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ABSTRACT. The present paper is an enlarged version of a talk given at the RIMS Meeting
on Set Theoretic and Geometric Topology held in Kyoto University from June 12 to June
14, 2017. Its goal, as well of that of the talk it grew from, is to give a motivation for
the theory of extensions of topological abelian groups, including some recently published
results. It has no pretenses at completeness, but on the way to presenting the main
theorems we touch on several topics (as those of quasi‐homomorphisms, cross sections
or three‐space problems) that arise naturally in connection with this subject.

1. EXTENSIONS

1.1. Algebraic theory. (All groups in this paper are abelian.) There are several ways
to look at group extensions, even from a purely algebraic setting and with no homological
background to start with. One can naturally arrive to this concept \mathrm{e}. \mathrm{g} . from splitting
problems, that is, those dealing with conditions on the group X , its subgroup H , or both,
which guarantee that H is a direct summand of X . For many purposes it is accurate
enough to say that an abelian group X is an extension of the abelian group G by the
abelian group H if H can be embedded in X in such a way that the corresponding quotient
group X/H is isomorphic to G . It soon becomes evident, though, that the right definition
must feature not only these objects, but also the morphisms linking them together.

Definition 1.1. Let G and H be abelian groups. An extension of G by H is a short exact
sequence of groups and homomorphisms

0\rightarrow H\rightarrow^{l}X\rightarrow $\pi$ G\rightarrow 0

where X is an abelian group and 0 denotes a one‐element group. In other words, v is
injective,  $\pi$ is onto, and  $\iota$(H)=\mathrm{K}\mathrm{e}\mathrm{r} $\pi$.

Definition 1.2. Let G and H be abelian groups. Let E_{j} : 0 \rightarrow  H \rightarrow t_{J} X_{j} -\neq $\pi$  G \rightarrow  0

(j= 1,2) be two extensions of G by H . We say that E_{1} and E_{2} are equivalent if there
exists an isomorphism T : X_{1}\rightarrow X_{2} for which T\circ \mathrm{z}_{1}=$\iota$_{2} and $\pi$_{2}\circ T=$\pi$_{1}.
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It is an easy consequence of the Five Lemma that any group homomorphism T:X_{1}\rightarrow X_{2}
making the above diagram commutative is actually an isomorphism.

Definition 1.3. An extension of abelian groups 0\rightarrow H\rightarrow^{l}X\rightarrow $\pi$ G\rightarrow 0 splits algebraically
if it is equivalent to the trivial extension 0\rightarrow H^{l}4H\times G^{ $\pi$}SG\rightarrow 0 . Here $\iota$_{H} (resp. $\pi$_{G} )
is the canonical inclusion into the product H\times G (resp. the projection onto G), that is,
$\iota$_{H}(h)=(h, 0) and $\pi$_{G}(h, g)=g for every h\in H, g\in G.

The following Proposition reduces the concept of a splitting extension to less technical
conditions. The proof is not difficult.

Proposition 1.4. Let E:0\rightarrow H\rightarrow^{l}X\rightarrow $\pi$ G\rightarrow 0 be an extension of abelian groups. The
following conditions are equivalent:

(i) E splits algebraically.
(ii) There exists a homomorphism P : X\rightarrow H with Po \mathrm{z}=id_{H}.

(iii) There exists a homomorphism S:G\rightarrow X with  $\pi$\circ S=id_{G}.

In what follows  $\Gamma$ will denote the quotient group \mathbb{R}/\mathbb{Z} . A natural example of a non‐
splitting extension of abelian groups is 0\rightarrow \mathbb{Z}\rightarrow^{l}\mathbb{R}\rightarrow $\pi \Gamma$\rightarrow 0 where  $\iota$ is the inclusion and
 $\pi$ is the corresponding quotient mapping.

It is quite remarkable (although of course it is hardly news for anyone who knows the
basics of abelian group theory) that both the class of free abelian groups and that of
divisible abelian groups can be characterized by their behaviour with respect to splitting
extensions:

Theorem 1.5. (a) Let  H be an abelian group. Then Hu divisible if and only if every
extension of abelian groups of the form 0\rightarrow H\rightarrow^{l}X\rightarrow $\pi$ G\rightarrow 0 splits algebraically.

