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1 Introduction

We discuss a variational problem for piecewise‐smooth hypersurfaces in the (n+1)-
dimensional euclidean space \mathbb{R}^{n+1} . Our functional is a natural generalization of area for
surfaces. It is an anisotropic energy for hypersurfaces which is an integral of an energy
density that depends on the direction of the normal to the considered hypersurface.
Since in the special case where the energy density is constant one, our energy functional
is the surface area, and so the variational problem of such an energy with enclosed‐
volume constrained has minimal hypersurfaces and hypersurfaces with constant mean
curvature (CMC hypersurfaces) aồ solutions of a special case. It is known that any
embedded closed (compact without boundary) CMC hypersurface in \mathbb{R}^{n+1} is a round
n‐sphere ([1]), and any CMC surface with genus 0 in \mathbb{R}^{3} is a round 2‐sphere ([6]).
However, for our variational problem, such uniqueness results are not true in general
(Theorems 1.1, 1.2). On the other hand, any stable closed CMC hypersurface in \mathbb{R}^{n+1} is
a round n‐sphere ([3]). Here a critical point of a variational problem is said to be stable
if the second variation of the corresponding energy functional is always nonnegative.
For our variational problem, if we assume that the energy density function is of C^{3}

and convex (for definition, see §2), such a uniqueness result also holds (Theorem 1.3).
In this article, we explain these results precisely.

Let  $\gamma$ :  S^{n} \rightarrow \mathbb{R}_{>0} be a positive C^{3_{-}} function on the unit sphere S^{n} = \{ $\nu$ \in

\mathbb{R}^{n+1} | \Vert $\nu$\Vert = 1\} in \mathbb{R}^{n+1} . Let M=\displaystyle \bigcup_{i=1}^{k}M_{i} be an n‐dimensional oriented connected

compact C^{\infty} manifold, and X : M\rightarrow \mathbb{R}^{n+1} be a piecewise‐C3 immersion. This means
that X is continuous on M and it is a C^{3} immersion on each M_{i} , where M_{i} is an
n‐dimensional submanifold of M with smooth boundary. We sometimes say that X is
a piecewise smooth hypersurface. Denote by S(X) the set of singularities of X , and
let  $\nu$:M\backslash S(X)\rightarrow S^{n} be the unit normal vector field along X|_{M\backslash S(X)} . We can think
that  $\nu$ is defined on each  M_{i} . An anisotropic energy \mathcal{F}_{ $\gamma$}(X) of X is defined as follows.

\displaystyle \mathcal{F}_{ $\gamma$}(X):=\sum_{i=1}^{k}\int_{M_{i}} $\gamma$( $\nu$)dM , (1)
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where dM is the n‐dimensional volume form of M induced by X . Such an energy was
introduced by J. W. Gibbs (1839‐1903) in order to model the shape of small crystals,
and it is used as a mathematical model of anisotropic surface energy ([18],[19]). In the
special case where  $\gamma$\equiv  1, \mathcal{F}_{ $\gamma$}(X) is the usual n‐dimensional volume of the piecewise‐
immersed hypersurface X . Another special case gives surface area in the Lorentz‐
Minkowski space ([7]).

The (n+1)‐dimensional (algebraic) volume V(X) enclosed by X is given by

V(X):=\displaystyle \frac{1}{n+1}\sum_{i=1}^{k}\int_{M_{i}}\langle \mathrm{X},  $\nu$)dM.
For any positive number V > 0 , among all closed hypersurfaces in \mathbb{R}^{n+1} enclosing
the same (n+1)‐dimensional volume V , there exists a unique (up to translation in
\mathbb{R}^{n+1}) minimizer W(V) of \mathcal{F}_{ $\gamma$} (Wulff’s theorem. cf.[17]). Here a closed hypersurface
means that the boundary (having tangent space almost everywhere) of a set of positive
Lebesgue measure. Therefore, W(V) is the solution of the isoperimetric problem for

