an open set by x\in U, x\leqq y\Rightarrow y\in U . In other
words, if we let U_{x} := \{y \in X|x \leqq y\} , then \{U_{x}|x \in X\} is the base for the topology. This
topology is denoted by  $\tau$\leqq.

Lemma 4.2. For a proset (X, \leqq) , the topological space (X,  $\tau$\leqq) is an Alexandroff space. The
topology  $\tau$\leqq is called the Alexandroff topology ofthe preorder.

Conversely, for a topological space (X,  $\tau$) , we define the order x \leqq_{ $\tau$}y\Leftrightarrow x \in\overline{\{y\}}, which is
called specialization order. Certainly this is a preorder, but not necessarily a partial order.

Lemma 4.3. If f : (X, \leqq_{1}) \rightarrow (\mathrm{Y}, \leqq_{2}) is a monotone (order‐preserving) function, i.e., x \leqq_{1} y

implies f(x)\leqq_{2}f(y) , then f : (X,  $\tau$\leqq 1)\rightarrow(Y,  $\tau$\leqq 2) is a continuous map.

Lemma 4.4. If f : (X, $\tau$_{1}) \rightarrow (Y, $\tau$_{2}) is a continuous map, then f : (X, \leqq_{$\tau$_{1}}) \rightarrow (Y, \leqq_{ $\tau$}2) is a
monotone function.

Let \mathcal{P}roset be the category of prosets and monotone functions of prosets, \mathcal{A}lex the category of
Alexandroff spaces and continuous maps and Top the category of topological spaces and continu‐
ous maps. Then we have covariant functors T:\mathcal{P}roset\rightarrow Alex and \mathcal{P} : Top\rightarrow \mathcal{P}roset . For any
proset (X, \leqq) we have (\mathcal{P}\circ T)((X, \leqq))=(X, \leqq) , i.e., \mathcal{P}\circ T=Id_{\mathcal{P}roset} However, in general,
for a topological space (X,  $\tau$) we have (T\circ \mathcal{P})((X,  $\tau$))\neq(X,  $\tau$) , i.e., T\circ \mathcal{P}\neq Id_{Top} . The reason
is that (T\circ \mathcal{P})((X,  $\tau$)) is always an Alexandroff space, even if the original space (X,  $\tau$) is not an
Alexandroff space, i.e., the topology of (T\circ \mathcal{P})((X,  $\tau$)) is stronger that the original topology  $\tau$.

However, if we restrict the functor \mathcal{P} : Top\rightarrow \mathcal{P}roset to the subcategory Alex of Alexandroff
spaces, then we have (T\circ \mathcal{P})((X,  $\tau$))=(X,  $\tau$) , i.e., T\circ \mathcal{P}=Id_{Alex} . Therefore we have \mathcal{P}\circ T=

Id_{\mathcal{P}roset}, T\circ \mathcal{P}=Id_{Alex} . Thus Alexandroff spaces and prosets are equivalent.

Proposition 4.5. Ifwe define an open set in a proset by “up‐set”, then F is a closed set ifand only
ifF is a “down‐set”, i. e., x\in F, y\leqq x\Rightarrow y\in F.
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Remark 4.6. For a proset, in the above an open set is defined using “up‐set”. However, an open
set can be also defined using “down‐set”, as in [4]. In this case, a closed is defined by “up‐set”.
Namely the roles of open set and closed set are exchanged to each other.

CoroIlary 4.7. Let  $\Lambda$ be a poset. In the Alexandroff topological space  T( $\Lambda$) , any singleton \{ $\lambda$\} is
locally closed.

Proposition 4.8. Let (P_{i}, \leqq_{i}) be a proset (1 \leqq i \leqq n). Then the preorder \leqq of the proset

\mathcal{P}(( $\tau$\leqq)).iisgivenby^{1}(x_{1},\cdots, x_{n})\leqq(y_{1},\cdot,y_{n})\Leftrightarrow x_{1}\leqq_{1}y_{1},\cdots,x_{n}\leqq_{n}y_{n}. ’

In fact, we get the following commutative diagram for the category product:

\mathcal{P}roset\times\cdots\times \mathcal{P}roset_{\frac{\underline{T\times\cdot\cdot}.\mathrm{x}T}{\mathcal{P}\times\cdot\cdot\times \mathcal{P}}\mathcal{A}leX}\times\cdots\times Alex
\mathrm{x}\downarrow |\times

\mathcal{P}roset_{\frac{\underline{ $\tau$}}{\mathcal{P}}\mathcal{A}leX}.
Definition 4.9. A decomposition \mathcal{D} of a topological space X such that the decomposition space
X/\mathcal{D} becomes an Alexandroff space is called an Alexandroffdecomposition.

Corollary 4.10. Let \mathcal{D}_{i} (1 \leqq i \leqq n) be a lower semicontinuous Alexandroff decomposition of a
topological space X_{i}((1 \leqq  i \leqq  n Then the product \mathcal{D}_{1} \times \cdots \mathcal{D}_{n} is a lower semicontinuous
Alexandroffdecomposition ofthe product X_{1} \times\cdots\times X_{n} and we have the homeomorphism

(X_{1}\times\cdots\times X_{n})/(\mathcal{D}_{1}\times\cdots\times \mathcal{D}_{n})\cong T((X_{1}/\mathcal{D}_{1}, \leqq_{$\tau$_{$\pi$_{1}}})\times\cdots\times(X_{n}/\mathcal{D}_{n}, \leqq_{$\tau$_{ $\pi$ n}})) .

Remark 4.11. In the above proof it is crucial that the finite product of Alexandroff spaces is again
an Alexandroff space. As a matter of fact, it is not true in the case of an infinite product of Alexan‐
droff spaces, as it is known that the Cantor set is an infinite product of \{0 , 1 \} but is not an Alexan‐
droff space (e.g., see [2]), although \{0 , 1 \} is an Alexandroff space because it is a finite topological
space.

Remark 4.12. It follows from the above Corollary 4.10 that we dete  $\Gamma$mine the topology of the
decomposition space (X_{1} \times \cdots \times X_{n})/(\mathcal{D}_{1} \times \cdots \times \mathcal{D}_{n}) by looking at the proset structure of the
product (X_{1}/\mathcal{D}_{1}, \leqq_{$\tau$_{$\pi$_{1}}})\times\cdots\times(X_{n}/\mathcal{D}_{n}, \leqq_{$\tau$_{$\pi$_{\mathfrak{n}}}}) , where the preorder is \leqq_{$\tau$_{$\pi$_{1}}} \times\cdots\times \leqq_{$\tau$_{$\pi$_{n}}} , i.e.,

(a_{1}, \cdots, a_{n})\leqq_{$\tau$_{ $\pi$}}1 \times\cdots\times \leqq_{$\tau$_{ $\pi$ n}} (b_{1}, \cdots , b_{n})\Leftrightarrow a_{i}\leqq_{$\tau$_{ $\pi$}}. b_{i}(\forall i) .

Here we give some examples of decomposition spaces and their associated prosets. The first two
examples are given above, but we repeat them.

Example 4.13. Consider the above‐mentioned \mathcal{D} = \{(-\infty, 0), \{0\}, (0, \infty)\} of the real lin\mathrm{e}\mathbb{R}.

For the quotient map  $\pi$ : \mathbb{R} \rightarrow \mathbb{R}/\mathcal{D} = \{N, O, P\} , the quotient topology for \mathbb{R}/\mathcal{D} is $\tau$_{ $\pi$} =

\{\emptyset, \{N\}, \{P\}, \{N, P\}, \{N, O, P\}\} and the proset (in fact poset) \mathcal{P}((\mathbb{R}/\mathcal{D}, $\tau$_{ $\pi$})) is(we do not write
the reflexivity):

O\leqq N, O\leqq P, N-O\rightarrow P.

The decomposition map  $\pi$ : \mathbb{R}\rightarrow \mathbb{R}/\mathcal{D} is open.

Example 4.14. \mathcal{D}'=\{(-\infty, -1), [-1, 1], (1, \infty)\} is another decomposition of \mathbb{R} . For the quotient
map  $\pi$ : \mathbb{R}\rightarrow \mathbb{R}/\mathcal{D}'=\{N, O, P\} , using the same symbols, the quotient topology for \mathbb{R}/\mathcal{D}' is the
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same as above: $\tau$_{ $\pi$}=\{\emptyset, \{N\}, \{P\}, \{N, P\}, \{N, 0, P The decomposition map  $\pi$ : \mathbb{R}\rightarrow \mathbb{R}/\mathcal{D}’
is not open.

Example 4.15. \mathcal{D}=\{\mathbb{Q}, \mathbb{R}\backslash \mathbb{Q}\} is a decomposition of the real line \mathbb{R} into the rational part \mathbb{Q} and
the irrational part \mathbb{R}\backslash \mathbb{Q} and for the quotient map  $\pi$ : \mathbb{R}\rightarrow \mathbb{R}/\mathcal{D} we let q= $\pi$(\mathbb{Q}),p= $\pi$(\mathbb{R}\backslash \mathbb{Q}) .

