
Sequential injective algorithm for weakly univalent vector equation
— with application to regularized smoothing Newton algorithm —

Shunsuke Hayashi
*

Abstract It is known that the complementarity problems and the variational inequality
problems are reformulated equivalently as a vector equation by using the natural residual
or Fischer‐Burmeister function. In this short paper, we first study the global convergence
of a sequential injective algorithm for weakly univalent vector equation. Then, we ap‐
ply the convergence analysis to the regularized smoothing Newton algorithm for mixed
nonlinear second‐order cone complementarity problems. We prove the global convergence
property under the (Cartesian) P_{0} assumption, which is strictly weaker than the original
monotonicity assumption.

1 Sequential injective algorithm for weakly univalent equation

Consider the following vector equation (VE):

H(z)=0 , (1.1)

where H : \mathcal{D} \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} is continuous over the domain \mathcal{D} \subseteq \mathbb{R}^{n} , but need not be linear or dif‐
ferentiable. Notice that many classes of problems such as linear complementarity problem (LCP),
nonlinear complementarity problem (NCP), second‐order cone complementarity problem (SOCCP)
[2, 3], symmetric cone complementarity problem (SCCP) [4], variational inequality problem (VIP)
and fixed point problem can be cast as VE (1.1). (For more details, see [1]). In this section, we first
study the global convergence of a certain conceptual algorithm for solving VE (1.1). Then, in the next
section, we apply the obtained convergence theorem to the regularized smoothing Newton algorithm
in a direct manner.

1.1 Weak univalence property

In the convergence analysis, the notion of the weak univalence property plays an important role.

Deflnition 1.1 (weak univalence property) [1, Sec. 3.6] Function H : \mathcal{D} \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}  $\iota$ s said
to be “weakly univalent” if it is continuous and there exists a sequence of continuous and injective
functions \{\overline{H}_{k}\} converging to H uniformly* l over any bounded subset of \mathcal{D}.

We can easily see that any weakly univalent function is continuous. Moreover, any P_{0} function
or monotone function is weakly univalent. For VE (1.1), we suppose that H satisfies the following
assumption:

Assumption A H:\mathcal{D}\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{n} satisfies the following statements:

(i) H is weakly univalent;

(ii) The solution set H^{-1}(0) is nonempty and bounded.
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‘ 1We say that the sequence of functions \{\tilde{H}_{k}\} converges to H uniformly over the bounded set  $\Omega$ , if \displaystyle \sup\{\Vert\overline{H}_{k}(w)-H(w)\Vert :

 w\in $\Omega$\} converges to 0 as k\rightarrow\infty.
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1.2 Sequential injective algorithm and its global convergence

For solving VE (1.1), we first provide the following conceptual algorithm, which involves the regularized
smoothing Newton algorithm as a special case.

Algorithm 1 (Sequential injective algorithm)

Step 0 Choose w^{0} \in \mathcal{D} and $\beta$_{0}\geq 0 arbitrarily. Obtain a continuous and injective function
\tilde{H}_{0}:D\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{n} . Set k :=0.

Step 1 If \Vert H(w^{k})\Vert = 0 , then terminate and output w^{k} as a solution. Otherwise, go to
Step 2.

Step 2 Find a vector w^{k+1} \in \mathbb{R}^{n} such that

\Vert\tilde{H}_{k}(w^{k+1})\Vert \leq $\beta$_{k} . (1.2)

Step 3 Obtain $\beta$_{k+1}\geq 0 and a continuous injective function \tilde{H}_{k+1} : \mathbb{R}^{n}\rightarrow \mathbb{R}^{n} so that they
converge to 0 and H eventually and uniformly. Set k :=k+1 . Go back to Step 1.

To obtain w^{k+1} in Step 2, we may use any suitable unconstrained minimization technique. These
issues will be discussed later. In order for Algorithm 1 to be well‐defined, there must exist w^{k+1}

satisfying (1.2).

Assumption \mathrm{B} For the functions \{\tilde{H}_{k}\} and parameters \{$\beta$_{k}\} used in Algorethm 1, \{w|\Vert\tilde{H}_{k}(w)\Vert \leq

$\beta$_{k}\}  $\iota$ s nonempty for for all k.

Note that Assumption \mathrm{B} holds when \tilde{H}_{k}^{-1}(0)\neq\emptyset.
Now, we are to show the global convergence of the algorithm. To this end, we introduce the

following lemma, which indicates a property the weakly univalent functions possess.

Lemma 1.1 [1, Cor. 3.6.5] Let H : \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} be a weakly univalent function such that the inverse
image H^{-1}(0) is nonempty and compact. Then, for any  $\varepsilon$>0 , there exists  $\delta$= $\delta$( $\varepsilon$)>0 such that the
following statement holds: For any weakly univalent function \tilde{H} : \mathbb{R}^{n}\rightarrow \mathbb{R}^{n} such that*2

\displaystyle \sup\{\Vert\tilde{H}(w)-H(w)\Vert : w\in \mathrm{c}1(H^{-1}(0)+B(0, $\varepsilon$))\}\leq $\delta$,
we have

\emptyset\neq\tilde{H}^{-1}(0)\subseteq H^{-1}(0)+B(0, $\varepsilon$) ,

and \tilde{H}^{-1}(0) is connected.

By using this lemma, we establish the global convergence of Algorithm 1.