the functional \mathcal{F}_{ $\gamma$} . The minimizer W(V_{0}) for V_{0} := (n+1)^{-1} ヨれ  $\gamma$( $\nu$) dS^{n} is called
the Wulff shape (for  $\gamma$ ) (the standard definition of the Wulff shape will be given in
§2), and we will denote it by  W or W_{ $\gamma$} . When  $\gamma$\equiv  1, W is the unit sphere S^{n} . All
W(V) are homothetic to W . It is known that W is convex but not necessarily smooth.
On the other hand, for a given convex set \tilde{W} having the origin of \mathbb{R}^{n+1} as an interior
point, there exists a continuous function  $\gamma$ :  S^{n}\rightarrow \mathbb{R}_{>0} such that \tilde{W} is the Wulff shape
for  $\gamma$ . However, such  $\gamma$ is not unique. The “smallest”  $\gamma$ is called the convex integrand
for \tilde{W} (or, simply, convex) (for the precise definition, see §2).

Each equihbrium hypersurfaces of the functional \mathcal{F}_{ $\gamma$} for (n+1)‐dimensional volume‐
preserving variations has constant anisotropic mean curvature. Here the anisotropic
mean curvature  $\Lambda$ of a piecewise  C^{r} (r\geq 2) hypersurface X : M\rightarrow \mathbb{R}^{n+1} is defined as

 $\Lambda$ :=\displaystyle \frac{1}{n}(-\mathrm{d}\mathrm{i}\mathrm{v}_{M}D $\gamma$+nH $\gamma$) ,

where  D $\gamma$ is the gradient of  $\gamma$ and  H is the mean curvature of X . In fact, we have

Proposition 1.1 (Euler‐Lagrange equations, Koiso [8]. For n=2 , see B. Palmer [15]).

A piecewise C^{r} (r\geq 2) immersion X : M=\displaystyle \sum_{i=1}^{k}M_{i}\rightarrow \mathrm{R}^{n+1} is a critical point of the

anisotropic energy \mathcal{F}_{ $\gamma$}(X) = \displaystyle \int_{M} $\gamma$( $\nu$)dM for (n+1) ‐dimensional volume‐preserving

variations if and only if
(i) The anisotropic mean curvature  $\Lambda$ of  X is constant on M , and
(ii) ( $\xi$ \mathrm{o}\mathrm{v}|_{M_{l}}- $\xi$\circ $\nu$|_{M_{J}})( $\zeta$)\in T_{ $\zeta$}M_{i}\cap T_{ $\zeta$}M_{j}=T_{ $\zeta$}(\partial M_{i}\cap\partial M_{j}) at any  $\zeta$\in\partial M_{i}\cap\partial M_{j},

here  $\xi$\circ $\nu$ =  D $\gamma$+ $\gamma$( $\nu$) $\nu$ :  M \rightarrow \mathrm{R}^{n+\perp}is called the Cahn‐Hoffman field for X or
the anisotropic Gauss map of X , and the tangent space of a submanifold of \mathbb{R}^{n+1} is
naturally identified with a linear subspace of \mathbb{R}^{n+\perp}
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In this article, we call a piecewise C^{r} (r \geq 2) immersion X a CAMC (constant
anisotropic mean curvature) hypersurface if it satisfies (i) and (ii) in Proposition 1.1.
A CAMC hypersurface is said to be stable if the second variation of the energy for
any (n+1) ‐dimensional volume‐preserving variation is nonnegative.

In general, the Wulff shape and CAMC hypersurfaces are not smooth. When
the Wulff shape is a smooth strictly convex hypersurface (which is equivalent to the
condition that  $\gamma$ is uniformly convex, see §2), then any CAMC hypersurface  X :  M\rightarrow

\mathbb{R}^{n+1} is also an immersion. And in this case, if a closed CAMC hypersurface X satisfies
either one of the following conditions (\mathrm{i})-(\mathrm{i}\mathrm{i}\mathrm{i}) , then it is a homothety of the Wulff shape:
(i) X is embedded ([5]). (ii) X is stable ([14]). (iii) n=2 and the genus of M is zero
([10], [2]). In this paper, we show that if  $\gamma$ is not uniformly convex, such a uniqueness
result for embedded CAMC hypersurfaces in \mathbb{R}^{n+1} is not always true, the uniqueness
for CAMC surfaces with genus zero in \mathbb{R}^{3} is not always true either:

Theorem 1.1 (Koiso [8]). There exists a C^{3} function  $\gamma$ :  S^{n} \rightarrow \mathbb{R}^{+} which is not a
convex integrand such that there exists a closed embedded CAMC hypersurface for  $\gamma$

which is not (any homothety and translation of) the Wulff shape.