(b) Let G be an abelian group. Then G is free (that is, G\cong \mathbb{Z}^{(I)} for some index set I)
if and only if every extension of abelian groups of the form 0\rightarrow H\rightarrow^{l}X\rightarrow $\pi$ G\rightarrow 0
splits algebraically.

1.2. Extensions of topological abelian groups. As we win see next, the topological‐
group counterparts of the notions and general principles just introduced come across as
quite natural.

Definition 1.6. Let G and H be topological abelian groups. An extension of topological
abelian groups, or briefly a topological extension of G by H is a short exact sequence

0\rightarrow H\rightarrow^{l}X\rightarrow $\pi$ G\rightarrow 0

where X is a topological abelian group and the arrows represent relatively open, contin‐
uous homomorphisms.

In other words, \mathrm{t} is an embedding,  $\pi$ is a quotient mapping, and  $\iota$(H)=\mathrm{K}\mathrm{e}\mathrm{r} $\pi$.
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With the notations of Definition 1.6, note that the embedded copy of H in X is neces‐
sarily a closed subgroup because it is the kernel of a continuous homomorphism.

Definition 1.7. Let G and H be topological abelian groups. Let E_{j} :  0\rightarrow H\rightarrow$\iota$_{J}X_{j^{-}}^{ $\pi$}\neq
 G\rightarrow 0(j=1,2) be two topological extensions of G by H . We say that E_{1} and E_{2} are
equivalent if there exists a topological isomorphism T : X_{1} \rightarrow X_{2} for which T\circ$\iota$_{1} =$\iota$_{2}

and $\pi$_{2}\circ T=$\pi$_{1}.

With the notations of Definition 1.7, note that any continuous group homomorphism
T : X_{1}\rightarrow X_{2} satisfying T\mathrm{o}$\iota$_{1}=$\iota$_{2} and $\pi$_{2}\mathrm{o}T=$\pi$_{1} is already a topological isomorphism.
This follows from the corresponding, above discussed algebraic property, and Merzon’s
Lemma [11, Lemma 1].

Definition 1.8. An extension of abelian groups 0 \rightarrow  H\rightarrow^{l}X \rightarrow $\pi$  G\rightarrow  0 splits if it is
equivalent to the trivial extension 0\rightarrow H^{l}-5H\times G^{ $\pi$}SG\rightarrow 0 , where i_{H} and $\pi$_{G} are as in
Definition 1.3 and H\times G carries the product topology.

The following Proposition follows from Proposition 1.4 and elementary considerations
concerning continuity:

Proposition 1.9. Let E:0\rightarrow H\rightarrow^{l}X\rightarrow $\pi$ G\rightarrow 0 be an extension of topological abelian
groups. The following conditions are equivalent:

(i) E splits.
(ii) There exists a continuous homomorphism P:X\rightarrow H with P\mathrm{o}\mathrm{z}=id_{H}.

(iii) There exists a continuous homomorphism S:G\rightarrow X with  $\pi$\circ S=id_{G}.

Item (ii) in Proposition 1.9 is a well known characterization of the fact that the subgroup
 $\iota$(H) splits topologically from X , that is, there is a closed subgroup Y \leq  X such that
[(x,y)\in $\iota$(H)\times Y\mapsto x+y\in X] is a topological isomorphism (see Theorem 6.6 in [2]).

In what follows, if there is no risk of ambiguity, the term “extension”’ will be used to
denote an extension of topological abelian groups.

2. GROUPS G AND H FOR WHICH \mathrm{E}\mathrm{x}\mathrm{t}(G, H) =0)

We are interested in finding necessary and/or sufficient conditions on the topological
abelian groups G and H for every extension of G by H to split. This would mean that
there is a umique way (the trivial one) to embed H as a closed subgroup of another topo‐
logical abelian group with the property that the corresponding quotient is topologically
isomorphic to G.

Definition 2.1. Given two topological abelian groups G and H , we write \mathrm{E}\mathrm{x}\mathrm{t}(G, H)=0
if every extension of the form 0\rightarrow H\rightarrow^{l}X\rightarrow $\pi$ G\rightarrow 0 splits. If this is not the case we will
write \mathrm{E}\mathrm{x}\mathrm{t}(G, H)\neq 0.

Behind these notations there lies the fact that one can define an operation between
(classes of equivalences of) extensions, which gives rise to a group structure, and the
situation where only trivial extensions are available corresponds to this group being trivial.
This is a well known notion in homological algebra. We refer the interested reader to [4]
for the definition and some general properties of the group \mathrm{E}\mathrm{x}\mathrm{t} , which we are not going
to examine here.