Theorem 1.1 Suppose that Assumptions A and B holds. Let \{w^{k}\} be the sequence generated by
Algorithm 1. Then, \{w^{k}\} is bounded and any accumulation point solves VE(1.1)^{*3}

*2
Here, cl and B(0,  $\varepsilon$) denote the closure and the open ball with radius e>0 , i.e., B(0,  $\varepsilon$) :=\{w\in \mathbb{R}^{n}|\Vert w\Vert <e\},

respectively.
3
This implies that the distance from w^{k} to H^{-1}(0) converges to 0 as k\rightarrow\infty.
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Proof. We first show the boundedness of {wk}. Choose  $\varepsilon$ > 0 arbitrarily. Then, there exists
 $\delta$ =  $\delta$( $\epsilon$) > 0 such that Lemma 1.1 holds. Let $\Omega$_{ $\varepsilon$} := H^{-1}(0)+B(0,  $\epsilon$) , which is nonem-\mathrm{p}\mathrm{t}\mathrm{y} and
bounded by Assumption A(ii). Let \overline{G}_{k} : D \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} be defined by \overline{G}_{k}(w) :=\overline{H}_{k}(w)-H_{k}(w^{k+1})
for each k . Then, there exists \overline{k} such that

\Vert\tilde{G}_{k}(\mathrm{w})-H(w)\Vert = \Vert\tilde{H}_{k}(w)-\tilde{H}_{k}(w^{k+1})-H(w)\Vert
\leq \Vert\tilde{H}_{k}(w)-H(w)\Vert+\Vert\tilde{H}_{k}(w^{k+1})\Vert

\displaystyle \leq \sup\{\Vert\overline{H}_{k}(w')-H(w')\Vert : \mathrm{w}^{l}\in \mathrm{c}1$\Omega$_{\mathrm{g}}\}+$\beta$_{k}
\leq  $\delta$

for any  k\geq\overline{k} and w\in \mathrm{c}1$\Omega$_{ $\varepsilon$} . Here, the first inequality is due to the triangular inequality, the second
inequality holds from w\in \mathrm{c}1$\Omega$_{ $\varepsilon$} and (1.2), and the last inequality follows since $\beta$_{k} converges to 0 and
\tilde{H}_{k}(w) converges to H(\mathrm{w}) uniformly over the compact set \mathrm{c}1$\Omega$_{ $\varepsilon$} . Note that \overline{G}_{k} is weakly univalent
since it is continuous and injective. Thus, by Lemma 1.1 with \tilde{H} :=\tilde{G}_{k} , we have

\emptyset\neq G_{k}^{-1}(0)-\subseteq$\Omega$_{ $\varepsilon$}
for all k\geq\overline{k} . Since w^{k+1} \in\tilde{G}_{k}^{-1}(0) and $\Omega$_{ $\varepsilon$} is bounded, we have the boundedness of {wk}.

Next we show the latter part. Since \{\mathrm{w}^{k}\} is bounded, there exists a bounded set W satisfying
\{w^{k}\}\subseteq W . By the triangular inequality and Step 2 of Algorithm 1, we have

\Vert H(w^{k+1})\Vert \leq \Vert\overline{H}_{k}(w^{k+1})-H(\mathrm{w}^{k+1})\Vert+\Vert H_{k}(\mathrm{w}^{k+1})\Vert

\displaystyle \leq \sup\{\Vert\overline{H}_{k}(w')-H(w')\Vert : w'\in W\}+$\beta$_{k}.
Thus we have \Vert H(w^{k+1})\Vert \rightarrow  0 . Since H is continuous, arbitrary accumulation point w^{*} of \{w^{k}\}
satisfies H(w^{*})=0. \blacksquare

Corollary 1.1 Let  H_{ $\mu,\ \varepsilon$} : \mathcal{D}\subseteq \mathbb{R}^{n}\rightarrow \mathbb{R}^{n} be a function with parameters  $\mu$\geq 0 and  $\varepsilon$\geq 0 such that

(i) H_{ $\mu,\ \varepsilon$} is continuously differentiable over \mathcal{D} for any  $\mu$>0 and  $\varepsilon$>0,

(ii) \nabla H_{ $\mu,\ \varepsilon$}(\mathrm{w}) is nonsingular for any  $\mu$>0,  $\epsilon$>0 and w\in \mathcal{D},

(iii) H_{ $\mu,\ \varepsilon$} converges to H uniformly over an arbitrary bounded subset of \mathcal{D} as ( $\mu$,  $\varepsilon$)\searrow(0,0) .

Let \{($\mu$_{k}, $\varepsilon$_{k})\} \subseteq \mathbb{R}+ \times \mathbb{R}+ be arbitrary sequences such that $\mu$_{k} > 0 and $\varepsilon$_{k} > 0 for any k , and
($\mu$_{k}, $\varepsilon$_{k})\searrow(0,0) as  k\rightarrow\infty . Suppose that Assumptions  A and B hold. Then, any accumulation point
of the sequence \{w^{k}\} generated by Algorithm 1 with \tilde{H}_{k} :=H_{$\mu$_{k},$\varepsilon$_{k}} solves VE(1.1) .