Then the quotient topology for R/\mathcal{D} is the indiscrete topology: $\tau$_{ $\pi$} = \{\emptyset, \{p, q\}\} and the proset

\mathcal{P}((\mathbb{R}/\mathcal{D}, $\tau$_{ $\pi$})) is:

p\leqq q,q\leqq p, p_{-}^{-}q.
The decomposition map  $\pi$ : \mathbb{R}^{1}\rightarrow \mathbb{R}^{1}/\mathcal{D} is open.

Example 4.16. For the circle S^{1} = \{(x, y) \in \mathbb{R}^{2}|x^{2}+y^{2} = 1\} , consider the decomposition
\mathcal{D}= \{\{(-1,0 \{(1,0 H^{+}= \{(x,y) \in S^{1}|y>0\}, H_{-} =\{(x, y) \in S^{1}|y<0\}\} and the

quotient map  $\pi$ :  S^{1}\rightarrow S^{1}/\mathcal{D} . Let a= $\pi$((-1,0 b= $\pi$((1,0 c= $\pi$(H^{+}), d= $\pi$(H_{-}) . Then

the quotient topology for S^{1}/\mathcal{D} is $\tau$_{ $\pi$} = \{\emptyset, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, \{a, b, c, d\}\} and

the proset (in fact poset) \mathcal{P}((S^{1}/\mathcal{D}, $\tau$_{ $\pi$})) is

a\leqq c, b\leqq c, a\leqq d, b\leqq d, a\nearrow c\nwarrow_{\backslash _{b}}
\backslash _{\searrow} l^{/}

d

The decomposition map  $\pi$ :  S^{1} \rightarrow  S^{1}/\mathcal{D} is open. This four‐point poset is well‐known as the
pseudo‐circle, denoted \mathrm{S}^{1} , which is weakly homotopic to the standard circle S^{1} , i.e., $\pi$_{n}(\mathbb{S}^{1}) \cong

$\pi$_{n}(S^{1}) for any n\geqq 1.

Example 4.17. For S^{1} = \{(x,y) \in \mathbb{R}^{2}|x^{2}+y^{2} = 1\} , consider another decomposition \mathcal{D}' =

{ \displaystyle \{(-1,0 B = \{(x, y)\in S^{1}|\frac{2}{3}\leqq x\leqq 1\}, C = H^{+}\backslash B, D = H_{-}\backslash B\} and the quotient
map  $\pi$ :  S^{1} \rightarrow  S^{1}/\mathcal{D} . Here H^{+}, H_{-} are as the above example. Let a =  $\pi$((-1,0 b =

 $\pi$(B) , c=  $\pi$(C) , d=  $\pi$(D) . Then the quotient topology for S^{1}/\mathcal{D}’ is the same as above: $\tau$_{ $\pi$} =

{ \emptyset, \{c\}, \{d\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, \{a, b, c, d However the decomposition map  $\pi$ :  S^{1} \rightarrow

 S^{1}/\mathcal{D} is not open.

Example 4.18. (see also Example 4.24 below) Take the product of n‐copies of the decomposition
\mathcal{D}=\{(-\infty, 0), \{0\}, (0, \infty)\} of \mathbb{R} in Example 4.13; \mathcal{D}^{n}=\mathcal{D}\times\cdots\times \mathcal{D} is a decomposition of \mathbb{R}^{n}.

It follows from Corollary 4.10 that we have

\mathbb{R}^{n}/\mathcal{D}^{n}=T((\mathbb{R}/\mathcal{D}, \leqq_{$\tau$_{ $\pi$}})\times\cdots\times(\mathbb{R}/\mathcal{D}, \leqq_{$\tau$_{ $\pi$}}))
=T((\{N, O, P\}, \leqq)\times\cdots\times(\{N, O, P\}, \leqq))
=T((\{N, O, P\}\times\cdots\times\{N, O, P\}, \leqq \times\cdots\times \leqq))

In the case when n=2 , the proset(in fact poset) (\{N, O, P\}\times\{N, O, P\}, \leqq \times\leqq) is the following:
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(N(N,' P)-(O,P)|\rightarrow(P,' P)|_{O)}
| |

(N,N)-(O,N)\rightarrow(P,N) .

From this poset structure we can determine all the open sets of \mathbb{R}^{2}/\mathcal{D}^{2}.
In the case when n is 3, we just write down the following poset, which is a part of the whole

poset (\{N, O, P\}\times\{N, O, P\}\times\{N, O, P\}, \leqq \times \leqq\times \leqq) :

(P,N(P,N|
1

(P,N, N)-(O, N,N)\rightarrow(N,N,N) .

P)

\prime O)

\mathfrak{j}N)

Now we discuss a criteria for the decomposition map being open via order \leqq . In [37] Dai Tamaki
proves the following “preorder versusfrontier‐condition” criterion for being open :

Theorem 4.19. Let  $\Lambda$ be a poset and let  $\pi$ :  X \rightarrow  $\Lambda$ be a surjective continuous map for the
Alexandroff topology on  $\Lambda$. Let  D_{ $\lambda$} :=$\pi$^{-1}( $\lambda$) .  $\pi$ is open ifand only if  $\lambda$\leqq $\mu$\Leftrightarrow D_{ $\lambda$}\subset\overline{D_{ $\mu$}}.

In his theorem the target  $\Lambda$ is a poset, however it can be a proset.

Corollary 4.20. Let \mathcal{D} = \{D_{ $\lambda$}\}_{ $\lambda$\in $\Lambda$} be a decomposition of a topological space X such that the
decomposition space X/\mathcal{D} becomes an Alexandroffspace and let\leqq_{$\tau$_{ $\pi$}} be the preorder of the proset
\mathcal{P}((X/\mathcal{D}, $\tau$_{ $\pi$})) associated to the Alexandroffspace. Then the decomposition map  $\pi$ :  X\rightarrow X/\mathcal{D}=
 $\Lambda$ is open ifand only if  $\lambda$\leqq$\tau$_{ $\pi$} $\mu$\Leftrightarrow D_{ $\lambda$}\subset\overline{D_{ $\mu$}}.

Then the above proposition implies that an Alexandroff decomposition is lower semicontinuous
if and only if  $\lambda$\leqq$\tau$_{ $\pi$} $\mu$\Leftrightarrow D_{ $\lambda$}\subset\overline{D_{ $\mu$}} for the decomposition space  $\Lambda$=X/\mathcal{D}.

Remark 4.21. For the examples above where the decomposition maps are not open, certainly  $\lambda$\leqq
 $\mu$\Leftrightarrow D_{ $\lambda$}\subset\overline{D_{ $\mu$}} does not hold.

We can define the preorder on the quotient set  X/\mathcal{D}= $\Lambda$ by

 $\lambda$\leqq^{*} $\mu$\Leftrightarrow D_{ $\lambda$}\subset\overline{D_{ $\mu$}}.
The above proposition means that the decomposition map  $\pi$ :  X\rightarrow X/\mathcal{D} is open if and only if the
proset \mathcal{P}((X/\mathcal{D}, $\tau$_{ $\pi$})) is the same as the proset (X/\mathcal{D}, \leqq^{*}) .

Now, when (X/\mathcal{D}, \leqq^{*}) is defined as above, we have the Alexandroff space T((X/\mathcal{D}, \leqq^{*})) =

(X/\mathcal{D},  $\tau$\leqq^{*)} and a natural question is:

(4.22) Is the quotient map  $\pi$ :  X\rightarrow(X/\mathcal{D},  $\tau$\leqq^{*)} continuous?
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The following is an answer to this question:

Theorem 4.23. Let \mathcal{D}=\{D_{ $\lambda$}\}_{ $\lambda$\in $\Lambda$} be a decomposition ofa topological space X. The quotient map
 $\pi$ :  X\rightarrow T((X/\mathcal{D}, \leqq^{*}))=(X/\mathcal{D},  $\tau$\leqq^{*)} is continuous ifand only if T((X/\mathcal{D}, \leqq^{*}))=(X/\mathcal{D},  $\tau$\leqq^{*)}
is the decomposition space (X/\mathcal{D}, $\tau$_{ $\pi$}) (thus \mathcal{D} is an Alexandroffdecomposition).

Theorem 4.23 can be applied to real hyperplane arrangements, as follows:

Example 4.u . Let \mathcal{A}=\{H_{1}, H_{2}, \cdots , H_{k}\} be a real hyperplane arrangement of \mathbb{R}^{n} . Here H_{i} is a
hyperplane defined by an affine fonn or a linear polynomial P_{i}=a_{i0}+a_{i1}x_{1}+\cdots+a_{ir}x_{r}+\cdots+
a_{in}x_{n} : H_{i} = \{ (x_{1}, x_{2}, \cdots , x_{n}) \in \mathbb{R}^{n}|l_{i}(x_{1},x_{2}, \cdots , x_{n}) = 0\} . The hyperplane arrangement
defines the decomposition \mathcal{D}(\mathcal{A}) , which is obtained as follows: We let

H_{i}^{-} :=\{ (x_{1}, \cdots , x_{n})|\ell_{i}(x_{1}, \cdots , x_{n})<0\}, H_{i}^{+}:=\{(x_{1}, \cdots , x_{n})|\ell_{i}(x_{1}, \cdots , x_{n})>0\}.
We also let H_{i}^{0} :=H_{i} . Then \mathcal{D}(\mathcal{A}) :=\{\mathrm{n}_{i=1}^{k}A_{i}|A_{i}\in\{H_{i}^{-}, H_{i}^{0}, H_{i}^{+}\}\} . Here we note that some

\displaystyle \bigcap_{i=1}^{k}A_{ $\eta$} can be empty, which is then deleted. The poset \mathcal{P}((\mathbb{R}^{n}/\mathcal{D}(\mathcal{A}), $\tau$_{ $\pi$})) of the decomposition
space (\mathbb{R}^{n}/\mathcal{D}(\mathcal{A}), $\tau$_{ $\pi$}) is nothing but the so‐called face poset F(A) , which is the oriented matroid
(see [34])^{1}.