Theorem 1.2 (Koiso [8]). There exists a  C^{3} function  $\gamma$ :  S^{2} \rightarrow \mathbb{R}^{+} which is not a
convex integrand such that there exists a closed embedded CAMC surface with genus
zero for  $\gamma$ which is not (any homothety and translation of) the Wulff shape.

We conjecture that, for any  C^{3} function  $\gamma$ :  S^{n} \rightarrow \mathbb{R}^{+} which is not a convex
integrand, there exists a closed embedded CAMC hypersurface for  $\gamma$ which is not (any
homothety and translation of) the Wulff shape.

As for the uniqueness of stable closed CAMC surfaces, we obtain the following
result.

Theorem 1.3 (Koiso [8]). Assume  $\gamma$ :  S^{2}\rightarrow \mathbb{R}^{+} is of C^{3} and it is the convex integrand
of its Wulff shape W. Then, any closed stable CAMC surface in \mathbb{R}^{3} for  $\gamma$ is (up to
translation and homothety)  W.

It is expected that Theorem 1.3 can be generalized to hypersurfaces in \mathbb{R}^{n+1}.

We should remark again that, although it is natural and important to study vari‐
ational problems for anisotropic surface energy for which equilibrium surfaces have
singular points, it has not yet done sufficiently well. As for planer curves, F. Morgan
[11] proved that, if  $\gamma$ :  S^{1}\rightarrow \mathbb{R}_{>0} is continuous and convex, then any closed equilibrium
rectifiable curve for \mathcal{F}_{ $\gamma$} in \mathbb{R}^{2} is (up to translation and homothety) a covering of the
Wulff shape (see also [12]). About uniqueness of stable closed equilibria (not necessary
the energy minimum) in \mathbb{R}^{3} , B. Palmer [15] proved the following result.

Theorem 1.4 (B. Palmer [15]). Let  $\gamma$ :  S^{2} \rightarrow \mathbb{R}_{>0} be a convex integrand of C^{3}.

Assume that the Wulff shape W_{ $\gamma$} \subset \mathbb{R}^{3} is a piecewise C^{2} surface whose principal
curvatures are bounded by a positive constant from below. Let X : M \rightarrow \mathbb{R}^{3} be a
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closed embedded piecewise smooth CAMC surface. We assume that the Cahn‐Hoffman
field \tilde{ $\xi$} : M\backslash S(X) \rightarrow \mathbb{R}^{3} can be extended to M continuously. Then, if X is stable,
then it is (up to translation and homothety) the Wulff shape W_{ $\gamma$}.

The mapping \tilde{ $\xi$} in Theorem 1.4 is defined as follows. For a C^{1} function  $\gamma$ :  S^{n}\rightarrow

\mathbb{R}_{>0} , denote by  D $\gamma$ the gradient of  $\gamma$ on  S^{n} . Then, by using the Cahn‐Hoffman field
 $\xi$ :  S^{n}\rightarrow \mathbb{R}^{n+1},  $\xi$( $\nu$) :=D $\gamma$( $\nu$)+ $\gamma$( $\nu$) $\nu$ , on  S^{n} , the Cahn‐Hoffman field \tilde{ $\xi$}:M\backslash S(X)\rightarrow
\mathbb{R}^{n+1} for a piecewise C^{1} hypersurface X is defined by \tilde{ $\xi$} :=  $\xi$ 0 $\nu$ . They say that
the origin of the Cahn‐Hoffman field is the so‐called capillary vector formulation of
interface energies introduced by John W. Cahn and David W. Hoffman (1972).