Proof. By (i) and (ii), the function H_{$\mu$_{k},$\varepsilon$_{k}} is continuous and injective for each k . Thus, by (iii)
and Theorem 1.1, we have the corollary. \blacksquare

2 Regularized smoothing Newton algorithm for mixed nonlinear
second‐order cone complementarity problem

In this section, we focus on the regularized smoothing Newton algorithm [3] for solving the following
mixed nonlinear second‐order cone complementarity problem (MNSOCCP):

Find (x, y,p)\in \mathbb{R}^{n}\times \mathbb{R}^{n}\times \mathbb{R}^{p}
(MNSOCCP) such that x\in \mathcal{K}, y\in \mathcal{K}, x^{\mathrm{T}}y=0 , (2.1)

y=F_{1}(x,p) , F_{2}(x,p)=0,
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where F_{1} : \mathbb{R}^{n}\times \mathbb{R}^{\ell}\rightarrow \mathbb{R}^{n} and F_{2}:\mathbb{R}^{n} \times \mathbb{R}^{\ell}\rightarrow \mathbb{R}^{\ell} are given continuously differentiable functions, and
\mathcal{K} is a Cartesian product of several second‐order cones (SOCs), i.e.,

\mathcal{K}:=\mathcal{K}^{n_{1}} \times \mathcal{K}^{n2} \times\cdots\times \mathcal{K}^{n_{m}} (2.2)

with n_{1}+n_{2}+\cdots+n_{m}=n and

\mathcal{K}^{n}\cdot:= \left\{\begin{array}{ll}
\{z\in \mathbb{R}|z\geq 0\} & (n_{i}=1)\\
\{z\in \mathbb{R}^{n_{t}} |z_{1}\geq\sqrt{z_{2}^{2}++z_{n_{i}}^{2}}\} & (n_{i}\geq 2) .
\end{array}\right.
We therefore have

\mathbb{R}_{+}^{n}=\mathcal{K}^{1}\times \mathcal{K}^{1}\times\cdots\times \mathcal{K}^{1},

where \mathbb{R}_{+}^{n} denotes the nonnegative orthant in \mathbb{R}^{n}.

MNSOCCP (2.1) involves many kinds of problems as special cases as follows.

(i) When \mathcal{K} = \mathbb{R}_{+}^{n} (i.e., n_{1} = n_{2} = . . . = n_{m} = 1 ), MNSOCCP (2.1) reduces to the following
nonlinear mixed complementary problem (MCP):

Find (x,p)\in \mathbb{R}^{n}\times \mathbb{R}^{\ell}
(MCP) such that x\geq 0, y\geq 0, x^{\mathrm{T}}y=0 , (2.3)

y=F_{1}(x,p) , F_{2}(x,p)=0.

(ii) When \mathcal{K}=\mathbb{R}_{+}^{n} and p= 0 , MNSOCCP (2.1) reduces to the following nonlinear complementary
problem (NCP):

Find x\in \mathbb{R}^{n}

(NCP) such that x\geq 0, y\geq 0, x^{\mathrm{T}}y=0,
y=F_{1}(x) .

(iii) When \mathcal{K}=\mathbb{R}_{+}^{n} and F_{1}(x)=Mx+q for some M\in \mathbb{R}^{n\times n} and q\in \mathbb{R}^{n} , MNSOCCP (2.1) reduces
to the following linear complementary problem (LCP):

Find x\in \mathbb{R}^{n}

(LCP) such that x\geq 0, y\geq 0, x^{\mathrm{T}}y=0,
y=Mx+q.

(iv) For the nonlinear second‐order cone program (NSOCP)

Minimize  $\theta$(z)
subject to G(z) \in \mathcal{K}, H(z)=0 (2.4)

with  $\theta$ : \mathbb{R}^{p_{1}} \rightarrow \mathbb{R}, G:\mathbb{R}^{p_{l}} \rightarrow \mathbb{R}^{n} and H:\mathbb{R}^{\ell_{1}} \rightarrow \mathbb{R}^{\ell_{2}} , its KKT conditions are given as follows:

Find (x, y, z, w)\in \mathbb{R}^{n}\times \mathbb{R}^{n}\times \mathbb{R}^{\ell_{1}} \times \mathbb{R}^{p_{2}}

(SOCP‐KKT) such that x\in \mathcal{K}, y\in \mathcal{K}, x^{\mathrm{T}}y=0,
y=G(z) , H(z)=0,
\nabla $\theta$(z)-\nabla G(z)x-\nabla H(z)w=0.

This is of the form MNSOCCP (2.1).
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(v) When \mathcal{K}=\mathcal{K}^{n} and P=0 , MNSOCCP (2.1) reduces to the following non‐mixed nonlinear SOCCP
with a single cone:

Find x\in \mathbb{R}^{n}

such that x\in \mathcal{K}^{n}, y\in \mathcal{K}^{n}, x^{\mathrm{T}}y=0 , (2.5)
y=F_{1}(x) .

In [3], the regularized smoothing Newton algorithm was proposed for solving SOCCP (2.5), and the
global and quadratic convergence was proved. In this section, we extend the algorithm proposed in
[3] to MNSOCCP (2.1) in a direct manner. Then, in the next section, we prove that the generated
sequence is globally convergent by using the sequential injective approach. In what follows, we often
leave the detailed mathematical discussions on SOCs and related functions to the existing references
[2, 3] since we use similar techniques.

2.1 Reformulation as a vector equation

Let x and y be partitioned according to the Cartesian structure of \mathcal{K}=\mathcal{K}^{n_{1}} \times\cdots\times \mathcal{K}^{n_{m}} , i.e.,

x = (x^{1}, \ldots, x^{m})\in \mathbb{R}^{n_{1}} \times \cdots\times \mathbb{R}^{n_{m}},
(2.6)

y = (y^{1}, \ldots, y^{m})\in \mathbb{R}^{n_{1}} \times\cdots\times \mathbb{R}^{n_{m}}.

