
Introduction to R and Time Series

PREINING Norbert

アクセリア株式会社、東京都
Vienna Umiversity of Technology, Vienna, Austria

北陸先端科学技術大学院大学、能美市

Abstract

Wc givc a short introduction to R., and discuss how to dcal with tim sưies
based data using \mathrm{R} by providing examples from network data analysis.

1 Introduction

In the plethora of programming languages available, \mathrm{R}^{1} takes somehow a strange place.
Wnitten as replacement for tłie commercial \mathrm{S}‐Plus implementation of the \mathrm{S} programming
language, it has superseeded its origin and nowadays can be considered the most widely
msed statistical programming language.

Similar to well know languages like Python, \mathrm{R} exhibits its imctionality in a REPL,
a Read‐Eval‐Print‐Loop, but can also be programmed in scripts, a seripting language.

The \mathrm{R} environment consists of the main interpreter, and is enniched with a huge
(currently 11985) number of additional packages for practically every (computational)
task. Although packages related to statistics are strong in numbers, there are others for
different areas, e.g., machine leaming. Statistics is often tied to proper presentation,
and thus support for advanced graphics generation is provide both by core \mathrm{R} as well as
many addon packages.

\ovalbox{\tt\small REJECT}\bullet|\infty \mathrm{u}\mathfrak{n} ν\infty\infty\rightarrow

\mathrm{r}\ovalbox{\tt\small REJECT} \mathrm{r} \mathrm{r}\mathrm{v}\mathrm{m}-

 ι\ovalbox{\tt\small REJECT} \mathrm{A} \mathrm{t}\propto \mathrm{W}|\mathrm{d}\mathrm{e}-

l Mn \infty \mathrm{o}\mathrm{q} ●● \mathrm{M}\infty--u \mathrm{R}

I \mathrm{m}\mathrm{m}*6rm‐

1 \mathrm{b}4\sim d*\infty-\mathrm{A}- —

Thare et \underline{\infty \mathrm{m}\sim}\infty\sim \mathrm{m}\mapsto\sim.\sim I
:\infty \mathrm{r}\mathrm{w}|\mathrm{W} γ \mathrm{r}u\circ\infty\infty\infty . —

\} n\mathrm{r} ι\sim\infty t\cong\sim\infty η\triangleright\infty.
 Φ net \mathrm{m}m/\infty*-u.

u_{1} ν\infty\infty\infty.\mathrm{r}e\bullet u|\mathrm{m}-

4.nu —.p4- I 1\infty *\infty -|\infty \mathrm{b}\infty \mathrm{W} ϕ rm‐

\mathrm{W}\mathcal{M}-- ϕ .Ir.㈹m図 \hslash \mathrm{W}-

or の● \bullet.-\bullet\cdot|0 -n ● \mathrm{P} \mathrm{u}-

1 u*\infty \mathrm{M}\mathrm{h} \mathrm{m}um\infty.
\mathrm{w} \mathrm{A} t \infty *\infty\infty-

0 \mathrm{a}'\mathrm{o} -| \infty)
\mathrm{m}\leftrightarrow\infty-

Figure 1: Example of visualizing questionnaires
https: //4\mathrm{d}\mathrm{p}\mathrm{i} echarts. \mathrm{c}\mathrm{o}\mathrm{m}/2\mathrm{e}\mathrm{l}\mathrm{e}/09/25/\mathrm{v}\mathrm{i} suali si ng‐questi onnai \mathrm{r}\mathrm{e}\mathrm{s}/

\mathrm{R} was conceived as free and open source replacement of \mathrm{S}‐Plus, and has kept this
status, with a very active user and developer \mathrm{c}\mathrm{o}\mathrm{m}\mathrm{n} ιmity improving and advancing the
state of R. The recent boom in machine learning and in particular neural networks has