Remark 4.25. In fact, Example 4.18 above is a special case of the above hyperplane arrangement,
namely it is the case of the so‐called coordinate hyperplane arrangement: \mathcal{A}=\{\{x_{1}=0\}, \{x_{2}=
0\}, \cdots

, \{x_{n}=0

As to the above question (4.22), the frontier condition is “basically” a sufficient condition for
the continuity of  $\pi$ :  X\rightarrow T((X/\mathcal{D}, \leqq^{*}))=(X/\mathcal{D},  $\tau$\leqq^{*)} . The following was proved by Hiio Lee
Tanaka ([38]):

Proposition 4.26. Let X be a topological space and let  $\pi$ :  X \rightarrow $\Lambda$ be a surjective map to a set
 $\Lambda$, and let  D_{ $\lambda$} :=$\pi$^{-1}( $\lambda$) and we define the preorder by  $\lambda$\leqq $\mu$\Leftrightarrow D_{ $\lambda$}\subset\overline{D_{ $\mu$}} . If the following two
conditions hold, then the map  $\pi$ :  X\rightarrow $\Lambda$ is continuousfor the Alexandroff topologyfor  $\Lambda$:

(1) (frontier condition) if  D_{ $\lambda$}\cap\overline{D_{ $\mu$}}\neq\emptyset, then  D_{ $\lambda$}\subset\overline{D_{ $\mu$}}.
(2) For any closed subset  C\subset  $\Lambda$, \displaystyle \bigcup_{ $\lambda$\in C}\overline{D_{ $\lambda$}} is closed. (Note that if  $\Lambda$ is a finite set, then this

condition is automatic.)

5. POSET−STRATIFIED SPACES

So far, we have not discussed a poset‐structure of the proset \mathcal{P}((X/\mathcal{D}, $\tau$_{ $\pi$})) of the decomposition
space (X/\mathcal{D}, $\tau$_{ $\pi$}) . As Example 4.15 shows, the proset \mathcal{P}((X/\mathcal{D}, $\tau$_{ $\pi$})) is not necessarily a poset. \mathrm{A}

necessary condition is the following proposition, which follows from Corollary 4.7 above:

Proposition 5.1. Let \mathcal{D} = \{D_{ $\lambda$}| $\lambda$ \in  $\Lambda$\} be an Alexandroff decomposition ofa topological space
X. If the proset \mathcal{P}((X/\mathcal{D}, $\tau$_{ $\pi$})) of the decomposition space (X/\mathcal{D}, $\tau$_{ $\pi$}) is a poset, then each piece
D_{ $\lambda$} is locally closed.

At the moment we do not know if the converse statement holds or not, although we have not
found a counterexample such that each piece D_{ $\lambda$} is locally closed, but the proset \mathcal{P}((X/\mathcal{D}, $\tau$_{ $\pi$})) is
not a poset. For the converse statement, we can show the following

Theorem 5.2. Let \mathcal{D}= \{D_{ $\lambda$}| $\lambda$ \in  $\Lambda$\} be a decomposition ofa topological space X such that the
decomposition map  $\pi$ :  X\rightarrow X/\mathcal{D} is open. Then, ifeach piece D_{ $\lambda$} is locally closed, then theproset
\mathcal{P}((X/\mathcal{D}, $\tau$_{ $\pi$})) is a poset.

1_{\mathrm{I}\mathrm{n}}[34] the partial order \leqq is the reversed one. To get the same situation as in [34] we just define the Alexandroff
topology via“down‐set” instead of up‐set”.
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Corollary 5.3. Let Let \mathcal{D}=\{D_{ $\lambda$}| $\lambda$\in $\Lambda$\} be an Alexandroffdecomposition ofa topological space
X and suppose that the decomposition map  $\pi$ :  X\rightarrow X/\mathcal{D} is open. Then the proset \mathcal{P}((X/\mathcal{D}, $\tau$_{ $\pi$}))
is a poset ifand only each piece D_{ $\lambda$} is locally closed.

Remark 5.4. Indeed, in the case of Example 4.15, one can show that the rational part \mathbb{Q} and the
irrational part \mathbb{R}\backslash \mathbb{Q} are both not locally closed.

Theorem 5.2 follows from Corollary 4.20 above and the following proposition (cf. [24]):

Proposition 5.5. Let \mathcal{D}=\{D_{ $\lambda$}| $\lambda$\in $\Lambda$\} be an Alexandroffdecomposition ofa topological space X

such that each piece D_{ $\lambda$} is locally closed. Ifwe define the preorder  $\lambda$\leqq^{*} $\mu$\Leftrightarrow D_{ $\lambda$} \subset\overline{D_{ $\mu$}} , then
this preorder is a partial order, i.e. (X/\mathcal{D}, \leqq^{*}) is a poset.

Corollary 5.6. Let \mathcal{D}=\{D_{ $\lambda$}| $\lambda$\in $\Lambda$\} be a finite stratification (i.e., | $\Lambda$|<\infty), namely such that

(1)  D_{ $\lambda$}\cap D_{ $\mu$}=\emptyset if  $\lambda$\neq $\mu$.
(2) X=\displaystyle \bigcup_{ $\lambda$}D_{ $\lambda$}.
(3) (locally closed) Each D_{ $\lambda$} is a locally closed set
(4) (frontier condition) D_{ $\lambda$}\cap\overline{D_{ $\mu$}}\neq\emptyset\Rightarrow D_{ $\lambda$}\subset\overline{D_{ $\mu$}}.

Then the decomposition map  $\pi$ :  X\rightarrow X/\mathcal{D} is a continuous map to a poset with the Alexandroff
topology.

Such a continuous map from a topological space to a poset considered as a topological space
with the Alexandroff topology have been studied in recent papers (e.g., [3], [12], [25], [37], etc.)

In Example 4.14, the decomposition is not such a finite stratification in the above sense and the
decomposition map is not an open map, but it is a continuous map to a poset with the Alexandroff
topology.

Definition 5.7. A poset‐stratified space X is a pair (X, X \rightarrow sP) of a topological space X and a
continuous map s : X\rightarrow P where P is a poset considered as the associated Alexandroff space.

Remark 5.8. The notion of poset‐stratified space seems to be due to Jacob Lurie [25]. For a poset‐
stratified space (X, X\rightarrow sP) , X is the underlying topological space and s : X\rightarrow P is considered
as a structure ofposet‐stratification. If the context is clear, then wejust write a poset‐stratified space
X , just like writing a topological space X without referring to which topology to be considered on
it.

The category of poset‐stratified spaces is denoted by \mathcal{S}trat . The objects are pairs (X, X\rightarrow sP)
of a topological space X and a continuous map s : X \rightarrow P from the space X to a poset P with
the Alexandroff topology associated to the poset P . Given two poset‐stratified spaces (X, X\rightarrow sP)
and (X', X' \rightarrow s'P) , a morphism from (X, X \rightarrow sP) to (X\prime, X' \rightarrow s'P') is a pair of a continuous
map f : X\rightarrow X' and a monotone map q : P\rightarrow P' (thus it is a continuous map for the associated
Alexandroff spaces) such that the following diagram commutes:

X\rightarrow^{s}P

f| \downarrow q
X'\rightarrow P's'.

13



6. A POSET−STRATIFIED‐SPACE STRUCTURE OF THE SET HOMOTOPY SET [X, \mathrm{Y}]

In this section we show that for topological spaces X, \mathrm{Y} the (unbased) homotopy set [X, \mathrm{Y}] can
be considered as a poset‐stratified space in a natural way ([42]).

First we observe the following:

Lemma 6.1. Given a proset (P, \leqq) , we define the following relation on P:

a, b\in P, a\sim b\Leftrightarrow a\leqq b and b\leqq a.

(1) The relation∼is an equivalence relation and we denote the set of the equivalence classes
by P/\sim.

(2) Then we define the order \leqq' on P/\sim^{as} follows: for [a], [b]\in P/\sim

[a]\leqq'[b]\Leftrightarrow a\leqq b.
Then this is well‐defined, i. e., it does not depend on the representatives a and b.

(3) The proset (P_{\sim}, \leqq') is a poset, i. e., [a]\leqq'[b] and [b]\leqq'[a] imply that [a]=[b].
(4) The projection or quotient map  $\pi$ : (P, \leqq) \rightarrow (P_{\sim}, \leqq') defined by  $\pi$(a) := [a] is a mono‐

tone map.

Theorem 6.2. Let (P, \leqq) and (P_{\sim}, \leqq') be as above.