Define function $\Phi$_{\mathrm{N}\mathrm{R}}:\mathbb{R}^{n}\mathrm{x}\mathbb{R}^{n}\rightarrow \mathbb{R}^{n} , called a natural residual [2, 3], by

$\Phi$_{\mathrm{N}\mathrm{R}}(x,y) := \left(\begin{array}{ll}
$\varphi$_{\mathrm{N}\mathrm{R}}(x^{1} & y^{1})\\
 & \\
$\varphi$_{\mathrm{N}\mathrm{R}}(x^{m} & y^{m})
\end{array}\right) ,

$\varphi$_{\mathrm{N}\mathrm{R}}(x^{i}, y^{i}) := x^{i}-P_{\mathcal{K}^{n_{ $\iota$}}}(x^{i}-y^{i}) ,

where P_{\mathcal{K}^{n_{ $\iota$}}}(x^{i}-y^{i}) denotes the Euclidean projection of x^{i}-y^{i} onto \mathcal{K}^{n_{\mathrm{t}}} . Note that, when n_{i}=1 , we
have $\varphi$_{\mathrm{N}\mathrm{R}}(x^{i}, y^{i})=\displaystyle \min(x^{i}, y^{i}) since \mathcal{K}^{1}=\mathbb{R}+ yields

x^{i}-P_{\mathcal{K}^{1}}(x^{i}-y^{i}) = x^{i}-\displaystyle \max(0, x^{i}-y^{i})
= \displaystyle \min(x^{i}, y^{i}) .

It is known that the natural residual $\Phi$_{\mathrm{N}\mathrm{R}} satisfies

$\Phi$_{\mathrm{N}\mathrm{R}}(x, y)=0 \Leftrightarrow x\in \mathcal{K}, y\in \mathcal{K}, x^{\mathrm{T}}y=0.

Therefore, letting H_{\mathrm{N}\mathrm{R}} : \mathbb{R}^{n}\times \mathbb{R}^{n}\times \mathbb{R}^{p}\rightarrow \mathbb{R}^{2n+p} be defined by

H_{\mathrm{N}\mathrm{R}}(x, y,p) := \left(\begin{array}{ll}
$\Phi$_{\mathrm{N}\mathrm{R}}(x & y)\\
F_{1}(x,p)-y & \\
F_{2}(x,p) & 
\end{array}\right) ,

we can reformulate MNSOCCP (2.1) as the following VE equivalently:

H_{\mathrm{N}\mathrm{R}}(x, y,p)=0 . (2.7)
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2.2 Smoothing and regularization

Since MNSOCCP (2.1) is equivalent to (2.7), we have only to solve (2.7) instead of MNSOCCP (2.1).
However, function $\Phi$_{\mathrm{N}\mathrm{R}} is nondifferentiable, and hence the Newton based method cannot be applied
directly. Moreover, even if function $\Phi$_{\mathrm{N}\mathrm{R}} is smoothened, its Jacobian matrix may become singular. To
overcome those difficulties, we introduce the smoothing method and the regularization method.

Smoothing method

A function $\Phi$_{ $\mu$} parameterized by  $\mu$\geq 0 is called a smoothing function of $\Phi$_{\mathrm{N}\mathrm{R}} if it satisfies the following
conditions:

\bullet For any fixed  $\mu$>0, $\Phi$_{ $\mu$} is continuously differentiable over (x, y)\in \mathbb{R}^{n} \mathrm{x}\mathbb{R}^{n}.

\bullet \displaystyle \lim_{ $\mu$\searrow 0}$\Phi$_{ $\mu$}(x, y)=$\Phi$_{\mathrm{N}\mathrm{R}}(x, y) for any fixed (x, y)\in \mathbb{R}^{n}\times \mathbb{R}^{n}.

In the smoothing method, we handle $\Phi$_{ $\mu$} instead of $\Phi$_{\mathrm{N}\mathrm{R}} with letting  $\mu$\searrow 0 . This is the basic idea of
smoothing method.

In [3], the smoothing function $\Phi$_{ $\mu$} is composed as follows. Consider a continuously differentiable
convex function \hat{g} : \Re\rightarrow\Re such that

\displaystyle \lim_{ $\alpha$\rightarrow-\infty}\hat{g}( $\alpha$)=0, \lim_{ $\alpha$\rightarrow\infty}(\hat{g}( $\alpha$)- $\alpha$)=0, 0<\hat{g}'( $\alpha$)<1 . (2.8)

For example, \hat{g}_{1}( $\alpha$)=(\sqrt{$\alpha$^{2}+4}+ $\alpha$)/2 and \hat{g}_{2}( $\alpha$)=\ln(e^{ $\alpha$}+1) satisfy (2.8). Then, we can easily see
that \displaystyle \lim_{ $\mu$\searrow 0 $\mu$\hat{g}( $\alpha$}/ $\mu$) =\displaystyle \max\{0,  $\alpha$\} for any  $\alpha$\in \mathbb{R} . By using this fact, $\Phi$_{ $\mu$} is defined by

$\Phi$_{ $\mu$}(x, y) := \left(\begin{array}{lll}
$\varphi$_{ $\mu$}(x^{1} & ' & y^{1})\\
 &  & \\
$\varphi$_{ $\mu$}(x^{m} & ' & y^{m})
\end{array}\right) ,

where

$\varphi$_{ $\mu$}(x^{i}, y^{i}) := x^{i}-P_{ $\mu$}(x^{i}-y^{i}) ,

P_{ $\mu$}(z) := \left\{\begin{array}{ll}
 $\mu$\hat{g}($\lambda$_{1}/ $\mu$)u^{\{1\}}+ $\mu$\hat{g}($\lambda$_{2}/ $\mu$)u^{\{2\}} & (\dim(z)\geq 2)\\
 $\mu$\hat{g}(z/ $\mu$) & (\dim(z)=1) .
\end{array}\right. (2.9)

In the definition of P_{ $\mu$}(z) , $\lambda$_{1} and $\lambda$_{2} denotes the spectral values of z , and u^{\{1\}} and u^{\{2\}} denotes the
spectral vectors of z . For more details of the spectral factorization, see [2, 3].