A first nontrivial example where only the trivial extension exists follows:

Proposition 2.2. If G is a locally compact abelian group and H \dot{u} either \mathbb{R} or  $\Gamma$ then
\mathrm{E}\mathrm{x}\mathrm{t}(G, H)=0.
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Proof. Fix an extension 0 \rightarrow  H \rightarrow^{l} X \rightarrow $\pi$  G \rightarrow  0 where H = \mathbb{R} (resp. H =  $\Gamma$). Since
both  H and G are locally compact, so is X [12 , Lemma 7.2.4]. Since  $\iota$(H) is topologically
isomorphic to \mathbb{R} (resp. to  $\Gamma$ ) it splits from the locally compact abelian group  X[2 , Theorem
6.16]. By Proposition 1.9, the extension splits. \square 

There are many examples of extensions 0 \rightarrow  H \rightarrow^{l} X \rightarrow $\pi$  G \rightarrow  0 featuring locally
compact abelian groups, which split algebraically but not topologically; see for instance
[2, Examples 6.17 and 6.19] or Proposition 3.5 below.

Also, Proposition 2.2 is no longer true without the hypothesis of local compactness of
G . For a counterexample we pick the following notable result, which was independently
proved by N. J. Kalton, M. Ribe and J. W. Roberts in the late 70' \mathrm{s} :

Theorem 2.3. [15, 19, 20] \mathrm{E}\mathrm{x}\mathrm{t}(\ell_{1}, \mathbb{R})\neq 0

(Note that by Theorem 1.5(a), any extension with \mathbb{R} on the left end splits algebraically.)
Here l_{1} stands for the topological group underlying the Banach space of all summable
sequences of real numbers, with the norm \displaystyle \Vert(x_{n})\Vert_{1}=\sum|x_{n}| . Of course the original result
pertains to the theory of metric linear spaces; actually it answered in the negative the
by then long‐standing three‐space problem for local convexity. Thus its proofs can be
boiled down to the construction of a short exact sequence 0 \rightarrow \mathbb{R} \rightarrow  X \rightarrow  p_{1} \rightarrow  0 of
complete metric linear spaces and continuous, relatively open linear mappings such that
the corresponding embedded copy of \mathbb{R} is not complemented in X . It is easy to convince
oneself that this same extension provides a proof for Theorem 2.3, which is a statement
about topological abelian groups and continuous homomorphisms.

It might be interesting to compare Theorem 2.3 with the following result of  $\Gamma$ . Cabello:

Theorem 2.4. [9, Theorem  1(\mathrm{b}) ] \mathrm{E}\mathrm{x}\mathrm{t}(G, H)=0 whenever G is either \mathbb{R} or  $\Gamma$ and  H is
(the additive topological group underlying) a Banach space.

At this point one might wonder how the property \mathrm{E}\mathrm{x}\mathrm{t}(G, H)=0 behaves with respect
to the formation of subgroups, completions, products and other operations in the variety
of topological abelian groups. A comprehensive account would probably cause us to lose
the plot; we refer the reader to [4] for details. We do include next two results concerning
quotients which we are going to need in what follows.

The following result was proved in [5] (Theorem 21) for H =  $\Gamma$ but the same proof
works in the general case:

Theorem 2.5. Let  G and H be topological abelian groups and let M \leq  G be a closed
subgroup of G.

(a) If \mathrm{E}\mathrm{x}\mathrm{t}(G/M, H)=0 then every continuous homomorphism of M to H extends to
a continuous homomorphism from G to H.

(b) If every continuous homomorphism of M to H extends to a continuous homomor‐
phism from G to H and \mathrm{E}\mathrm{x}\mathrm{t}(G, H)=0 then \mathrm{E}\mathrm{x}\mathrm{t}(G/M, H)=0 as well.

Item (a) of Theorem 2.5 is a source for examples of non‐splitting extensions. The reader
who is familiar with duality theory of topological abelian groups will probably want to
consider its particularization for  H= $\Gamma$ : If  M is a closed, not dually embedded subgroup
of G then \mathrm{E}\mathrm{x}\mathrm{t}(G/M,  $\Gamma$) \neq  0 . (The definitions of basic duality concepts such that of a
dually embedded subgroup, and some nontrivial sufficient conditions as well as examples
of subgroups lacking this property can be found in [3]).