(1) For the Alexandroff topologies the quotient nvap  $\pi$ : (P, $\tau$_{\leqq}) \rightarrow (P_{\sim}, $\tau$_{\leqq};) is an open map.
Hence, the Alexandroff topology ofthe poset (P_{\sim}, \leqq') is the same as the quotient topology
ofthe above quotient map  $\pi$ : (P, \leqq)\rightarrow P_{\sim}.

(2) In particular, each equivalence class \{b \in P|a \sim b\} of a, i.e., the fiber $\pi$^{-1}([a]) , is a
locally closed set in the Alexandroff topology of the proset (P, \leqq) .

(3) In particular, [a]\leqq'[b] ifand only if [a]\subset\overline{[b]}, where we consider [a], [b] as subsets in P.

Lemma 6.3. Let hTop be the homotopy category of topological spaces and homotopy classes of
cominuous maps, i.e. the objects of hTop are all the topological spaces and hom_{hTop}(X, \mathrm{Y}) =

[X, Y] , the homotopy set of continuous maps, where the homotopy class ofa continuous map f :
X\rightarrow \mathrm{Y} is denoted by [f].

(1) On the homotopy set [X, \mathrm{Y}] we define [f] \leqq_{R}[g] by \exists[s] \in [X, X] such that [f]=[g]\circ[s].

i.e. the diagram X\rightarrow^{f}\mathrm{Y} commutes up to homotopy. This order is a preorder

s|\nearrow^{g}
X

(2) On the homotopy set [X, Y] we define the relation [f]\sim R[g] by [f]\leqq_{R}[g] and [g]\leqq_{R}[f],
which mean that \exists[s_{1}], [s_{2}]\in[X, X] such that [f]=[g]\circ[s_{1}] and [g]=[f]\circ [s2], i. e., the
following diagram commutes up to homotopy:

 X\rightarrow^{f} Y.

S2\uparrow\downarrow S_{1}/\nearrow g
X

\sim R is an equivalence relation. The equivalence class of [f] is denoted by [f]_{R}.
(3) The partial order on the quotient [X, \mathrm{Y}]_{R} :=[X, Y]/\sim R is well‐defined as

[f]_{R}\leqq_{R}'[g]_{R} \Leftrightarrow \exists[s]\in[X, X] such that [f]=[g]\circ[s].

Thus [X, Y]_{R}=[X, \mathrm{Y}]/\sim R is a poset with the above order
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(4) $\pi$_{R} : ([X, \mathrm{Y}], \leqq_{R})\rightarrow([X, \mathrm{Y}]_{R}, \leqq_{R}') defined by $\pi$_{R}([f]) :=[f]_{R} is a monotone map.

Thus from the above Lemma 6.1 and Theorem 6.2 we get the following theorem:

Theorem 6.4. Let hTop be the homotopy category and let the set‐up be as above.

(1) For any objects X, Y\in \mathcal{O}bj(hTop) the canonical quotient map

$\pi$_{R}:([X, \mathrm{Y}], $\tau$_{\leqq_{R}})\rightarrow([X, \mathrm{Y}]_{R}, \leqq_{R}')
is a poset‐stratified space for the Alexandroff topologies.

(2) In other words, \mathcal{D} :=\{[f]_{R}\} is a decomposition of [X, Y] such that [f]_{R} (as a subset) is a
locally closed set in the Alexandroffspace ([X, Y], $\tau$_{\leqq}R) .

(3) [f]_{R}\leqq_{R}'[g]_{R} ifand only if [f]_{R}\subset\overline{[g]_{R}} as subsets in ([X, \mathrm{Y}], $\tau$_{\leqq_{R}}) .

Corollary 6.5. Let hTop be the homotopy category. For any object S\in Obj(hTop) , we hove an
associated covariantfunctor \mathfrak{s}\mathrm{t}_{*}^{S}:hTop\rightarrow Strat such that

(1) for each object \mathrm{Y}\in Obj(hTop) ,

\mathfrak{s}\mathrm{t}_{*}^{S}(X) := (\leqq_{R}, ([S, X],  $\tau$\leqq_{R})\rightarrow^{$\pi$_{R}}([S, X]_{R}, \leqq_{R}'))
(2) for a morphism [f]\in [X, Y] , \mathfrak{s}\mathrm{t}_{*}^{S}([f]) is thefollowing commutative diagram:

([S, X],  $\tau$\leqq_{R})\rightarrow^{$\pi$_{R}}([S, X]_{R}, \leqq_{R}')

1f]_{*}\downarrow |1f]_{*}
([S, Y],  $\tau$\leqq_{R})\rightarrow $\pi$ R([S, Y]_{R}, \leqq_{R}')

Similarly we can define the following:

Lemma 6.6. Let hTop be the homotopy category.

(1) On the homotopy set [X, \mathrm{Y}] we define the following order [f]\leqq_{L}[g] by \exists[t]\in [\mathrm{Y}, Y] such

that [f] = [t]\circ[g] . i.e. the diagram X\rightarrow^{f}Y commutes up to homotopy. This order is

\backslash _{g} \uparrow t
\mathrm{Y}

a preorder
(2) On the homotopy set [X, \mathrm{Y}] we define the relation [f]\sim L[g] by [f]\leqq_{L}[g] and [g]\leqq_{L}[f],

which mean that \exists[t_{1}], [t_{2}] \in [Y, \mathrm{Y}] such that [f] = [t_{1}]\circ[g] and [g] = [t_{2}]\circ[f] , i. e., the

following diagram commutes up to homotopy:

X\rightarrow^{f}\mathrm{Y}

\backslash _{g}t_{1}\uparrow|t_{2}
Y.

\sim L is an equivalence relation. The equivalence class of [f] is denoted by [f]_{L}.
(3) The partial order on the quotient [X, Y]_{L} :=[X, \mathrm{Y}]/\sim L is well‐defined as

[f]_{L}\leqq_{L}'[g]_{L} \Leftrightarrow \exists[t]\in[Y, \mathrm{Y}] such that [f]=[t]\circ[g].

Thu4S[X, Y]_{L}=[X, \mathrm{Y}]/\sim L is a poset with the above order.
(4) $\pi$_{L} : ([X, Y], \leqq_{L})\rightarrow([X, Y]_{L}, \leqq_{L}') defined by $\pi$_{L}([f]) :=[f]_{L} is a monotone map.
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Theorem 6.7. Let the set‐up be as above.

(1) For any objects X, Y\in Obj(hTop) the canonical quotient map

$\pi$_{L}:([X, Y], $\tau$_{\leqq_{L}})\rightarrow([X, \mathrm{Y}]_{L}, \leqq_{L}')
is a poset‐stratified space for the Alexandroff topologies.

(2) In other words, \mathcal{D} :=\{[f]_{L}\} is a decomposition of [X, Y] such that [f]_{L} (as a subset) is a
locally closed set in the Alexandroffspace ([X, \mathrm{Y}], $\tau$_{\leqq_{L}}) .

(3) [f]_{L}\leqq_{L}'[g]_{L} ifand only if [f]_{L}\subset\overline{[g]_{L}} as subsets in ([X, \mathrm{Y}], $\tau$_{\leqq_{L}}) .

Corollary 6.8. Let hTop be the homotopy category. Forany object T\in Obj(hTop) , we have an
associated contravariantjunctor \mathfrak{s}\mathrm{t}_{T}^{*} : hTop\rightarrow Strat such that

(1) for each object X\in Obj(hTop) ,

\mathfrak{s}\mathrm{t}_{T}^{*}(X) := (\leqq_{L}, ([X, T],  $\tau$\leqq_{L})\rightarrow^{$\pi$_{L}}([X, T]_{L}, \leqq_{L}'))
(2) for a morphism [f]\in [X, Y] , \mathfrak{s}\mathrm{t}_{T}^{*}([f]) is the following commutative diagram:

([\mathrm{Y}, T],  $\tau$\leqq_{L})\rightarrow^{$\pi$_{L}}([\mathrm{Y}, T]_{L}, \leqq_{L}')

[f]^{*}| |[f\mathrm{J}^{*}
([X,T],  $\tau$\leqq_{L})\rightarrow$\pi$_{L}([X, T]_{L}, \leqq_{L}')

If we mix the above two, we get the following:

Lemma 6.9. Let hTop be the homotopy category.

(1) On the homotopy set [X, Y] we define the order [f] \leqq_{LR} [g] by \exists[s] \in [X, X] and \exists[t] \in

[Y, \mathrm{Y}] such that [f]=[t]\circ[g]\circ[s]. i.e. the diagram X\rightarrow^{f}Y commutes up to homotopy.

s| \uparrow t
X\rightarrow Yg

This order is a preorder
(2) On the set [X, \mathrm{Y}] we define the relation [f]\sim LR[g] by [f]\leqq_{LR}[g] and [g]\leqq_{LR}[f] , which

mean that \exists[\mathcal{S}_{1}], [s_{2}] \in [X, X] and \exists[t_{1}], [t_{2}] \in [\mathrm{Y}, Y] such that [f] = [t_{1}]\circ[g]\circ[s_{1}] and

[p]=[t_{2}]\circ[f]\circ [s2], i. e., the following diagram commutes up to homotopy:

 X\rightarrow^{f}\mathrm{Y}

S2\uparrow\downarrow S_{1} t_{1}\uparrow|t_{2}
X\rightarrow^{g} Y.