Regularization method

Let the functions F_{1, $\varepsilon$} : \mathbb{R}^{n}\times \mathbb{R}^{\ell}\rightarrow \mathbb{R}^{n} and F_{2, $\varepsilon$} : \mathbb{R}^{n}\times \mathbb{R}^{p}\rightarrow \mathbb{R}^{\ell} be defined by

F_{1, $\varepsilon$}(x,p) := F_{1}(x,p)+ $\varepsilon$ x,
F_{2, $\varepsilon$}(x,p) := F_{2}(x,p)+ $\varepsilon$ p,

respectively, with a positive parameter  $\varepsilon$ . In general, functions  F_{1,c} and F_{2, $\varepsilon$} have better properties
than F_{1} and F_{2} from the viewpoint of global convergence. For example, if F= \left(\begin{array}{l}
F_{1}\\
F_{2}
\end{array}\right) is a P_{0} function,

then \left(\begin{array}{l}
F_{1, $\varepsilon$}\\
F_{2, $\varepsilon$}
\end{array}\right) is a uniformly P function for any  $\varepsilon$>0.
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2.3 Main algorithm

Embedding the smoothing and regularization parameters, we define a function H_{ $\mu,\ \varepsilon$} : \mathbb{R}^{n}\times \mathbb{R}^{n}\times \mathbb{R}^{\ell}\rightarrow
\mathbb{R}^{2n+\ell} by

H_{ $\mu,\ \epsilon$}(x, y, p) := \left(\begin{array}{lll}
$\Phi$_{ $\mu$}(x & y) & \\
F_{1, $\varepsilon$}(x & p)- & y\\
F_{2,c}(x_{)}p) &  & 
\end{array}\right) . (2.10)

Then, we solve the inequality \Vert H_{ $\mu,\ \varepsilon$}(x, y,p)\Vert \leq $\beta$ by Newton’s method with letting ( $\mu$,  $\varepsilon$,  $\beta$)\searrow(0,0,0) .
This is the main idea of the regularized smoothing Newton algorithm.

Before providing the algorithm, we give some functions and its related property that will be used
in the algorithm. Since the functions are important only for the local quadratic convergence, we omit
the detailed explanation here. For more details, see [3].

Deflnition 2.2

(a) \overline{ $\lambda$}:\mathbb{R}^{n}\rightarrow[0, +\infty) is a function defined by

\overline{ $\lambda$}(z) := \left\{\begin{array}{ll}
\min |$\lambda$_{i}(z)| & (\mathcal{I}(z)\neq\emptyset)\\
i\in \mathcal{I}(z) & \\
0 & (\mathcal{I}(z)=\emptyset) ,
\end{array}\right. (2.11)

where $\lambda$_{i}(z) (i = 1,2) are the spectral values of z , and \mathcal{I}(z) \subseteq \{1 , 2 \} is the index set defined by
\mathcal{I}(z):=\{i|$\lambda$_{i}(z)\neq 0\}.

(b) Choose any function \hat{g} satisfying (2.8). Then, \overline{ $\mu$} : \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow [0, +\infty] is an arbitrary function
such that

|\displaystyle \hat{g}'( $\alpha$/ $\mu$)-\lim_{ $\mu$\searrow 0}\hat{g}'( $\alpha$/ $\mu$)| < $\delta$ \forall $\mu$\in (0, \overline{ $\mu$}( $\alpha$,  $\delta$)) , (2.12)

for any fixed  $\alpha$\in \mathbb{R} and  $\delta$>0.

Proposition 2. 1 [3 , Prop. 4.12] Let \hat{g} be defined by \hat{g}( $\alpha$) = (\sqrt{$\alpha$^{2}+4}+ $\alpha$)/2 , which satisfies (2.8).
Let \overline{ $\mu$}:\mathbb{R}^{n}\times \mathbb{R}^{n}\rightarrow[0, +\infty] be defined by

\overline{ $\mu$}( $\alpha$,  $\delta$) := \left\{\begin{array}{ll}
+\infty & ( $\delta$\geq 1/2 \mathrm{o}\mathrm{r}  $\alpha$=0)\\
\frac{1}{2}| $\alpha$|\sqrt{ $\delta$} & ( $\delta$<1/2 \mathrm{a}\mathrm{n}\mathrm{d}  $\alpha$\neq 0).
\end{array}\right.
Then, \overline{ $\mu$} satisfies the condition (2.12).

Now, we are in the position to provide the regularized smoothing Newton algorithm for solving
MNSOCCP (2.1). In what follows, we use the following notations for convenience:

w := \left(\begin{array}{l}
x\\
y\\
p
\end{array}\right), w^{(k)} := \left(\begin{array}{l}
x^{(k)}\\
p^{(k)}y^{(k)}
\end{array}\right) .

Algorithm 2 (Regularized smoothing Newton algorithm)

Step 0 Choose the parameters  $\eta$,  $\rho$ \in (0,1) , \overline{ $\eta$}\in (0,  $\eta$],  $\sigma$ \in (0,1/2) ,  $\kappa$ > 0 and \hat{ $\kappa$} > 0.

Choose the initial values w^{(0)} \in \mathbb{R}^{2n+\ell} and $\beta$_{0} \in (0, \infty) . Let  $\mu$ 0 := \Vert H_{\mathrm{N}\mathrm{R}}(w^{(0)})\Vert and

$\varepsilon$_{0} :=\Vert H_{\mathrm{N}\mathrm{R}}(w^{(0)})\Vert . Set  k :=0.