Theorem 2.5(b) gives a sufficient condition for the property \mathrm{E}\mathrm{x}\mathrm{t} H) = 0 to remain
invariant under a quotient mapping. Results which go the other way around (from the

83



quotient(s) to the group) are much harder to come by, and need much more restrictive
assumptions. To make sense of the following theorem, note that a subgroup P of a topo‐
logical abelian group G is said to be admissible if G/P admits a weaker metrizable group
topology, and that we call a family of admissible subgroups cofinal if every admissible
subgroup of G contains one of its members.

Theorem 2.6. [6, Theorem 3.5] IfG and H are topological abelian groups, H is metrizable
and locally compact and \mathrm{E}\mathrm{x} $\ddagger$(G/P, H) = 0 for any P in a cofinal family of admissible
subgroups of G then \mathrm{E}\mathrm{x}\mathrm{t}(G, H)=0.

3. CROSS SECTIONS

We have seen (Proposition 1.9) that a given extension can be shown to split by finding
a continuous homomorphism that is a right inverse for its quotient mapping. However, in
many cases a weaker version of this property will already have meaningful consequences.
Thus it makes sense to introduce the following general notion:

Definition 3.1. Let E : 0\rightarrow H\rightarrow^{l}X\rightarrow $\pi$ G\rightarrow 0 be an extension of topological abelian
groups. A cross section for E is any mapping  $\rho$:G\rightarrow X which satisfies  $\pi$ 0 $\rho$=id_{G} . We
will always assume that  $\rho$(0)=0.

For instance, we know that any extension admitting a cross section which is a homomor‐
phism splits algebraically (Proposition 1.4). In general we are more interested in keeping
continuity (which can be global, local or just at one point) even if we lose additivity. The
following result is more or less known; its proof can be found \mathrm{e}. \mathrm{g} . in [5, Proposition 31]:

Proposition 3.2. Let E:0\rightarrow H\rightarrow^{l}X\rightarrow $\pi$ G\rightarrow 0 be an extension of topological abelian
groups. If X is metrizable then E admits a cross section which is continuous at zero.

Note that metrizability is a three‐space property, \mathrm{i}. \mathrm{e} . if both G and H in the extension
0\rightarrow H\rightarrow^{l}X\rightarrow $\pi$ G\rightarrow 0 are metrizable, then so is X . This property is often invoked when
(as it is the case in the problems we are dealing with here) our input is the groups at both
ends of the extension rather than the one on the middle.

When trying to choose representatives of the classes making up a given quotient in
a continuous fashion, is natural to turn to Michael’s selection theorems. The following
theorem, which is far from being exhaustive, contains three examples of applications of
Michael’s results and some of its known corollaries to our setting:

Theorem 3.3. Let 0\rightarrow H\rightarrow^{l}X\rightarrow $\pi$ G\rightarrow 0 be an extension of topological abelian groups.

(i) [18, Theorem 2] If X is metrizable and G is paracompact and zero‐dimensional
then 0\rightarrow H\rightarrow X\rightarrow $\pi$ G\rightarrow 0 has a continuous cross section.

(ii) [8, Proposition 7.1] If E : 0 \rightarrow  H \rightarrow^{l} X \rightarrow $\pi$  G\rightarrow  0 \dot{u} an extension of complete
metric linear spaces and H is locally convex, then E has a continuous cross section.

(iii) [17, Corollary 1.3] IfX is metrizable, H is complete and G is zero‐dimensional then
0\rightarrow H\rightarrow^{l}X\rightarrow $\pi$ G\rightarrow 0 has a cross section which is continuous on a neighborhood
of zero.

Note that Theorem 3.3(ii) implies in particular that the nonsplitting extension witness‐
ing \mathrm{E}\mathrm{x}\mathrm{t}(P_{1},\mathbb{R})\neq 0 (Theorem 2.3) admits a globally continuous cross section.

Finally we present two notable examples of nonsplitting extensions which split alge‐
braically and admit locally or globally continuous cross sections. The first one is based
on a construction by T. C. Stevens [21].
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Proposition 3.4. [4, 7.2.6] There is a nonsplitting extension of the form  0\rightarrow \mathbb{R}\rightarrow^{l}X\rightarrow $\pi$

(\mathbb{R},  $\tau$)\rightarrow 0 admitting a cross section which is continuous on a neighborhood of zero, where
 $\tau$\dot{u} a metrizable group topology on \mathbb{R} weaker than the \mathrm{t} sual one.