By using the Cahn‐Hoffman field, we explain an application of our results men‐
tioned above to the anisotropic mean curvature flow. Let  $\gamma$ :  S^{n}\rightarrow \mathbb{R}_{>0} be of C^{3} with
Cahn‐Hoffman field  $\xi$ :  S^{n}\rightarrow \mathbb{R}^{n+1} . Let X : M^{n}\rightarrow \mathbb{R}^{n+1} be an embedded piecewise C^{2}

hypersurface with (not necessary constant) anisotropic mean curvature  $\Lambda$ . Consider
the anisotropic mean curvature flow

\displaystyle \mathrm{X}_{t}:M\rightarrow \mathbb{R}^{n+1}, \frac{\partial}{\partial t}X_{t}= $\Lambda$\tilde{ $\xi$}.
Our non‐uniqueness result (Theorem 1.2) implies that there exists a C^{3} function  $\gamma$ :
 S^{2}\rightarrow \mathbb{R}^{+} such that there exists a closed embedded self‐similar shrinking solution with
genus zero for  $\gamma$ other than the Wulff shape. We should remark that, in contrast with
our result, the round sphere is the only closed embedded self‐similar shrinking solution
of mean curvature flow in \mathbb{R}^{3} with genus zero ([4]).

Finally we give an important remark about the convexity of the Wulff shape in our
main results. In the above theorems, we assumed that the integrand  $\gamma$ :  S^{n}\rightarrow \mathbb{R}^{+} is
of C^{3} . This assumption implies that the Wulff shape W_{ $\gamma$} has singularities in general,
but at any regular point p\in W_{ $\gamma$} the principal curvatures of W_{ $\gamma$} for the inward normal
are all positive (Theorem 2.1). If a Wulff shape has a flat face, then the integrand

 $\gamma$ :  S^{n} \rightarrow \mathbb{R}^{+} has a point  $\nu$ \in  S^{n} where  $\gamma$ is not differentiable (cf. [13]). It is our
important future work to study such case.

This article is organized as follows. In §2 we give definitions of the Wulff shape, the
Cahn‐Hoffman field, the anisotropic mean curvature, and their fundamental properties.
In §3 we give outlines of the proofs of our main theorems.

2 Preliminaries

2.1 Wulff shape, convexity of the integrand

Let  $\gamma$ :  S^{n}\rightarrow \mathbb{R}^{+} be a continuous function. Set

W[ $\gamma$]:=\displaystyle \bigcap_{ $\nu$\in S^{n}}\{X\in \mathbb{R}^{n+1} | \{X,  $\nu$\}\leq $\gamma$( $\nu$)\} . (2)
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Then W[ $\gamma$] is a convex set which is not smooth in general. W[ $\gamma$] is often called the
Wulff shape for  $\gamma$ . However, in this article we call the boundary  W_{ $\gamma$} of W[ $\gamma$] the Wulff
shape (for  $\gamma$ ):

 W_{ $\gamma$}:=W:=\displaystyle \partial (\bigcap_{ $\nu$\in S^{n}}\{X\in \mathbb{R}^{n+1} | \langle X,  $\nu$\} \leq $\gamma$( $\nu$)\}) . (3)

Definition 2.1. For  $\gamma$\in  C^{0}(S^{n}, \mathbb{R}^{+}) , the set \{ $\gamma$( $\nu$)\mathrm{v} ; \mathrm{v}\in S^{n}\} \subset \mathbb{R}^{n+1} is called the
Wulff plot of  $\gamma$.

Example 2.1. Let n=1 . For  $\nu$=($\nu$_{1}, \mathrm{v}_{l}\prime)\in S^{1} \subset \mathbb{R}^{2} , define  $\gamma$( $\nu$) :=|v_{1}|+|$\nu$_{2}| . Then
the Wulff shape is the square and the Wulff plot is the dotted curve in Figure 1.

Figure 1: The Wulff shape (solid curve) and the Wulff plot (dotted cuve) for  $\gamma$ in
Example 2. 1

Example 2.2. Let  n=1 . For  $\nu$=($\nu$_{1}, $\nu$_{2})\in S^{1}\subset \mathbb{R}^{2} , define  $\gamma$( $\nu$) :=4\mathrm{v}_{1}^{3}-3$\nu$_{1}+1.2.
Then the image of the Cahn‐Hoffman field (see Definition 2.4) is given by Figure 2.
The Wulff shape is its subset that is the convex solid curve.

Figure 2: The image of the Cahn‐Hoffman field for  $\gamma$ in Example 2.2. The Wulff shape
is the convex solid curve.
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The homogeneous extension \overline{ $\gamma$} : \mathbb{R}^{n+1}\rightarrow \mathbb{R}_{\geq 0} of  $\gamma$ is defined by

\overline{ $\gamma$}(rX)=r $\gamma$(X) , \forall X\in S^{n}, \forall r\geq 0.