\sim LR is an equivalence relation. The equivalence class of [f] is denoted by [f]_{LR}.
(3) The panial order on the quotient [X, \mathrm{Y}]_{LR} :=[X, Y]/\sim LR is well‐defined as

[f]_{LR}\leqq_{LR}'[g]_{LR}\Leftrightarrow\exists[s]\in [X, X], \exists[t] \in[\mathrm{Y}, Y] such thot [f]=[t]\circ[g]\circ[s].

m_{us}[X, \mathrm{Y}]_{LR}=[X, \mathrm{Y}]/\sim LR is a poset with the above order.
(4) $\pi$_{LR} : ([X, Y], \leqq_{LR}) \rightarrow ([X, \mathrm{Y}]_{LR}, \leqq_{LR}') defined by $\pi$_{LR}([f]) := [f]_{LR} is a monotone

map.

Theorem 6.10. Let the set‐up be as above.
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(1) For any objects X, \mathrm{Y}\in \mathcal{O}bj(hTop) the canonical quotient map

$\pi$_{LR}:([X, \mathrm{Y}], $\tau$_{\leqq_{LR}})\rightarrow([X, Y]_{LR}, \leqq_{LR}')
is a poset‐stratified spacefor the Alexandroff topologies.

(2) In other words, \mathcal{D} :=\{[f]_{LR}\} is a decomposition of [X, \mathrm{Y}] such that [f]_{LR} (as a subset) is
a locally closed set in the Alexandroffspace ([X, \mathrm{Y}],  $\tau$\leqq_{LR}) .

(3) [f]_{LR}\leqq_{LR}'[g]_{LR} ifand only if [f]_{LR}\subset\overline{[g]_{LR}} as subsets in ([X, Y],  $\tau$\leqq_{LR}) .

Remark 6.11. For this mixed situation we cannot get any functor from C to Strat, unlike the cases
of [X, Y]_{R}, [X, \mathrm{Y}]_{L}.

Remark 6.12. For the above relation [f]\leqq_{L}[g] defined by \exists t : \mathrm{Y}\rightarrow \mathrm{Y} such that [f]=[t]\circ[g] , i.e.,
f\sim t\circ g , Jim Stasheff (private communication) informed us that this kind of thing, in a different
context, was already considered by Karol Borsuk [9, 10] and Peter Hilton [20] (cf. [21, 22]) in
1950' \mathrm{s} . According to these papers,

(1) K. Borsuk introduced dependence ofmaps: f : X\rightarrow \mathrm{Y} is said to dependon g:X\rightarrow \mathrm{Y} if
whenever g is extended to X'\supset X , so is f . He gave an alternative naming for this notion:
f is a multiple ofg or g is a divisor off. it mrned out that this naming was correct, because
Borsuk proved that f depends on g if and only if there exists a map t : \mathrm{Y}\rightarrow Y such that
f\sim t\circ g.

(2) Borsuk defined two maps f and g to be conjugate if they depend on each other, i.e., by our
notation [f]\leqq_{L}[g] and [g]\leqq_{L}[f] , i.e., [f]\sim L[g].

(3) f : X\rightarrow \mathrm{Y} is said to co‐depend on g : X\rightarrow \mathrm{Y} if whenever g lifts to the total space E of a
fibration over \mathrm{Y} , so does g . Then the dual of the above result is that f co‐depends on g if
and only if there exists a map s:X\rightarrow X such that f\sim g\circ s . (A remark by the authors: It
is natural to define that if f and g co‐depends on each other, they are called co‐conjugate.
We are not sure if Borsuk or Hilton defined the notion of co‐conjugate.)

(4) The above results about the co‐dependence marks the birth ofEckmann‐Hilton duality!
(5) In fact, R. Thom [39] independently introduced the notion of dependence of cohomology

classes. Thom’s dependence is subsumed in Borsuk’s dependence.
Thus, using Borsuk’s notion, [X, \mathrm{Y}]_{R} and [X, \mathrm{Y}]_{L} are the poset of the homotopy classes of co‐
conjugate maps and conjugate maps, resp. Furthermore [X, Y]_{LR} can be considered as the poset
of homotopy classes of conjugate‐co‐conjugate maps.

Remark 6.13. The above construction can be done for any locally small category C instead of the
homotopy category hTop of topo1ogical spaces ([45]). In other words, the above is an application
of the general construction for any locally small category C to the case of the homotopy category
hTop.

Remark 6.14. For topological spaces X and \mathrm{Y} , as seen above, the homotopy set [X, \mathrm{Y}] which is the
set of homotopy classes of(unbased) continuous maps from X to \mathrm{Y} can be considered as a topolog‐
ical space, more precisely an Alexandroff space. In the case of topological space, the homotopy set
[X, \mathrm{Y}] does have another canonical topological structure via the compact‐open topology. Namely,
the set Map(X, Y) is a topological space with the compact‐open topology and since the homotopy
set [X, \mathrm{Y}] :=Map(X, \mathrm{Y})/\sim \mathrm{i}\mathrm{s} the quotient of Map(X, Y) via the homotopy equivalence∼be‐
comes a topological space as a quotient space (with the quotient topology) of the topological space
Map(X, Y), using the surjective quotient map  $\pi$:Map(X, \mathrm{Y})\rightarrow[X, \mathrm{Y}].

If we consider the homotopy set [X, Y] of homotopy classes of based continuous maps from X

to Y , a typical example of such a topological space Map(X, Y) is the loop space ofX with the base
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point x_{0}: $\Omega$(X, x_{0})=Map((S^{1}, e), (X, x_{0} The quotient set  $\Omega$(X, x_{0})/\sim becomes a group, i.e.
the fundamental group $\pi$_{1}(X, x_{0}) . Usually one dose not consider such a topological aspect of the
quotient set $\pi$_{1}(X, x_{0}) . In fact, in 1950\mathrm{s} , in [14] J. Dugundi already considered the fundamental
group with such a topology. In [7] D.K. Biss proved that the fundamental group with the induced
compact‐open topology was a topological group, and he called it the topologicalfiundamental group
and denoted it by $\pi$_{1}^{top}(X, x_{0}) . Later in [16] H. Ghane, Z. Hamed, B. Mashayekhy and H. Mire‐
brahimi considered topologized higher homotopy groups (called “topological homotopy group”’ de‐
noted by $\pi$_{n}^{top}(X, x_{0} generalizing Biss’s construction. However, recently in [8] J. Brazas pointed
out that there exist some examples of topological spaces whose topologized fundamental group is
not a topological group, and he showed that Biss’s topologized fundamental group is a quasitopo‐
logical group, i.e., a group G with topology such that the inversion  $\iota$ :  G \rightarrow  G,  $\iota$(g) = g^{-1} is
continuous and that the multiplication m :  G\times  G \rightarrow  G, m(a, b) =ab is continuous in each
variable, i.e., all right and left translations are continuous (in fact homeomorphism). Note that a
topological group requires that the multiplication m :  G\times G\rightarrow  G is continuous, where G\times G

is the product space. So Biss’s topologized fundamental group is now called the quasitopological
fiundamental group and denoted by $\pi$_{1}^{qtop}(X, x_{0}) .

7. APPLICATIONS

In this section we present some applications/examples (for a bit more applications/examples with
some details, see [42], [45] and [46]).

Definition 7.1. For a group G let \mathcal{S}ub(G) be the set of all subgroups of the group G . For subgroups
A, B\in \mathcal{S}ub(G) we define the order A\leqq B by the usual inclusion A\subseteq B , which is clearly a partial
order.

Lemma 7.2. Let H_{*} be the homology theory with a coefficient nng R Then thefollowing ngaps
are well‐defined and monotone (order‐preserving) maps:

(1) {\rm Im}_{H_{*}} : ([X, \mathrm{Y}], \leqq_{R})\rightarrow(Sub(H_{*}(Y)), \leqq) , {\rm Im}_{H_{*}}([f]) :={\rm Im}(f_{*}:H_{*}(X)\rightarrow H_{*}(Y)) .
(2) {\rm Im}_{H_{*}}' : ([X, Y]_{R}, \leqq_{R}')\rightarrow(\mathcal{S}ub(H_{*}(Y)), \leqq) , {\rm Im}_{H_{*}}'([f]_{R}) :={\rm Im}_{H}.([f]) .

We have the following commutative diagram: ([X, Y], \leqq_{R})\rightarrow^{$\pi$_{R}}([X, \mathrm{Y}]_{R}, \leqq_{R}')

\mathrm{i}\mathrm{d}_{[X,Y]}| \downarrow{\rm Im}_{H_{2}}'
([X, Y], \leqq_{R})\vec{{\rm Im}_{H*}}(Sub(H_{*}(Y)), \leqq) .

Similarly we get the following:

Lemma 7.3. Let H^{*} be the cohomology theory with a coefficient ring R. Then the following
maps are well‐defined and monotone (order‐preserving) maps:

(1) {\rm Im}_{H^{*}} : ([X, Y], \leqq_{L})\rightarrow(\mathcal{S}ub(H^{*}(X)), \leqq) , {\rm Im}_{H^{*}}([f]) :={\rm Im}(f^{*} : H^{*}(Y)\rightarrow H_{*}(X)) .
(2) {\rm Im}_{H^{\wedge}}' : ([X, \mathrm{Y}]_{R}, \leqq_{L}')\rightarrow(Sub(H^{*}(X)), \leqq) , {\rm Im}_{H^{\wedge}}'([f]_{R}) :={\rm Im}_{H^{*}}([f]) .