 1_{\mathrm{h}\mathrm{t}\mathrm{t}\mathrm{p}://\mathrm{w}\mathrm{w}.\mathrm{r}-\mathrm{p}r\mathrm{o}\mathrm{j}\mathrm{e}\mathrm{c}\mathrm{t}.\mathrm{o}\mathrm{r}\mathrm{g}/}

数理解析研究所講究録
第2067巻 2018年 125-131

125

brought \mathrm{R} with its highly parallelized architecture and optimized computations somehow
into a bigger spothght and makes \mathrm{R} one of the top requested language skills in data
science,

To download \mathrm{R}, head over to the web site of the R Project where precompiled binaries
for Windows, Mac OS and several Unix/Linux variants are available. For additional
packages the Comprehensive R Archive Network (CRAN) contains several thousands
which can be installed directly from the interpreter.

2 First steps with \mathrm{R}

2.1 Starting and quitting

Starting and quitting the interpreter is usually done l η calling the command \mathrm{R} :

$ \mathrm{R}

\mathrm{R} version 3.4.1 (2017‐6‐3Ớ) −‐ ‘ÌSingle Candle'
Copyright (C) 2017 The R Foundation for Statistical Computing
Platform: \mathrm{x}86_{-}64-\mathrm{p}\mathrm{c}−linux‐gnu (64‐bit)

Type ‘demo () ’ for some demos, ‘help () ‘ for on‐li ne help, or
‘ help. start () ’ for an HTNL browser interface to help.
Type ‘ \mathrm{q}()' to quit R.

\succ \mathrm{q}()

save workspace image7 [\mathrm{y}/\mathrm{n}/\mathrm{c}] : \mathrm{n}

$

and the builtin help system can be accessed using? and??, the former giving documen‐
tation for a function or item (usage:? <\dot{\urcorner}\mathrm{t}\mathrm{e}\mathrm{m}>). The later one searches for a keyword in
the list of all documentation files.

2.2 Numbers and Vectors

In \mathrm{R} there are basically no simple numbers, everything is automatically converted to
vectors of length 1. In practice there is no change in usage but it can be easily be seen
by assigning a value and then printing and computing the length of it:

> \mathrm{a} = 42 ; \mathrm{a}

[1] 42
> l\bulletngth (\mathrm{a})

[1] 1
> \mathrm{a} \simeq ε (4, 2) ; \mathrm{a}

[1] 4 2

> 1\bulletngth (\mathrm{a})

[1] 2

Having everything in vectors means that all operators work on vectors. Basic math‐
ematical operators work component‐wise, that is element per element:

126

> \mathrm{a} = \mathrm{c}(9 , 3)
> \mathrm{b} = \mathrm{c}(-2, 4)
> \mathrm{a} + \mathrm{b}

[1] 7 7

> \mathrm{a} * \mathrm{b}

[1] -18 12

But what happens if the vectors do not agree in their length? In the case the lengths
of the vectors are multiples of each other, the shorter one is reused (recycled):

> \mathrm{a} = \mathrm{c}(9 , 3, 7, 6)
> \mathrm{b} = \mathrm{c}(-2, 4)
> \mathrm{a} + \mathrm{b}

[1] 7 7 5 le
> \mathrm{a} * \mathrm{b}

[1] -18 12 -14 24

On the other hand, if the lengths of the vectors are not multiples of each other,
warnings are issued and computation internipted:

> \mathrm{a} = \mathrm{c}(9 , 3, 7)
> \mathrm{b} = \mathrm{c}(-2, 4)
> \mathrm{a} + \mathrm{b}

Warning message:

In a + \mathrm{b} : longer object length is not a multiple of shorter object length

2.3 User defined functions

Like most programming 1\mathrm{a}\mathrm{n}b^{r}\mathrm{u}\mathrm{a}\mathrm{g}\mathrm{e}_{l}, \mathrm{R} also provides facilities to write one’s own functions.
The notion to define a function might look funny to users of more traditional program‐
ming languages, but exhibits another mice feature ‐‐ functions are first class objects and
can be assigned, reassigned, passed around, simply treated like every other variable:

> myfunc = function(\mathrm{a} , b) {
+ \mathrm{a}\star \mathrm{b}/2
+ \}
> myfunc(4, 8)
[1] 16

Users of functional programming languages will feel immediately at home seeing this
lambda‐abstraction.