Proposition 3.5. [7, Proposition 18] For every compact, connected abelian group H which
is not topologically isomorphic to a product of copies of  $\Gamma$ there exists a compact, totally
disconnected abelian group  G and a non‐splitting extension 0\rightarrow H\rightarrow^{l}X\rightarrow $\pi$ G\rightarrow 0 which
splits algebraically and has a globally continuous cross section.

4. EXTENSIONS OF FREE ABELIAN TOPOLOGICAL GROUPS BY COMPACT ONES

Michael’s “zero‐dimensional” selection theorem is also an essential ingredient of the
following result. Recall that for a completely regular Hausdorff space Y , the free abelian
topological group over Y is the free abelian group A(\mathrm{Y}) endowed with the unique Hausdorff
group topology for which

(1) the mapping  $\eta$ :  Y\rightarrow A(Y) , which maps the topological space Y onto a basis of
A(Y) , becomes a topological embedding and

(2) for every continuous mapping f : Y\rightarrow G , where G is an abelian Hausdorff group,
there is a unique continuous group homomorphism \tilde{f}:A(Y)\rightarrow G which satisfies
f=\tilde{f}0 $\eta$.

(See for instance Chapter 7 in [1].) Recall also that a k_{ $\omega$} ‐space is a Hausdorff topological
space X which carries the weak topology with respect to an increasing sequence of compact
subspaces whose union is X.

Theorem 4.1. [6, Theorem 2.8] If E : 0 \rightarrow  H \rightarrow^{l} X \rightarrow $\pi$  G \rightarrow  0 is an extension of
topological abelian groups where H is compact, and  Y\subseteq  G is a subspace of G which is
zero‐dimensional and a k_{ $\omega$} ‐space, then there is a partial continuous cross section for E

with domain Y , that is, there is a continuous mapping  $\rho$ : \mathrm{Y}\rightarrow X such that  $\pi$\circ $\rho$ is the
inclusion  Y $\varsigma$\rightarrow G.

0\rightarrow H\rightarrow^{l}X\rightarrow^{ $\pi$}G\rightarrow 0

\backslash _{ $\rho$}|?Y
Y

In particular if G itself is a zero‐dimensional k_{ $\omega$} ‐space then E has a globally continuous
cross section.

Corollary 4.2. Let H be a compact abelian group and A(Y) the free topological abelian
group on a zero‐dimensional k_{ $\omega$} ‐space Y. Then \mathrm{E}\mathrm{x}\mathrm{t}(A(\mathrm{Y}), H)=0.

Proof. Fix an extension 0 \rightarrow  H\rightarrow^{l}X \rightarrow $\pi$  A(Y) \rightarrow  0 . Consider the canonical inclusion
mapping \mathrm{z}_{Y} : Y\rightarrow A(Y) . By Theorem 4.1 there exists a continuous mapping  $\rho$:Y\rightarrow X
with  $\pi$\circ s=$\iota$_{Y}.

0\rightarrow H\rightarrow^{l}X\rightarrow^{ $\pi$}A(Y)\rightarrow 0

\backslash _{Y} $\rho \iota$
By the universal property of  A(Y) the continuous mapping  $\rho$ extends to a continuous
homomorphism  S : A(Y) \rightarrow X . Since A(\mathrm{Y}) is algebraically the free abelian group over
Y , it is clear that  $\pi$\circ S=id_{A(Y)} . By Proposition 1.9, the extension splits. \square 
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5. QUASI‐HOMOMORPHISMS AND EXTENSIONS

Given any mapping  $\omega$ :  G\rightarrow H where G and H are abelian groups, we denote by \triangle_{ $\omega$} the
associated mapping defined by [(x, y)\in G\times G\mapsto\triangle_{ $\omega$}(x, y)= $\omega$(x+y)- $\omega$(x)- $\omega$(y)\in H].
(Note that mappings like \triangle_{ $\omega$} are usually called 2‐coboundanes in homological algebra.)

Definition 5.1. [9] Let G and H be topological abelian groups. A mapping  $\omega$ :  G\rightarrow H

is said to be a quasi‐homomorphism if  $\omega$(0) =0 and \triangle_{ $\omega$} : G\times G\rightarrow H is continuous at
(0,0) .