136



Step 1 Terminate if \Vert H_{\mathrm{N}\mathrm{R}}(w^{(k)})\Vert =0.

Step 2

Step 2.0 Set v^{(0)} :=w^{(k)} \in \mathbb{R}^{2n+l} and j :=0.

Step 2.1 Find a vector \hat{d}^{(J)} \in \mathbb{R}^{2n+\ell} such that

H_{$\mu$_{k},$\varepsilon$_{k}}(v^{(j)})+\nabla H_{$\mu$_{k},$\varepsilon$_{k}}(v^{(j)})^{\mathrm{T}}\hat{d}^{(j)}=0.

Step 2.2 If \Vert H_{$\mu$_{k},$\varepsilon$_{k}}(v^{(j)}+\hat{d}^{(j)})\Vert \leq$\beta$_{k} , then let w^{(k+1)} :=v^{(j)}+\hat{d}^{(j)} and go to Step
3. Otherwise, go to Step 2.3.

Step 2.3 Find the smallest nonnegative integer m such that

\Vert H_{$\mu$_{k},$\varepsilon$_{k}}(v^{(j)}+$\rho$^{m}\hat{d}^{(j)})\Vert^{2} \leq (1-2 $\sigma \rho$^{m})\Vert H_{$\mu$_{k},$\varepsilon$_{k}}(v^{(j)})\Vert^{2}.

Let m_{j} :=m, $\tau$_{j} :=$\rho$^{m_{J}} and v^{(j+1)} :=v^{(j)}+$\tau$_{j}\hat{d}^{(j)}.
Step 2.4 If

\Vert H_{$\mu$_{k},$\varepsilon$_{k}}(v^{(j+1)})\Vert \leq $\beta$_{k} , (2.13)

then let w^{(k+1)} :=v^{(j+1)} and go to Step 3. Otherwise, set j :=j+1 and go back
to Step 2.1.

Step 3 Update the parameters as follows:

$\mu$_{k+1} := \displaystyle \min\{ $\kappa$\Vert H_{\mathrm{N}\mathrm{R}}(w^{(k+1)})\Vert^{2}, $\mu$_{0}\overline{ $\eta$}^{k+1}, \overline{ $\mu$}(\tilde{ $\lambda$}(x^{(k+1)}-y^{(k+1)}), \mathrm{k}\Vert H_{\mathrm{N}\mathrm{R}}(w^{(k+1)})\Vert)\},
$\varepsilon$_{k+1} := nin \{ $\kappa$\Vert H_{\mathrm{N}\mathrm{R}}(\mathrm{w}^{(k+1)})\Vert^{2}, $\varepsilon$_{0}\overline{ $\eta$}^{k+1}\},
$\beta$_{k+1} := $\beta$_{0}$\eta$^{k+1}.

Set k :=k+1 . Go back to Step 1.

In the inner iteration steps 2.0−2.4, a damped Newton method seeks a point w^{(k+1)} such that
\Vert H_{$\mu$_{k},$\varepsilon$_{k}}(w^{(k+1)})\Vert \leq $\beta$_{k} . Especially, Step 2.3 is well‐known Armijo’s stepsize rule. We note that

Algorithm 2 is well‐defined in the sense that Steps 2.0−2.4 find v^{(j+1)} satisf‐ying (2.13) in a finite
number of iterations for each k . (It can be proved easily as in [3].) In Step 3,  $\lambda$ and \overline{ $\mu$} are defined as
(2.11) and (2.12), respectively. This step specifies the updating rule of the parameters, where \{$\beta$_{k}\},
\{$\mu$_{k}\} and \{$\varepsilon$_{k}\} converge to 0 since 0<\overline{ $\eta$}\leq $\eta$<1.

Remark As is shown in the next section, H_{$\mu$_{k^{ $\xi$}k}}, is injective for each k since its Jacobian is nonsin‐
gular. Moreover, H_{$\mu$_{k},$\varepsilon$_{k}} converges to H_{\mathrm{N}\mathrm{R}} uniformly over any bounded set. Therefore, Algorithm 1
(sequential injective algorithm) can be regarded as a prototype of Algorithm 2. This also means that
the convergence analysis for Algorithm 1 can be applied directly to Algorithm 2.

3 Global convergence under Cartesian P_{0} assumption

In this section, we prove the global convergence of Algorithm 2 under Cartesian P_{0} assumption.
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3.1 Cartesian P_{0} property

Let

 $\sigma$ := (\mathrm{v}_{1}, $\nu$_{2}, \ldots , $\nu$_{r})^{\mathrm{T}}\in \mathbb{Z}^{r} (3.1)

be an integer vector such that $\nu$_{i} \geq  1 for i and \mathrm{v}= \displaystyle \sum_{i=1}^{r}$\nu$_{i} . Then, we first consider to decompose
the vector z\in \mathbb{R}^{ $\nu$} , matrix M\in \mathbb{R}^{ $\nu$\times $\nu$} and function F:\mathbb{R}^{ $\nu$} \rightarrow \mathbb{R}^{ $\nu$} according to the component of  $\sigma$ as
follows:

 z= \left\{\begin{array}{l}
z^{1}\\
z^{2}\\
\\
z^{r}
\end{array}\right\} , M= \left\{\begin{array}{llll}
M_{11} & M_{12} & \cdots & M_{1r}\\
M_{21} & M_{22} & \cdots & M_{2r}\\
 &  & \ddots & \\
M_{r1} & M_{r2} & \cdots & M_{rr}
\end{array}\right\} , F(z)= \left\{\begin{array}{l}
F^{1}(z)\\
F^{2}(z)\\
\\
F^{r}(z)
\end{array}\right\} ,

where z^{i}\in \mathbb{R}^{$\nu$_{l}}, M_{ij} \in \mathbb{R}^{ $\nu$.\mathrm{x}$\nu$_{J}} and  F^{i}:\mathbb{R}^{ $\nu$}\rightarrow \mathbb{R}^{ $\nu$}\cdot . Then, we define the notion of Cartesian  P_{0} property,
which is a natural extension of well‐known P_{0} property for NCP or MCP.