Let us now turn our attention to arguments of functions: Without going into details
we only want to mention that functions can have normal argumpnts as wpll as optional,
named, and default arguments. This helps immensely as many of the functions provided
by add‐on packages have into the tens and more of possible arguments, but in most cases
passing only one or two does suffice completely.

Just do give you an example of what first‐class objects means, here is some sample
code using the function from above:

127

> doit = function(\mathrm{f} , c) {
+ \mathrm{f}(\mathrm{c}, ε)
+ \}
> doit(myfunc, 9)

which will result in the answer [1] 4 Θ.5.

2.4 Other types of objects

Coming from the background of statistical data analysis, \mathrm{R} ι)rovides a variety of different
data fypes, matrices and multi‐dimensional arrays (sometimes referred to as tensors)
are generalizations of vectors to multiple indices. Factors used for treating of categorical
data, that is data with a fixed set of values (hke contminent names). Lists are often used
as the work‐horse of \mathrm{R} as they can contain elements of different types, in contrast to
arrays and matrices which only contain the same data type. Another very useful, in
particular for data science, data type is data framc. These data frames are like matrices
but can contain different types of objects.

There are many more types available, we will see a few later on.

3 Time series with \mathrm{R}

Time series are quite common— repeatedly taken measurements make up time series.
Typical examples are the temperature in a room; rain amount per day, average grade
of students per year, birth rate by year, just to name a few.

At our company we are using netflow data captured from routers with about 1200
features per time slot and about > 100000 data 1)oints (steadily increasing). Dealing
with this amount of data in a not,‐vectorized environment would mean lots of waiting
time during computations.

3.1 Objects for time series
\mathrm{R} provides several ways to represent time series as objects:

builtin types: data. frame, matri \mathrm{x} , vector, ts

zoo: provides a representation for indexed totally ordered observations which in‐
cludes irregular time series (load with library(zoo)).

xts: an extension of zoo (different timebased in\mathrm{d}\infty \mathrm{n}\mathrm{g} , user‐added properties,
(load with li bra ry(xts)).

Each of these objects has their own advantage and disadvantage: I used plain ma‐
trices for faster computation and index look‐up, but converted it at the end to xts for
better indmng, searching, slicing, and graphic displaying.

128

3.2 Reading data

Input for statistical computations often comes as CSV— comma separated values. The
following example provides a shce of the data we are actually processing:

ti meslot, \urcorner bytes
 14726562 Θ , 113096548352
 14726568 屋, 9732141\mathrm{e}56

14726574\emptyset, 885 Θ 3681 Θ 24

The columns are timestamp, the number of seconds from epoch (1970‐1‐1), a very
common way to identify a time, ibytes the number of incoming bytes in the hst time
slot. To keep things simple we only exłiibit two columns here, in reality there are more
than 1200 columns with a variet|\mathrm{y} of data aggregated.

Reading this kind of data into \mathrm{R} is straight‐forward, in particular when using
read. zoo to read directly minto a zoo object:

> flowdata = read. zoo(’ datal. csv‘ , sep =\prime\prime, \prime\prime , FUN =\mathrm{f}\mathrm{u}\mathrm{n}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathfrak{n}(\urcorner) strpti me (\mathrm{i}, 1%sD
\mathrm{C}') , header = TRUE)

> flowdata

2 Θ 16-\mathrm{e}9- Θ 1 :1: Θ 9 2 Θ 16-\mathrm{e}9-01 :2 Θ: $\Theta \Theta$ 2016-99- Θ 1 Θ\otimes:3: Θ