It is clear that all mappings  $\omega$ :  G \rightarrow  H which are continuous at zero, as well as
all homomorphisms, are quasi‐homomorphisms. (Indeed, if  $\omega$ is a homomorphism, its
coboundary is identically zero.)

Definition 5.2. Let  G and H be topological abelian groups. A quasi‐homomorphism
 $\omega$ :  G\rightarrow H is said to be approximable if there exist a homomorphism a : G\rightarrow H and a
mapping f : G\rightarrow H continuous at zero such that  $\omega$=a+f.

Proposition 5.3. Let E:0\rightarrow H\rightarrow^{l}X\rightarrow $\pi$ G\rightarrow 0 be an extension of topological abelian
groups. Assume that E splits algebraically and admits a cross section  $\rho$ which is conhnuous
at zero.

Let  P be a homomorphism P : X\rightarrow H which satisfies P\circ \mathrm{z}=id_{H} . Then the mapping
 $\omega$ :  G\rightarrow H defined by  $\omega$=P\mathrm{o} $\rho$ is a quasi‐homomorphism. Moreover, the extension  E

splits if and only if  $\omega$ is approximable.

Proof. The following diagram may be useful:

 0\rightarrow H\leftarrow\rightarrow {}^{t}XP\leftarrow $\pi$\rightarrow G $\rho$\rightarrow 0
Slightly abusing notation, we will denote by \mathrm{z}^{-1} the inverse of the corestriction of  $\iota$ to its
image  $\iota$(H) . Note that $\iota$^{-1} : x(H)\rightarrow H is a topological isomorphism. On the other hand,
an additive left inverse P for  $\iota$ exists by Proposition 1.3, and clearly  P \mathrm{r}_{ $\iota$(H)}=\mathrm{z}^{-1}.

Let us see that  $\omega$ is a quasi‐homomorphism. It is clear that  $\omega$(0)=0 . Moreover,

\triangle_{ $\omega$}(x, y) = P( $\rho$(x+y))-P( $\rho$(x))-P( $\rho$(y))
= P( $\rho$(x+y)- $\rho$(x)- $\rho$(y))
= $\iota$^{-1}( $\rho$(x+y)- $\rho$(x)- $\rho$(y))

since  $\rho$(x+y)- $\rho$(x)- $\rho$(y) \in \mathrm{K}\mathrm{e}\mathrm{r} $\pi$= $\iota$(H) . Since $\iota$^{-1} is continuous and  $\rho$ is continuous

at zero, we deduce that \triangle_{ $\omega$} is continuous at (0,0) .
Assume that E splits. Let S : G \rightarrow  X be a continuous homomorphism such that

 $\pi$\circ S=id_{G} (Proposition 1.9). Note that for every g\in G we have (P\circ $\rho$-P\mathrm{o}S)(g)=
P( $\rho$(g)-S(g))=$\iota$^{-1}( $\rho$(g)-S(g)) since  $\rho$(g)-S(g)\in \mathrm{K}\mathrm{e}\mathrm{r} $\pi$= $\iota$(H) . This clearly implies
that  $\omega$-P\circ S=P\circ $\rho$-P\circ S is continuous at zero, and in particular  $\omega$ is approximable.

Conversely, assume that  $\omega$=P\mathrm{o} $\rho$ is approximable. Let  a:G\rightarrow H be a homomorphism
such that P\circ $\rho$-a=f is continuous at zero. Note that every x\in X can be expressed as
x= $\rho$( $\pi$(x))+(x- $\rho$( $\pi$(x)))= $\rho$( $\pi$(x))+ $\iota$($\iota$^{-1}(x- $\rho$( $\pi$(x)))) since x- $\rho$( $\pi$(x))\in \mathrm{K}\mathrm{e}\mathrm{r} $\pi$= $\iota$(H) .

Applying P on both sides we obtain P(x)=(a+f)( $\pi$(x))+$\iota$^{-1}(x- $\rho$( $\pi$(x))) . This suggests
the definition of \tilde{P} : X\rightarrow H as \tilde{P}(x)=P(x)-a( $\pi$(x))=f( $\pi$(x))+$\iota$^{-1}(x- $\rho$( $\pi$(x))) for

every x \in  X . From the expression \tilde{P}(x) =P(x)-a( $\pi$(x)) it easily follows that \tilde{P} is a
homomorphism and a left inverse for  $\iota$ . From \tilde{P}(x)=f( $\pi$(x))+$\iota$^{-1}(x- $\rho$( $\pi$(x))) it is clear
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that \tilde{P} is continuous at zero, hence globally continuous. By Proposition 1.9 we deduce
that E splits. \square 

This correspondence goes in the other direction, too: to every quasi‐homomorphism  $\omega$

one can associate an extension  E satisfying the hypothesis of Proposition 5.3 in such a
way that one can recover  $\omega$ from  E by the mechanism described in that Proposition. The
construction is not difficult; the reader can find the details in [9] or [4, Chapter 6].