If \overline{ $\gamma$} is convex (that is, \overline{ $\gamma$}(X+\mathrm{Y}) \leq\overline{ $\gamma$}(X)+\overline{ $\gamma$}(Y), X, Y\in \mathbb{R}^{n+1} ) and has the following
symmetry \overline{ $\gamma$}(-X) =\overline{ $\gamma$}(X) , then \overline{ $\gamma$} defines a norm in \mathbb{R}^{n+1} . In this case, consider the
dual norm

\displaystyle \overline{ $\gamma$}^{*}(Y)=\sup\{Y\cdot Z|\overline{ $\gamma$}(Z)\leq 1\}

of \overline{ $\gamma$} . Then the unit sphere

\{\mathrm{Y}\in \mathbb{R}^{n+1}|\overline{ $\gamma$}^{*}(Y)=1\}

of \overline{ $\gamma$}^{*} coincides with the Wulff shape W.

Definition 2.2. A continuous map  $\gamma$ :  S^{n} \rightarrow \mathbb{R}_{>0} is called a convex integrand if the
Wulff plot of the map

1/ $\gamma$:S^{n}\rightarrow \mathbb{R}_{>0}, 1/ $\gamma$( $\nu$):= $\gamma$( $\nu$)^{-1}, \forall $\nu$\in S^{n}

is convex.

Proposition 2.1. Assume that  $\gamma$ :  S^{n}\rightarrow \mathbb{R}_{>0} is of C^{2} . Then the following (i) ‐ (iii)
are equivalent.

(i)  $\gamma$ is a convex integrand.
(i) \overline{ $\gamma$}(v_{1}+v_{2})\leq\overline{ $\gamma$}(v_{1})+\overline{ $\gamma$}(v_{2}) holds for all v_{1}, v_{2}\in \mathbb{R}^{n+1}
(ii) D^{2} $\gamma$+ $\gamma$\cdot 1 is positive‐semidefinite, that is, the eigenvalues are all nonnegative,

on the tangent space at each point in S^{n}.

Remark 2.1 ([17]). (i) For any continuous  $\gamma$ :  S^{n} \rightarrow \mathbb{R}_{>0} , there exists a unique
convex integrand \tilde{ $\gamma$} such that W_{ $\gamma$}=W_{\overline{ $\gamma$}} holds.

(ii) \tilde{ $\gamma$} is the smallest integrand having the same Wulff shape, that is

\displaystyle \tilde{ $\gamma$}( $\nu$)=\min\{f( $\nu$) |f\in C^{0}(S^{n}, \mathbb{R}_{>0}), W_{f}=W_{\overline{ $\gamma$}}\}, \forall v\in S^{n}

holds.

Remark 2.2 ([13]). If a convex integrand  $\gamma$ is of  C^{1} , then W( $\gamma$) is strictly convex.

Lemma 2.1. For  $\gamma$\in C^{3}(S^{n}, \mathbb{R}_{>0}) , the following (i) and (ii) are equivalent.
(i) W_{ $\gamma$} is a closed strictly‐convex smooth hypersurface, that is, all of the principal

curvatures of W are positive for the inward‐pointing unit normal.
(ii) The n\times n matrix D^{2} $\gamma$+ $\gamma$\cdot 1 is positive‐definite, that is, the eigenvalues are

all positive, on the tangent space at each point in S^{n} , where  D^{2} $\gamma$ is the Hessian of  $\gamma$

and 1 is the unit matrix.

Definition 2.3. Assume  $\gamma$ \in  C^{3}.  $\gamma$ is said to be uniformly convex if the matrix
 D^{2} $\gamma$+ $\gamma$ 1 is positive‐definite at each point in S^{n}.
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2.2 Cahn‐Hoffman field

In this section, we give the definition of the Cahn‐Hoffinan field on S^{n} and its important
properties. One of the most important properties of the Cahn‐Hoffman field is that it
gives a representation of the Wulff shape.