Definition 3.3 Let  $\sigma$\in \mathbb{Z}^{r} be an integer vector with (3.1). Then, we say that

(i) the matrix M\in \mathbb{R}^{ $\nu$ \mathrm{x} $\nu$} satisfies the  $\sigma$ ‐Cartesian  P_{0} property, if there exists i=i(z) \in\{1, 2, . . . , r\}
such that

(z^{i})^{\mathrm{T}}(Mz)^{i}\geq 0 and z^{i}\neq 0

for any z\in \mathbb{R}^{ $\nu$}\backslash \{0\} ;

(ii) the function F : \mathbb{R}^{ $\nu$} \rightarrow \mathbb{R}^{ $\nu$} satisfies the  $\sigma$ ‐Cartesian  P_{0} property, if there exists i = i(x, y) \in

\{1, 2, . . . , r\} such that

(x^{i}-y^{i})^{\mathrm{T}}(F^{i}(x)-F^{i}(y))\geq 0 and x^{i}\neq y^{i}

for any (x, y)\in \mathbb{R}^{ $\nu$}\times \mathbb{R}^{ $\nu$}.

Remark If  $\sigma$=(1,1, \ldots, 1)^{\mathrm{T}} \in \mathbb{R}^{ $\nu$} and r=v , then the  $\sigma$‐Cartesian  P_{0} property coincides with the
normal P_{0} property. On the other hand, if  $\sigma$= $\nu$\in \mathbb{R} and r= 1 , then the  $\sigma$‐Cartesian  P_{0} property
coincides with the positive semidefiniteness and the monotonicity. Cartesian P property and uniform
Cartesian P property can be defined in a similar way, but we omit the details here.

The following theorem gives the necessary condition for a given matrix M to have Cartesian P_{0}

property.

Theorem 3.2 Let  $\sigma$ be given by (3.1), and  M be an arbitrary  $\sigma$ ‐Cartesian  P_{0} matrir. Let D =

diag {Dii}í=1 be an arbitrary positive definite btock diagonal matrex, i. e., D_{ii}\in \mathbb{R}^{$\nu$_{l}\mathrm{x} $\nu$}, \succ 0 for each i.

Then, M+D us nonsingular.

Proof. Let z be a vector such that (M+D)z=0 . Assume for contradiction that z\neq 0 . Then, due
to the  $\sigma$‐Cartesian  P_{0} property, there exists i such that z^{i}\neq 0 and (z^{i})^{\mathrm{T}}(Mz)^{i}\geq 0 . Thus we have

0=(z^{i})^{\mathrm{T}}((M+D)z)^{i}=(z^{i})^{\mathrm{T}}(Mz)^{i}+(z^{i})^{\mathrm{T}}Dz^{i}\geq(z^{i})^{\mathrm{T}}D_{ii}z^{i},
where the first equality is due to (M+D)z=0 . However, this contradicts the positive definiteness of
D_{ii} and z^{i}\neq 0 . Thus M+D is nonsingular. \blacksquare

Corollary 3.2 Let  M be an arbitrary P_{0} matnx. Then, M+D is nonsingular for any positive definite
diagonal matrư D.
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3.2 Nonsingularity analyses for Jacobian matrix

Next we we analyze the nonsingularity of the Jacobian matrix \nabla H_{ $\mu,\ \varepsilon$}(x, y,p)\in \mathbb{R}^{(2n+l)\mathrm{x}(2n+l)} for any
 $\mu$>0 . From the definition of H_{ $\mu,\ \varepsilon$}, $\Phi$_{ $\mu$}, \hat{g} , etc., \nabla H_{ $\mu,\ \varepsilon$}(x, y,p) can be calculated as

\nabla H_{ $\mu,\ \epsilon$}(x, y,p) = \left(\begin{array}{lll}
I-D_{ $\mu$}(x,y) & \nabla_{x}F_{1}(x,p)+ $\varepsilon$ I & \nabla_{x}F_{2}(x,p)\\
D_{ $\mu$}(x,y) & -I & 0\\
0 & \nabla_{p}F_{\mathrm{l}}(x,p) & \nabla_{p}F_{2}(x,p)+ $\varepsilon$ I
\end{array}\right) , (3.2)

where

D_{ $\mu$}(x, y) := diag \{\nabla P_{ $\mu$}(x^{i}-y^{i})\}_{i=1}^{m} . (3.3)

In (3.3), P_{ $\mu$} is defined by (2.9), and diag \{\nabla P_{ $\mu$}(x^{i}-y^{i})\}_{i=1}^{m} denotes the block diagonal matrix with
entries \nabla P_{ $\mu$}(x^{i}-y^{i}) \in \mathbb{R}^{n.\times n_{l}} (i=1, \ldots , m) . The explicit expression of \nabla P_{ $\mu$} is given in [3]. For
this Jacobian function, we have the following property.

Proposition 3.2 [2] Let P_{ $\mu$} : \mathbb{R}^{n_{i}}\rightarrow \mathbb{R}^{n_{ $\iota$}} be defined by (2.9). Then we have

0\prec\nabla P_{ $\mu$}(z)\prec I

for any  z\in \mathbb{R}^{n}\cdot , where  A\prec B means the positive definiteness of B-A.