We have the following commutative diagram: ([X, Y], \leqq_{L})\rightarrow^{$\pi$_{L}}([X, \mathrm{Y}]_{L}, \leqq_{L}')

\mathrm{i}\mathrm{d}_{[X,Y]}\downarrow |{\rm Im}_{H^{*}}'
([X, \mathrm{Y}], \leqq_{L})(\mathcal{S}ub(H^{*}(X))\vec{{\rm Im}_{H^{*}}}, \leqq) .

Corollary 7.4. Let H_{*} and H^{*} be as above.
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(1) For \forall S\in Obj(hTop) , we have a covariantfunctor \mathfrak{s}\mathrm{t}_{H}^{S}. : hTop\rightarrow Strat such that
(a) for each object X\in Obj (hTop) ,

\mathfrak{s}\mathrm{t}_{H_{*}}^{S}(X) := (\leqq_{R}, ([S, X], $\tau$_{\leqq_{R}})\rightarrow^{{\rm Im}_{H_{*}}}(Sub(H_{*}(X)), \leqq)) .

(b) for a morphism [f]\in[X, \mathrm{Y}], \mathfrak{s}\mathrm{t}_{H_{*}}^{S}([f]) is the following commutative diagram:

([S, X],  $\tau$\leqq_{R})\rightarrow(Sub(H_{*}(X)), \leqq){\rm Im}_{H*}

f*1 \downarrow f*
([S, \mathrm{Y}],  $\tau$\leqq_{R})\rightarrow(\mathcal{S}ub(H_{*}(Y)), \leqq){\rm Im}_{H}.\cdot

(2) {\rm Im}_{H_{*}}' gives rise to a natural transformation {\rm Im}_{H_{*}}' : \mathfrak{s}\mathrm{t}_{*}^{S} \rightarrow \mathfrak{s}\mathrm{t}_{H_{*}}^{S} namely for a
morphism [f] \in [X, \mathrm{Y}] we have thefollowing commutative diagram:

\mathfrak{s}\mathrm{t}_{*}^{S}(X)\rightarrow \mathfrak{s}\mathrm{t}_{H_{*}}^{S}(X){\rm Im}_{H_{\mathrm{X}}}'.
f*1 |f*

\mathfrak{s}\mathrm{t}_{*}^{S}(Y)\mathfrak{s}\mathrm{t}_{H_{*}}^{S}(Y)\vec{{\rm Im}_{H*}'}
Namely we have thefollowing commutative cube:

([S, X],  $\tau$\leqq_{R})\underline{\mathrm{i}\mathrm{d}_{[S,X]}}([S, X], $\tau$_{\leqq}R)

f*\mathrm{I} H_{*}(X)) , \leqq)

([S, Y],  $\tau$ \downarrow f*
([S, \mathrm{Y}]_{R}, \leqq_{R}')\rightarrow^{{\rm Im}_{H*}'}(Sub(H_{*}(Y)), \leqq) .

(3) For any object T \in  Obj(hTop) , we have an associated contravariant functor \mathfrak{s}\mathrm{t}_{\mathcal{I}}^{H^{*}} :
hTop\rightarrow Strat such that

(a) for each object X\in Obj(hTop) ,

\mathfrak{s}\mathrm{t}_{T}^{H^{*}}(X) :=(\leqq_{L}, ([X, T],  $\tau$\leqq_{L})\rightarrow^{{\rm Im}_{H^{*}}}(Sub(H^{*}(X)), \leqq))
(b) for a morphism [f]\in [X, \mathrm{Y}] , \mathfrak{s}\not\in^{*}([f]) is the following commutative diagram:

([\mathrm{Y}, T],  $\tau$\leqq_{L})\rightarrow(Sub(H^{*}(Y)), \leqq){\rm Im}_{H^{*}}

f^{*}| |f^{*}
([X, T],  $\tau$\leqq_{L})\rightarrow^{{\rm Im}_{H^{*}}}(Sub(H^{*}(X)), \leqq) .
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(4) {\rm Im}_{H^{*}}' gives rise to a natural transformation {\rm Im}_{H^{*}}' : \mathfrak{s}\mathrm{t}_{T}^{*}(-)\rightarrow \mathfrak{s}\mathrm{t}_{T}^{H^{*}} namelyfora mor‐

phism [f]\in [X, \mathrm{Y}] we have thefollowing commutative diagram: \mathfrak{s}\mathrm{t}_{T}^{*}(Y)\rightarrow \mathfrak{s}\mathrm{t}_{T}^{H^{*}}{\rm Im}_{H^{*}}'(\mathrm{Y})
f^{*}\downarrow |f^{*}

\mathfrak{s}\mathrm{t}_{T}^{*}(X)\mathfrak{s}\mathrm{t}_{T}^{H^{*}}(X)\vec{{\rm Im}_{H^{*}}'}.
Namely we have the following commutative cube:

([Y, T], $\tau$_{\leqq_{L}})\underline{\mathrm{i}\mathrm{d}_{[Y,T|}}([Y, T], $\tau$_{\leqq_{L}})

f^{*}\downarrow H^{*}(Y)) , \leqq)
([X, T],  $\tau$ \downarrow f^{*}

([X, T]_{R}, \leqq_{L}')\overline{{\rm Im}_{H^{*}}}(Sub(H^{*}(X)), \leqq) .

The case of {\rm Im}_{H}* : ([X, T], \leqq_{L}) \rightarrow (Sub(H^{*}(X), \leqq) is related to Thom’s dependence of
cohomology classes [39] mentioned above. To explain that, we recall the definition of dependence
of cohomology classes (e.g., see [20]).

Definition 7.5 (R. Thom). The cohomology class  $\beta$\in H^{q}(X;B) depends on the cohomology class
 $\alpha$\in H^{p}(X;A) , where A, B are coefficient rings, if, for all (perhaps infinite) polyhedra \mathrm{Y} and all
maps f : X\rightarrow \mathrm{Y} such that  $\alpha$\in f^{*}(H^{p}(Y;A we have  $\beta$\in f^{*}(H^{q}(Y;B

We also recall that the cohomology theory is representable by the Eilenberg‐Maclane space,
i.e., H^{j}(X;R) \cong [X, K(R,j)] where K(R,j) is the Eilenberg‐Maclane space whose homotopy
type is completely characterized by the homotopy groups $\pi$_{j}(K(R,j)) = R and $\pi$_{i}(K(R,j)) =

0, i \neq  j . Then by the Hurewicz Theorem we have H_{j}(K(R,j);\mathbb{Z}) \cong $\pi$_{j}(K(R,j)) = R and
H_{d}(K(R,j)) = 0 for d < j . Hence by the universal coefficient theorem (\mathrm{i}.\mathrm{e}., H^{j}(X;R) \cong

 Hom(H_{j}(X;\mathbb{Z})\oplus \mathrm{E}\mathrm{x}\mathrm{t}^{1}(H_{j-1}(X;\mathbb{Z}), R)) we have the isomorphism

 $\Phi$ :  H^{j}(K(R,j);R)\cong Hom(H_{j}(K(R,j);\mathbb{Z}), R)\cong Hom($\pi$_{j}(K(R,j)), R)\cong Hom(R, R) .

Let u := $\Phi$^{-1}(\mathrm{i}\mathrm{d}_{R}) for the identity map \mathrm{i}\mathrm{d}_{R} : R \rightarrow  R . Then the above isomorphism  $\Theta$ :
[X, K(R,j)]\cong H^{j}(X, R) is obtained by  $\Theta$([f]) :=f^{*}u where f^{*}:H^{j}(K(R,j);R)\rightarrow H^{j}(X, R) .
Thom [39] proves the following proposition (also see [20]).

Proposition 7.6. Let  $\alpha$\in H^{p}(X;A) \cong [X, K(A,p)] and let f_{ $\alpha$} : X \rightarrow K(A,p) be a map such
that the homotopy class [f_{ $\alpha$}] corresponds to  $\alpha$ . Then  $\beta$ \in  H^{q}(X, B) depends on  $\alpha$ if and only if
 $\beta$\in f_{ $\alpha$}^{*}(H^{q}(K(A,p);B

Using this proposition we can get the following result. By the monotone map

{\rm Im}_{H^{*}} : ([X, K(A,p)], \leqq_{L})\rightarrow(Sub(H^{*}(X;B \leqq)

the image {\rm Im}_{H^{*}}([f_{ $\alpha$}])=f_{ $\alpha$}^{*}((H^{q}(K(A,p);B)) is nothing but the subgroup ofall the cohomology
classes  $\beta$ \in  H^{q}(X;B) depending on the cohomology class  $\alpha$ . Now we let  $\alpha$, $\alpha$' \in  H^{p}(X, A)

20



and let f_{ $\alpha$}, f_{$\alpha$'} : X \rightarrow  K(A,p) be the corresponding maps. Then, if f_{ $\alpha$} depends on f_{$\alpha$'} , i.e.,
[f_{ $\alpha$}]\leqq_{L}[f_{$\alpha$'}] by our terminology (in other words, we can define the order of the cohomology \mathrm{C}\mathfrak{l} aSSeS

 $\alpha$\leqq_{L}$\alpha$' by this), then we have ( $\alpha$\in){\rm Im}_{H^{*}}([f_{ $\alpha$}])\subset{\rm Im}_{H^{*}}([f_{$\alpha$'}]) , i.e., {\rm Im}_{H^{*}}([f_{ $\alpha$}])\leqq{\rm Im}_{H^{*}}([f_{$\alpha$'}]) .
Thus, that  $\alpha$ depends on  $\alpha$' is equivalent to that {\rm Im}_{H^{*}}([f_{ $\alpha$}])\leqq{\rm Im}_{H^{*}}([f_{$\alpha$'}]) .