Definition 2.4. Assume that  $\gamma$ :  S^{n} \rightarrow \mathbb{R}_{>0} is of C^{1} . We call the continuous map
 $\xi$ :  S^{n}\rightarrow \mathbb{R}^{n+1} defined as

 $\xi$( $\nu$):=$\xi$_{ $\gamma$}( $\nu$):=D $\gamma$+ $\gamma$( $\nu$) $\nu$,  $\nu$\in S^{n} (4)

the Cahn‐Hoffman field on S^{n} (for  $\gamma$ ).

Proposition 2.2 (Koiso [8]). Assume that  $\gamma$ :  S^{n}\rightarrow \mathbb{R}_{>0} is of C^{2} . Then, the Cahn‐
Hoffman field  $\xi$ on  S^{n} satisfies the following (i) and (ii), hence  $\xi$ is a  C^{1}-(wave)front.

(i)
\langle(d $\xi$)_{ $\nu$}(u) ,  $\nu$\rangle=0, \forall $\nu$\in S^{n}, \forall u\in T_{ $\nu$}S^{n} . (5)

(ii) The mapping

( $\xi$, id_{S^{n}}) : S^{n}\rightarrow \mathbb{R}^{n+1}\times S^{n}, ( $\xi$, id_{S^{n}})( $\nu$) :=( $\xi$( $\nu$),  $\nu$) (6)

is a C^{\perp} ‐immersion.

Proposition 2.2 (i) implies the following Corollaries 2.1, 2.2.

Corollary 2.1. Assume that  $\gamma$ :  S^{n}\rightarrow \mathbb{R}_{>0} is of C^{2} . Then, at any point  $\nu$\in  S^{n} we
may call the hyperplane perpendicular to  $\nu$ the tangent hyperplane of  $\xi$_{ $\gamma$} at  $\nu$ (or at

 $\xi$_{ $\gamma$}( $\nu$)) .

Corollary 2.2. Assume that  $\gamma$ :  S^{n}\rightarrow \mathbb{R}_{>0} is of C^{2} Then, at any point  $\nu$\in S^{n} where
$\xi$_{ $\gamma$} is an immersion,  $\nu$ itself gives a unit normal to  $\xi$_{ $\gamma$}.

The following proposition gives an important relation between  $\gamma$ and its Cahn‐
Hoffman field.

Proposition 2.3. Assume that  $\gamma$ :  S^{n} \rightarrow \mathbb{R}_{>0} is of C^{2} . Then,  $\gamma$ is the support
function of  $\xi$_{ $\gamma$} , that is,  $\gamma$( $\nu$) is the distance between the origin of \mathbb{R}^{n+1} and the tangent
hyperplane of $\xi$_{ $\gamma$} at the point $\xi$_{ $\gamma$}( $\nu$) .

Theorem 2.1 (Koiso [8]). If  $\gamma$ :  S^{n} \rightarrow \mathbb{R}^{+} is of C^{3} , then the following (i) and (ii)
hold.

(i) The prencipal curvatures at any regular point of the Cahn‐Hoffman field  $\xi$ never
vanish.

(ii) For any singular point  $\nu$\in S^{n} of  $\xi$ , and for any smooth one‐parameter family
 $\nu$_{t}\in S^{n} with \displaystyle \lim_{t\rightarrow\infty}$\nu$_{t}= $\nu$ of regular points of  $\xi$ with principal curvatures  k_{1}(t) , , k_{n}(t)

which are continuous in t , the limit \displaystyle \lim_{t\rightarrow\infty}|k_{i}(t)| is either \infty or a nonzero real value,

(i=1, \cdots n) .
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We will give the relationship between the Cahn‐Hoffman field and the Wulff shape.
Denote by W_{ $\gamma$}=\hat{W} the image of $\xi$_{ $\gamma$} , that is

\hat{W}_{ $\gamma$}:=\hat{W}:=$\xi$_{ $\gamma$}(S^{n}) .

Lemma 2.2. For  $\gamma$\in C^{1}(S^{n}, \mathbb{R}_{>0}) , W_{ $\gamma$} is the unique convex hypersurface determined
by the following properties (i) and (ii).