Proposition 5.4. Let G and H be topological abelian groups and let  $\omega$ :  G \rightarrow  H be a
quasi‐homomorphism. There are an extension of topological abelian groups E:0\rightarrow H\rightarrow^{l}
X\rightarrow $\pi$ G\rightarrow 0 , a homomorphism P:X\rightarrow H such that P\circ $\iota$=id_{H} , and a cross section  $\rho$

for  E which is continuous at zero, such that  $\omega$=P\circ $\rho$.

When looking for sufficient conditions for a given class of extensions to split, the re‐
quirement of algebraic splitting is a natural place to start. The hypothesis of existence
of a cross section continuous at zero is more restrictive, but in any case we see that
quasi‐homomorphisms can be used as a tool to study many of the extensions one is
likely to encounter, especially when dealing with metrizable groups. This is convenient
for several reasons; note for instance that unlike the concept of an extension, that of a
quasi‐homomorphism from a topological abelian group to another does not depend on
some other, undefined third group. Since the quasi‐homomorphisms representing split‐
ting extensions are exactly the approximable ones, this two‐way correspondence can be
used to prove statements of the form \mathrm{E}\mathrm{x} $\ddagger$(G, H) =0 without actually dealing with the
extensions themselves. The argument of the proof of Theorem 6.3 below includes solving
the countable case by an application of this device (Corollary 6.2).

Let us briefly mention that it makes sense to consider quasi‐homomorphisms  $\omega$ :  G\rightarrow H

for which the associated coboundary \triangle_{ $\omega$} is continuous not only at (0,0) but on a neigh‐
borhood of the origin, which may be the whole product  G\times  G in some cases. These
concepts and properties are explored in [7]. The extra continuity requirements on \triangle_{ $\omega$}
are naturally linked to the analogous ones on the cross section which is available for the
associated extension (Proposition 5.4). In particular the examples given in Proposition
3.4 and Proposition 3.5 can be easily translated in terms of non‐approximable quasihQ
momorphisms  $\omega$ which have locally or globally continuous coboundaries \triangle_{ $\omega$} . If  $\omega$ is an
approximable quasi‐homomorphism  $\omega$ whose coboundary satisfies one of these stronger
continuity properties, then in the corresponding decomposition  $\omega$=a+f (as in Defini‐
tion 5.2) one can assume that f is continuous on a neighborhood of zero or even (if \triangle_{ $\omega$} is
globally continuous) the whole G.

The notion of a quasi‐homomorphism can be also regarded as a natural, simultaneous
generalization of those of a continuous mapping and a homomorphism, which is worth
studying on its own. For instance, it is remarkable that quasi‐homomorphisms with
globally continuous coboundary between Polish groups satisfy the closed graph theorem.

Theorem 5.5. [7, Corollary 22] Let G and H be Polish abelian groups and  $\omega$ :  G\rightarrow H

be a quasi‐homomorphism such that \triangle_{ $\omega$} is continous on G\times G . If the graph of  $\omega$ is closed
in  G\times H then  $\omega$ is continuous.

We end this section with a few general remarks on the concept of a quasi‐homomorphism
and some related notions one can borrow from the algebraic theory. As we mentioned
above, all extensions representable by quasi‐homomorphisms are algebraically trivial, and
from the definition of a quasi‐homomorphism itself it can be seen that there is no natural
algebraic counterpart of such a concept. This makes the notion sharper in a sense but
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on the other hand it is a departure from the approach we have taken up to this point,
where the corresponding algebraic concepts and results were incorporated into the theory.
Quasi‐homomorphisms were introduced as a natural generalization of quasi‐linear maps
([16, 13 which play a fundamental role in the study of extensions (“twisted sums of
topological vector spaces and the solution of the three‐space problem for local convexity.
Of course, in such a linear context algebraic splitting is not an issue, while in the realm
of topological abelian groups the situation is quite different.