Here is another application to vector bundles and characteristic classes (e.g., see [31], [19]). Let
Vectn(X) be the set of isomorphism classes of complex vector bundles of rank n . Then we do
know that

\mathrm{V}\mathrm{e}\mathrm{c}\mathrm{t}_{n}(X)\cong[X, G_{n}(\mathbb{C}^{\infty})]
where G_{n}(\mathbb{C}^{\infty}) is the infinite Grassmann manifold of complex planes of dimension n, i.e., the
classifying space of complex vector bundles of rank n . This isomorphism is by the correspondence
[E]\leftrightarrow [f_{E}] , where f_{E} : X\rightarrow G_{n}(\mathbb{C}^{\infty}) is a classifying map of E, i.e., E=f_{E}^{*}$\gamma$^{n} , where $\gamma$^{n} is
the universal complex vector bundle of rank n over G_{n}(\mathbb{C}^{\infty}) .

By the isomorphism \mathrm{V}\mathrm{e}\mathrm{c}\mathrm{t}_{n}(X)\cong[X, G_{n}(\mathbb{C}^{\infty})] we can consider the preorder of [E] and [F] :

[E]\leqq_{L}[F]\Leftrightarrow[f_{E}]\leqq_{L}[f_{F}],

where f_{E}, f_{F} : X\rightarrow G_{n}(\mathbb{C}^{\infty}) are respectively the classifying maps of E and F.

Then we have the following well‐defined monotone (order‐preserving) map:

{\rm Im}_{H^{*}} : (Vectn(X), \leqq_{L} ) \rightarrow(Sub(H^{*}(X;\mathbb{Z} \leqq)

defined by

{\rm Im}_{H^{*}}([E]) :={\rm Im}(f_{E}^{*} : H^{*}(G_{n}(\mathbb{C}^{\infty});\mathbb{Z})\rightarrow H^{*}(X;\mathbb{Z}

By the definition of characteristic classes, {\rm Im} (f_{E}^{*} : H^{*}(G_{n}(\mathbb{C}^{\infty});\mathbb{Z})\rightarrow H^{*}(X;\mathbb{Z})) is nothing but

the subring consisting ofall the characteristic classes ofE, which is \mathbb{Z}[c_{1}(E), c_{2}(E), , c_{n}(E)].
Let us denote this subring by Char(E) . Therefore we have

[E]\leqq_{L}[F\vec{\underline{]},} Char (E)\subseteq \mathrm{C}\mathrm{h}\mathrm{a}r(F) .

We also get that [E]\sim L[F]\Rightarrow \mathrm{C}\mathrm{h}\mathrm{a}i\mathrm{r}(E)=\mathrm{C}\mathrm{h}\mathrm{a}r(F) .

Question 7.7. Is it true that Char (E)=\mathrm{C}\mathrm{h}\mathrm{a}x(F)\Rightarrow[E]\sim L[F] ?

Even if the above answer is negative, we can introduce the following equivalence relation on
Vectn(X):

[E]\sim char[F]\Leftrightarrow \mathrm{C}\mathrm{h}\mathrm{a}x(E)=\mathrm{C}\mathrm{h}\mathrm{a}\mathrm{r}(F) .

If we denote the image of {\rm Im}_{H^{*}} : Vectn(X) \rightarrow Sub(H^{*}(X;\mathbb{Z})) by Char\mathcal{S}ub(H^{*}(X;\mathbb{Z} then
we get the surjective monotone map

{\rm Im}_{H}*:\mathrm{V}\mathrm{e}\mathrm{c}\mathrm{t}_{n}(X)\rightarrow CharSub(H^{*}(X;\mathbb{Z}

Then each fiber {\rm Im}_{H^{*}}^{-1}(\mathrm{C}\mathrm{h}\mathrm{a}\mathrm{r}(E)) is the set of the isomorphism classes [F] such that [E]\sim char[F].
If we consider Alexandroff topologies on the proset (Vectn(X), \leqq_{L} ) and the poset
(CharSub(H

* (X; \mathbb{Z} \subseteq) , we have a continuous map {\rm Im}_{H^{*}} : \mathrm{V}\mathrm{e}\mathrm{c}\mathrm{t}_{n}(X)\rightarrow CharSub(H^{*}(X;\mathbb{Z}
hence each fiber {\rm Im}_{H^{*}}^{-1}(\mathrm{C}\mathrm{h}\mathrm{a}\mathrm{r}(E)) is a locally closed set, because each singleton in a poset with the
associated Alexandroff topology is a locally closed set. In other words, the above equivalence rela‐
tion \sim char (via the characteristic subring Char(E)) gives rise to a canonical naive “stratification”
of Vectn(X).

Question 7.8. Is the above equivalence relation ∼char usefulfor vector bundles?
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Question 7.9. If we define [E] \sim char\mathbb{Q} [F] \Leftrightarrow \mathrm{C}\mathrm{h}\mathrm{a}\mathrm{r}(E)\otimes \mathbb{Q} = Chax (F)\otimes \mathbb{Q}(\subset  H^{*}(X;\mathbb{Q}
then we get a larger stratification, i. e., each strata is larger. Is such a larger stratification useful 2

We would like to consider these questions in a different paper.

Remark 7.10. In the case of real vector bundles, the complex infinite Grassmann G_{n}(\mathbb{C}^{\infty}) , the
Chem class c_{i} and the coefficient ring \mathbb{Z} are respectively replaced by the real infinite Grassmann
G_{n}(\mathbb{R}^{\infty}) , the Stiefell‐Whitney class w_{i} and the coefficient ring \mathbb{Z}_{2}.

Remark 7.11. Instead of homology H_{*} and cohomology H^{*} we can consider homotopy
version of these, i.e., homotopy groups $\pi$_{*} and cohomotopy “groups” $\pi$^{*} In this case we
consider the based homotopy set [X, Y]_{*} . We note that the cohomotopy set $\pi$^{p}(X) :=[X, S^{p}] (e.g.,
see [23]).

Remark 7.12. In the case of a general locally small category C , if we have reasonable covariant
functors \mathcal{H}_{*} and contra variant functors \mathcal{H}^{*} , we can do similar things to the above.

When it comes to the homotopy groups $\pi$_{*} , we have another application. Let Map(X, Y : f) be
the path component of Map(X, Y) containing f . Let * be the base point of X and we consider the
evaluation map

ev : Map (X, \mathrm{Y}: f)\rightarrow Y ev(g) :=g(*) .

Definition 7.13 ([40]). For a continuous map f : X\rightarrow Y , the n‐th evaluation subgroup G_{n}(Y, X :
f) of the n‐th homotopy group $\pi$_{n}(\mathrm{Y}) is defined as follows:

G_{n} (\mathrm{Y}, X : f) :={\rm Im}(ev_{*}:$\pi$_{n} (Map(X, \mathrm{Y} : f))\rightarrow$\pi$_{n}(\mathrm{Y})) .

This is a generalized version of the following Gottlieb group G_{n}(X) ([17, 18

G_{n}(X) :={\rm Im}(ev_{*}:$\pi$_{n}(aut_{1}X)\rightarrow$\pi$_{n}(X)) ,

where autlX =Map (X, X : \mathrm{i}\mathrm{d}_{X}) and id_{X} is the identity map.
The n‐th evaluation subgroup G_{n} (Y, X : f) can be described as follows:

Lemma 7.14 ([40]). The n‐th evaluation subgroup ofa map f : X\rightarrow Y is

G_{n}(\mathrm{Y}, X;f) := { a\in$\pi$_{n}(\mathrm{Y})| X\times S^{n}\leftarrow S^{n}is^{n} is homotopy commutative}

i_{X}|^{\exists $\phi$}|aX\displaystyle \frac{\mathrm{A}}{f}Y
fivm the adjoinMess.

As to the case of generalized Gottlieb groups, we need to reverse the order.