(i) W_{ $\gamma$}\subset\hat{W}_{ $\gamma$}.
(ii) The (open) domain bounded by W_{ $\gamma$} contains the origin of \mathbb{R}^{n+1}

Lemma 2.3. For  $\gamma$\in C^{1}(S^{n}, \mathbb{R}_{>0}) , the following (i) and (ii) are equivalent.
(i)  $\gamma$ is convex.
(ii)  W_{ $\gamma$}=\hat{W}_{ $\gamma$}.

2.3 First variation formula and anisotropic mean curvature
(cf. [9], [8])

First we consider a C^{2} immersion X : M_{0}\rightarrow \mathbb{R}^{n+1} from an oriented compact connected
n‐dimensional C^{\infty} manifold M_{0} with smooth boundary \partial M_{0} to \mathbb{R}^{n+1} with unit normal
 $\nu$ . Let

 X_{ $\epsilon$}=X+ $\epsilon$( $\eta$+ $\psi \nu$)+\mathcal{O}($\epsilon$^{2})

be a smooth variation of X , where  $\eta$ is the tangential component and  $\psi$ \mathrm{v} is the
normal component of the variation vector field  $\delta$ X of X_{ $\epsilon$} . Then the first variation of
the anisotropic energy \mathcal{F}_{ $\gamma$} is given as follows.

 $\delta$ \displaystyle \mathcal{F}_{ $\gamma$} := \frac{d\mathcal{F}_{ $\gamma$}(X_{ $\epsilon$})}{d $\epsilon$}|_{ $\epsilon$=0}
= \displaystyle \int_{M_{0}} $\psi$(\mathrm{d}\mathrm{i}\mathrm{v}_{M_{0}}D $\gamma$-nH $\gamma$)dM_{0}+\oint_{\partial M_{0}}- $\psi$\{D $\gamma$, N\}+ $\gamma$\langle $\eta$, N\}d\tilde{s} , (7)

where H is the mean curvature of X, dM_{0} is the n‐dimensional volume form of M_{0}

induced by X, N is the outward‐pointing unit conormal along \partial M_{0}, d\tilde{s} is the (n-1)-
dimensional volume form of \partial M_{0} . Denote by R the  $\pi$/2‐rotation on the (N,  $\nu$)‐plane,
and by p the projection from \mathbb{R}^{n+1} to the (N,  $\nu$)‐plane. Then, we have ([8])

 $\delta$ \displaystyle \mathcal{F}_{ $\gamma$}=\int_{M_{0}} $\psi$(\mathrm{d}\mathrm{i}\mathrm{v}_{M_{0}}D $\gamma$-nH $\gamma$)dM_{0}-\oint_{\partial M_{0}}\langle $\delta$ X, R(p( $\xi$ 0 $\nu$ d\tilde{s} . (8)

On the other hand the first variation of the (n+1)‐dimensional volume enclosed by
X_{ $\epsilon$} is well‐known:

 $\delta$ V=\displaystyle \int_{M_{0}} $\psi$ dM_{0} . (9)
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(8) with (9) gives the Euler‐Lagrange equations in Proposition 1.1. Especially, if X is
a critical point of \mathcal{F}_{ $\gamma$} for all (n+1)‐dimensional volume‐preserving variations,

\mathrm{d}\mathrm{i}\mathrm{v}_{M}D $\gamma$-nH $\gamma$= constant on M_{0} , (10)

which is the reason why

 $\Lambda$ :=\displaystyle \frac{1}{n}(-\mathrm{d}\mathrm{i}\mathrm{v}_{M}D $\gamma$+nH $\gamma$)
is called the anisotropic mean curvature of X (cf. [16], [9]). It is shown that

 $\Lambda$=-\displaystyle \frac{1}{n}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}_{M}(D^{2} $\gamma$+ $\gamma$ \mathrm{I})\circ d $\nu$=-\frac{1}{n,}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}_{M}d( $\xi$ 0 $\nu$) (11)

holds (cf. [9]). X is called a hypersurface with constant anisotropic mean curvature
(CAMC) if  $\Lambda$ is constant.

Remark 2.3. (i) In the special case where  $\gamma$\equiv 1,  $\Lambda$=H.

(ii) At points where (  $\gamma$ is of  C^{2} and)  $\gamma$ is uniformly convex, by (11), the equation
“  $\Lambda$= constant” is elliptic.