But one can also widen the focus and present the concept of a quasi‐homomorphism as
the particularization of some general construction for the algebraically trivial case. Such
a construction would deal with cocycles and coboundaries as in homological algebra, only
with topology added in a natural way. We will not ellaborate further on this approach;
some relevant references are \mathrm{e}. \mathrm{g} . [14] or [10].

6. EXTENSIONS OF PRODUCTS OF LOCALLY COMPACT GROUPS BY \mathbb{R} OR  $\Gamma$

We end this survey with a nontrivial generalization of Proposition 2.2.
The following result is Proposition 1.8 in [6]. The main elements of the proof are

the same as that of [9, Theorem  1(\mathrm{a}) ]; it relies on Hyers‐type theorems on stability of
homomorphisms. The analogous property for splitting extensions remains open.

Proposition 6.1. IfH is either \mathbb{R}or $\Gamma$ and every quasi‐homomorphism  $\omega$_{i}:G_{i}\rightarrow H(i\in
 I) is approximable, then every quasi‐homomorphism  $\omega$ : \displaystyle \prod_{i\in I}G_{i}\rightarrow H is approximable.

Corollary 6.2. Let H be either \mathbb{R} or  $\Gamma$ . Let (G_{n})_{n\in \mathrm{N}} be a sequence of metnzable groups.
If \mathrm{E}\mathrm{x}\mathrm{t}(G_{n}, H)=0 for every n\in \mathbb{N} then \displaystyle \mathrm{E}\mathrm{x}\mathrm{t}(\prod_{n\in \mathrm{N}}G_{n}, H)=0.

Proof. Let E : 0 \rightarrow  H \rightarrow^{l} X \rightarrow $\pi$ \displaystyle \prod_{n\in \mathrm{N}}G_{n} \rightarrow  0 be an extension. Since H is divisible
and metrizable and \displaystyle \prod_{n\in \mathrm{N}}G_{n} is metrizable, E is representable by a quasi‐homomorphism

 $\omega$ : \displaystyle \prod_{n\in \mathrm{N}}G_{n} \rightarrow  H (Proposition 5.3). Since \mathrm{E}\mathrm{x}\mathrm{t}(G_{n}, H) = 0 for every n \in \mathrm{N} , in par‐
ticular every quasi‐homomorphism $\omega$_{n}:G_{n}\rightarrow H is approximable (Proposition 5.4). By
Proposition 6.1,  $\omega$ is approximable and hence  E splits. \square 

The following result generalizes this property to the nonmetrizable, noncountable case,
provided the groups in the product are locally compact.

Theorem 6.3. [6, Corollary 3.14] Let H be either \mathbb{R} or  $\Gamma$ . Let (G_{i})_{i\in I} be a family of
locally compact groups. Then \displaystyle \mathrm{E}\mathrm{x}\mathrm{t}(\prod_{i\in I}G_{i}, H)=0.
Proof. The following is just a sketch of the argument; see Section 3 in [6] for details.
Consider the family of admissible subgroups of \displaystyle \prod_{i\in I}G_{i} that have the form \displaystyle \prod_{i\in I}N_{i} where
N_{i} \leq  G_{i} is compact and such that G_{i}/N_{i} is metrizable for every i \in I and nontrivial
for countably many i \in  I . This is actually a cofinal family of admissible subgroups of
G = \displaystyle \prod_{i\in I}G_{i} , so it suffices (Theorem 2.6) to check that \mathrm{E}\mathrm{x}\mathrm{t}(G/P, H) = 0 for every P

in this family. Each G/P turns out to be expressable as the product of countably many
metrizable groups G_{i}/N_{i} satisfying \mathrm{E}\mathrm{x}\mathrm{t}(G_{i}/N_{i}, H)=0 , so we can apply Corollary 6.2. \square 

This result was actually proved under the following weaker assumptions [6, Theorem
3.13]:

(a) G = \displaystyle \prod_{i\in I}G_{i} where each G_{i} is a dense subgroup of a dually separated, Čech‐
complete group such that both \mathrm{E}\mathrm{x}\mathrm{t}(G_{i}, \mathbb{R})=0 and \mathrm{E}\mathrm{x}\mathrm{t}(G_{i},  $\Gamma$)=0 for each i\in I,
and

(b) H is an arbitrary product of copies of \mathbb{R} and  $\Gamma$.
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