Proposition 7.15. The following map (called “the n‐th generalized Gottlieb evaluation subgroup
map”)

\mathfrak{g}_{n}:[X, \mathrm{Y}]\rightarrow \mathcal{S}($\pi$_{n}(\mathrm{Y})) G_{n}([f]):=G_{n}(Y, X:f)
is well‐defined, i.e., f\sim f' implies that G_{n}(\mathrm{Y}, X:f)=G_{n}(\mathrm{Y}, X:f

Proposition 7.16. The following map (called “the finer n‐th generalized Gottlieb evaluation sub‐
group map”)

\mathfrak{g}_{n}^{R} : [X, \mathrm{Y}]_{R}\rightarrow \mathcal{S}($\pi$_{n}(\mathrm{Y})) \mathfrak{g}_{n}^{R}([f]_{R}) :=G_{n}(\mathrm{Y}, X : [f])=G_{n}(\mathrm{Y}, X : f)
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is well‐defined, i.e., [f] \sim R [g_{ $\pi$}] nimplies that G_{n}(Y, X;f) = G_{n}(Y, X;g) . Namely the following
diagram commutes: [X, Y X, \mathrm{Y}]_{R}

|\mathfrak{g}_{n}^{R}
\mathcal{S}($\pi$_{n}(Y))

Corollary 7.17. (1) If [f] \leqq_{R} [g] , then we have G_{n}(\mathrm{Y}, X;g) \subset  G_{n}(\mathrm{Y}, X;f) , i.e., \mathfrak{g}_{n}([g]) \leqq
\mathfrak{g}_{n}([f]) . Hence

\mathfrak{g}_{n} : ([X, Y])\leqq_{R}^{op})\rightarrow \mathcal{S}ub($\pi$_{n}(\mathrm{Y}), \leqq) is a monotone map.
(2) If [f]_{R} \leqq [g]_{R}, then we have G_{n}(\mathrm{Y}, X;g) \subset  G_{n}(\mathrm{Y}, X;f) , i.e., \mathfrak{g}_{n}^{R}([g]_{R}) \leqq \mathfrak{g}_{n}^{R}([f]_{R}) .

Hence

\mathfrak{g}_{n}^{R} : ([X, \mathrm{Y}]_{R}, \leqq_{R}^{\prime op})\rightarrow \mathcal{S}ub($\pi$_{n}(Y), \leqq) is a monotone map.
We also have thefollowing commutative diagram:

([X, \mathrm{Y}], \leqq_{R}^{op})\rightarrow^{ $\pi$ R}([X, \mathrm{Y}]_{R}, \leqq_{R}'\ovalbox{\tt\small REJECT} p)

\mathrm{i}\mathrm{d}_{[X,Y]}| 9_{n}^{R}\downarrow
([X, \mathrm{Y}], \leqq_{R}^{op})\rightarrow^{9n}(Sub($\pi$_{n}(\mathrm{Y})), \leqq)

Corollary 7.18. (1) For \forall S \in  Obj(hTop) , we have a covariantfunctor \mathfrak{s}\mathrm{t}_{Gott}^{S} : hTop \rightarrow

Strat such that

(a) for each object  X\in Obj(hTop) ,

\mathfrak{s}\mathrm{t}_{Gott}^{S}(X) := ( ([S, X], $\tau$_{\leqq_{R}^{op}}), ([S, X], $\tau$_{\leqq_{R}^{o\mathrm{p}}})\rightarrow \mathfrak{g}_{n}(Sub($\pi$_{n}(X)), \leqq
(b) for a morphism [f]\in[X, Y], \mathfrak{s}\mathrm{t}_{Gott}^{S}([f]) is thefollowing commutative diagram:

([S, X], $\tau$_{\leqq_{R}^{op}})\rightarrow^{\mathfrak{g}_{n}}(\mathcal{S}ub($\pi$_{n}(X)), \leqq)

f*\mathrm{I} |f*
([S, \mathrm{Y}],  $\tau$\leqq_{R\overline{\mathfrak{g}_{n}}}^{o\mathrm{p}})(Sub($\pi$_{n}(\mathrm{Y})), \leqq) .

(2) \mathfrak{g}_{n}^{R} gives rise to a natural transformation \mathfrak{g}_{n}^{R} : \mathfrak{s}\mathrm{t}_{*}^{S} \rightarrow \mathfrak{s}\mathrm{t}_{Gou}^{S} namelyfor a morphism
[f]\in[X, \mathrm{Y}] we have thefollowing commutative diagram:

\mathfrak{s}\mathrm{t}_{*}^{S}(X)\rightarrow^{\mathfrak{g}_{n}^{R}}\mathfrak{s}\mathrm{t}_{Gott}^{S}(X) .

f*\mathrm{I} \downarrow f*
\mathfrak{s}\mathrm{t}_{*}^{S}(\mathrm{Y})\rightarrow \mathfrak{s}\mathrm{t}_{Gott}^{S}(\mathrm{Y})\mathfrak{g}_{n}^{R}
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Namely we have the following commutative cube:

\mathrm{i}\mathrm{a}_{\mathrm{r} $\sigma$-1}

([S, X], 7

f*1 $\pi$_{n}(X)) , \leqq)

([S, Y],  $\tau$ \downarrow f*
([S, \mathrm{Y}]_{R}, \leqq_{R}^{Jop})\rightarrow^{\mathfrak{g}_{n}^{R}}(Sub($\pi$_{n}(\mathrm{Y})), \leqq) .

Remark 7.19. When it comes to the case [X, \mathrm{Y}]_{L} we do not have similar results as above.

Example 7.20. Let cat (f) be the Lustemik‐Schnirelmann category of a map f : X \rightarrow \mathrm{Y} ([15,
p.352]). Then cat : [X, \mathrm{Y}] \rightarrow (\mathbb{Z}_{\geqq 0}, \leqq) is a monotone map. In the case of cat, we have the three
finer poset‐stratified space structure on the reversed ordered posets [X, \mathrm{Y}]_{R}, [X, Y]_{L} and [X, \mathrm{Y}]_{LR}
as follows:

(1) If [g]\leqq_{R}[f] , i.e., g\sim f\circ s with s : X\rightarrow X , then we have ([15, Lemma 27.1(ii)] )

cat (g)=\displaystyle \mathrm{c}\mathrm{a}\mathrm{t}(f\circ s)\leqq\min{ \mathrm{c}\mathrm{a}\mathrm{t}(f) , cat(s)} \leqq \mathrm{c}\mathrm{a}\mathrm{t}(f) .

Hence we have cat (g) \leqq \mathrm{c}\mathrm{a}\mathrm{t}(f) . Thus there is a poset map \mathrm{c}\mathrm{a}\mathrm{t}_{R} : [X, Y]_{R}\rightarrow(\mathbb{Z}_{\geqq 0}, \leqq) .
Here \mathrm{c}\mathrm{a}\mathrm{t}_{R}([f]_{R}) :=\mathrm{c}\mathrm{a}\mathrm{t}(f) .

(2) If [g]\leqq_{L}[f] , i.e., g\sim t\circ f with t : \mathrm{Y}\rightarrow Y , then we have

cat (g)=\displaystyle \mathrm{c}\mathrm{a}\mathrm{t}(t\circ f)\leq\min{ \mathrm{c}\mathrm{a}\mathrm{t}(t) , cat(f)} \leqq \mathrm{c}\mathrm{a}\mathrm{t}(f) .

Hence we have cat (g) \leqq cat (f) . Thus \mathrm{c}\mathrm{a}\mathrm{t}_{L} : [X, Y]_{L}\rightarrow(\mathbb{Z}_{\geqq 0}, \leqq) is a poset map. Here
\mathrm{c}\mathrm{a}\mathrm{t}_{L}([f]_{R}) :=\mathrm{c}\mathrm{a}\mathrm{t}(f) .

(3) If [g]\leqq_{LR}[f] , i.e., g\sim h\circ f\circ s with s : X\rightarrow X and t : Y\rightarrow Y , then we have

cat(g)= cat (t\displaystyle \circ f\circ s)\leq\min{ \mathrm{c}\mathrm{a}\mathrm{t}(t) , cat (f) , cat (s) } \leqq \mathrm{c}\mathrm{a}\mathrm{t}(f) .

Hence we have cat(g) \leqq \mathrm{c}\mathrm{a}\mathrm{t}(f) . Thus \mathrm{c}\mathrm{a}\mathrm{t}_{LR} : [X, Y]_{LR} \rightarrow (\mathbb{Z}_{\geqq 0}, \leqq) is a poset map.
Here \mathrm{c}\mathrm{a}\mathrm{t}_{LR}([f]_{R}) :=\mathrm{c}\mathrm{a}\mathrm{t}(f) .

Namely we have the following commutative diagrams:

[X, \mathrm{Y}]\rightarrow^{$\pi$_{R}}[X, Y]_{R} [X, \mathrm{Y}]\rightarrow^{$\pi$_{L}}[X, Y]_{L} [X, \mathrm{Y}]\rightarrow^{$\pi$_{LR}}[X, Y]_{LR}

\mathrm{i}\mathrm{d}_{[X,Y]}\downarrow \downarrow \mathrm{c}\mathrm{a}\mathrm{t}_{R} \mathrm{i}\mathrm{d}_{[X,Y]}\downarrow \downarrow \mathrm{c}\mathrm{a}\mathrm{t}_{L} id [X,Y]\downarrow |\mathrm{c}\mathrm{a}\mathrm{t}_{LR}
[X, \mathrm{Y}]\rightarrow^{\mathrm{c}\mathrm{a}\mathrm{t}}(\mathbb{Z}_{\geqq 0}, \leqq) , [X, Y]\rightarrow^{\mathrm{c}\mathrm{a}\mathrm{t}}(\mathbb{Z}_{\geqq 0}, \leqq) , [X, \mathrm{Y}]\rightarrow^{\mathrm{c}\mathrm{a}\mathrm{t}}(\mathbb{Z}\geqq 0, \leqq) .
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