 113996548352 9732141 Θ 56 88593681\mathrm{e}24

2 Θ 16- Θ 9- Θ 1 $\Theta \Theta$:5 Θ: Θ 216-09-\mathrm{e}\mathrm{i} el: $\Theta \Theta$: $\Theta \Theta$ 2 Θ 16-\mathrm{e}9- Θ 1 el: le: Θ

 79659446272 738396119 Θ 4 7 $\Theta \Theta$ 95294464

Some explanation to the function call:
first argument ’ datal. csv ’ gives
the file to be read

sep ” defines the field separator
header=TRUE says that the first
hne should be ignored, because it
contains the header

FUN=\ldots this part parses the num‐
ber (timestamp) in the first field
minto a proper \dagger ime object

After having imported the data in this
way, a simple call to plot(flowdata)
will give you a mice plot as shown on
the right.

Of course plotting axes, sizes, color, output format and many more options can be
adjusted to achieve the preferred output.

3.3 Multiple time series

As I mentioned above, the actual data we are processing contains many different columns
(features). Let us assume for now only \daggerwo more columns after the timeslot:

129

timeslot, \urcorner bytes
147265620 0 , 113伽96548352, 65881333354

14726568伽 , 973214156, 63 Θ 56\emptyset 137216

14726574, 885 Θ 3681 Θ 24 , 582952984576

Here the columns are as before, with the addit,ion of the obytes column counting the
number of outgoing bytes in the last time slot.

We can read the file in and plot the resulting date in the very same way as before,
obtaining the following plot:

ttowdsta

\dot{\mathrm{g}}

盈

0.』0 0l0 \prime \mathrm{J}D0 \prime \mathrm{r}\mathrm{o} 0000

\mathrm{M}u

To exhibit the advantages of xts in (besides many others) plotting, here we convert
the resulted flow data into an \mathrm{x}\mathrm{t}\mathrm{s} object, followed by a plot statement:

> fd = read. zoo(‘ datal. csv’ , sep , FUN =\mathrm{f}\mathrm{u}\mathfrak{n}\mathrm{c}\mathrm{t}\mathrm{i}o\mathfrak{n}(\urcorner) strptime (\mathrm{i}, ’ %sl), \mathrm{j}

gheader = TRUE)
> flowdata = as. xts(fd)
> plot(flowdata, major.t \urcorner cks =6 Θ)

which results in the following graph:

130

Of course, this is only the start of our work as data engineer and security researcher:
From łiere on we are worlcing to detect anomalities in the data, due to DDOS or other
attacks. Here is a typical example of a time series duning a DDos attack:

*\mathrm{h}\mathrm{w}\mathrm{l}\mathrm{w}\cdot\cdot \mathrm{r}\cdot\cdot 10\bullet l\cdot\cdot 翼Ⅱ関制\blacksquare

4 \mathrm{R} in education

School and university education often focuses on different programming languages, in
particular Java is popular. For statistical and mathematical applications, Mathematica
(commercial) and Octave (oss) are often used, but I consider \mathrm{R} the better choice:
notation feels very natural, very much like writing mathematics by hand; the large
and very supportive community; no reqmirement for license fees, sources are readily
available; and last but not least it, is actually used in real‐world applications, providing
a preparation for hfe after school!

5 Conclusion

While hardly taught in schools or universities, \mathrm{R} , provides an excellent programming
environment for statistical computations, big data, and even school level math. With
highly vectorized operations \mathrm{R} can compete with large computing frameworks without
offloading computations to the GPu (but add‐on packages to do this are available, too).
Saving and loading \mathrm{R} data is very efficient in storage, allowing to pick up work where
you laft it tłie other day. Various 1)lotting facilities, and various ad(htional \mathrm{I})lotting
packages, makes generating graphics for reports easy and fun.

For everyone with only a slight interest in a computational approach to mathematics
and statistics, \mathrm{R} should not be left out the list of considered languages.

131