Let \mathrm{v} : M\backslash S(X) \rightarrow S^{n} be the Gauss map of a piecewise C^{2} immersion X : M=

M^{n}\rightarrow \mathbb{R}^{n+1} with singular set S(X) (the set of singularities of X). Then, for any point
p\in M\backslash S(X) , there is a point  $\xi$( $\nu$) in \hat{W}_{ $\gamma$} where  $\nu$ gives the normal to \hat{W}_{ $\gamma$} , and

 $\Lambda$=-\displaystyle \frac{1}{n}\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}(d( $\xi$ 0 $\nu$)) (12)

holds. Since $\xi$^{-1} gives the unit normal vector field $\nu$_{ $\xi$} for the Cahn‐Hoffman field
 $\xi$ :  S^{n}\rightarrow \mathbb{R}^{n+1} , we have the following:

Proposition 2.4. The anisotropic mean curvature of the Cahn‐Hoffman field  $\xi$ :  S^{n}\rightarrow

\mathbb{R}^{n+\perp}is -1 at any regular point. Hence, particularly the anisotropic mean curvature
of the Wulff shape (for the outward‐pointing unit normal) is-1 at any regular point.

Proposition 2.4 immediately gives the following:

Corollary 2.3. Cahn‐Hoffman field is a critical point of \mathcal{F}_{ $\gamma$} for (n+1) ‐dimensional
volume‐preserving variations.

3 Idea of proofs of the main theorems

Proof of Theorems 1.1, 1.2. Example 2.2 gives an example. In fact, each of the three
closed dotted curves in Figure 2 is a closed CAMC curve which is not any homothety of
the Wulff shape. And it is easy to get a higher dimensional example by using rotation.
口

In order to prove Theorem 1.3, we need the following lemmas.
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Lemma 3.1. Assume  $\gamma$ :  S^{n} \rightarrow \mathbb{R}^{+} is of C^{3} and the convex integrand of its Wulff
shape W. Then the Gauss curvature of W is bounded below by a positive constant.

Proof of Lemma 3.1. From Theorem 2.1, the absolute values of the principal cur‐
vatures of any regular point of the Cahn‐Hoffman field  $\xi$ are bounded by a positive
constant from below. Hence the Gauss curvatures at regular points of  W are bounded
below by a positive constant. \square 

Lemma 3.2 (Koiso [8]). Assume  $\gamma$ :  S^{n}\rightarrow \mathbb{R}^{+} is of C^{3} and the convex integrand of
its Wulff shape W. Let X : M\rightarrow \mathbb{R}^{n+1} be a closed piecewise C^{3} CAMC hypersurface
with unit normal  $\nu$ :  M\backslash S(X) \rightarrow  S^{n} , here \mathcal{S}(X) is the set of singularities of X.

Then, Cahn‐Hoffman field \tilde{ $\xi$} :=  $\xi$\circ $\nu$ :  M\backslash S(X) \rightarrow \mathbb{R}^{n+1}, ( $\xi$ := D $\gamma$(\mathrm{v})+ $\gamma$(\mathrm{v}) $\nu$,
 $\xi$ :  S^{n}\rightarrow \mathbb{R}^{n+1}) can be extended to M.

Idea of the proof of Theorem 1.3. Because of Lemmas 2.2, 3.1, and 3.2, we can use
the idea in [15]. Let  $\xi$ :  S^{2} \rightarrow \mathbb{R}^{3} be the Cahn‐Hoffman field. Let X : M\rightarrow \mathbb{R}^{3} be a
closed piecewise C^{3} CAMC surface. We consider the following variation X_{t} of X that
preserves the enclosed volume:

X_{t}(u, v) := $\mu$(t)\cdot(X(u, v)+t $\xi$( $\nu$(u, v (u, v)\in M.

Actually, by Lemma 3.2, each X_{t} gives a piecewise C^{2} closed surface. By a long
calculation, we can prove the following ([8]), which gives the desired result.

\displaystyle \frac{d^{2}}{dt^{2}} \mathcal{F}_{ $\gamma$}(X_{t})\geq 0. \Leftrightarrow X is a homothety of W ( \mathrm{u}\mathrm{p} to translation).
t=0

口
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