Corollary 3.3 Suppose that Algorithm 2 is applied to LCP, NCP or MCP, i. e., (2.1) with n_{i} = 1

and \mathcal{K}=\mathbb{R}_{+}^{n} . Then, D_{ $\mu$}(x, y) in (3.2)-(3.3) becomes a diagonal matrix such that every diagonal entry
belongs to (0,1) .

By using this fact, we can prove the nonsingularity of \nabla H_{ $\mu,\ \varepsilon$} under Cartesian P_{0} assumption. For
the Cartesian structure of \mathcal{K} as in (2.2), we set  $\sigma$\in \mathbb{Z}^{m+\ell} as

 $\sigma$:=(n_{1}, \ldots, n_{m}, 1_{\ell}^{\mathrm{T}})^{\mathrm{T}}\in \mathbb{Z}^{m+l} . (3.4)

Moreover, let F:\mathbb{R}^{n+\ell}\rightarrow \mathbb{R}^{n+\ell} be defined by

F(x,p):= \left(\begin{array}{l}
F_{1}(x,p)\\
F_{2}(x,p)
\end{array}\right) . (3.5)

Then, we have the following theorem.

Theorem 3.3 Let  $\sigma$\in \mathbb{Z}^{m+\ell} and F:\mathbb{R}^{n+\ell}\rightarrow \mathbb{R}^{n+\ell} be given by (3.4) and (3.5), respectively. Suppose
that F has a  $\sigma$ ‐Cartesian  P_{0} property. Then, the matrix \nabla H_{ $\mu,\ \varepsilon$}(x, y,p) given by (3.2) is nonsingular
for any  $\mu$>0,  $\varepsilon$>0 and (x, y,p) \in \mathbb{R}^{n}\times \mathbb{R}^{n}\times \mathbb{R}^{p}.

Proof. Let  $\xi$ :=($\xi$_{x}^{\mathrm{T}}, $\xi$_{y}^{\mathrm{T}}, $\xi$_{p}^{\mathrm{T}})^{\mathrm{T}} be a vector satisfying \nabla H_{ $\mu,\ \varepsilon$}(x, y,p) $\xi$=0 . Then, by (3.2), we have

(I-D_{ $\mu$})$\xi$_{x}+(\nabla_{x}F_{1}+ $\varepsilon$ I)$\xi$_{y}+\nabla_{x}F_{2}$\xi$_{p} = 0 , (3.6)

D_{ $\mu$}$\xi$_{x}-$\xi$_{y} = 0 , (3.7)

\nabla_{p}F_{1}$\xi$_{y}+(\nabla_{p}F_{2}+ $\varepsilon$ I)$\xi$_{p} = 0 . (3.8)

From (3.7), we have $\xi$_{x}=D_{ $\mu$}^{-1}$\xi$_{y} . Substituting this into (3.6) and (3.8), we have (D_{ $\mu$}^{-1}-I+\nabla_{x}F_{1}+
 $\varepsilon$ I)$\xi$_{y}+\nabla_{x}F_{2}$\xi$_{p}=0 and \nabla_{p}F_{1}$\xi$_{y}+(\nabla_{p}F_{2}+ $\varepsilon$ I)$\xi$_{p}=0 , that is,

0 = (\left\{\begin{array}{ll}
\nabla_{x}F_{1} & \nabla_{x}F_{2}\\
\nabla_{p}F_{\mathrm{l}} & \nabla_{p}F_{2}
\end{array}\right\} + \left\{D_{ $\mu$}^{-1} & -I+ $\varepsilon$ I0 & 0 $\varepsilon$ I\right\}) \left\{\begin{array}{l}
$\xi$_{y}\\
$\xi$_{p}
\end{array}\right\}
= (\nabla F+ [diag \{\nabla P_{ $\mu$}(x^{i}-y^{i})^{-1}0-I\}_{i=1}^{m}+ $\varepsilon$ I  $\varepsilon$ I0]) \left\{\begin{array}{l}
$\xi$_{y}\\
$\xi$_{p}
\end{array}\right\} . (3.9)
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Notice that \nabla P_{ $\mu$}(x^{i}-y^{i})^{-1}-I\succ 0 since 0\prec\nabla P_{ $\mu$}(x^{i}-y^{i})\prec I . Moreover, \nabla F(x,p) is a  $\sigma$‐Cartesian
 P_{0} matrix since F is a  $\sigma$‐Cartesian  P_{0} function. Hence, by Theorem 3.2, the matrix

\nabla F+ [diag \{\nabla P_{ $\mu$}(x^{i}-y^{i})^{-1}0-I\}_{i=1}^{m}+ $\epsilon$ I  $\varepsilon$ I0]
is nonsingular. By this together with (3.9), we have $\xi$_{y}=0, $\xi$_{p}=0 and $\xi$_{x}=D_{ $\mu$}^{-1}$\xi$_{y}=0 , which implies
the nonsingularity of \nabla H_{ $\mu$}, $\Xi$(x, y,p) . \blacksquare

3.3 Global convergence

Finally, we show the global convergence of Algorithm 2.

Theorem 3.4 Let  $\sigma$\in \mathbb{Z}^{m+l} and F:\mathbb{R}^{n+\ell}\rightarrow \mathbb{R}^{n+p} be given by (3.4) and (3.5), respectively. Suppose
that (a) the solution set of MNSOCCP(2.l) is nonempty and bounded, and (b) F is a  $\sigma$ ‐Cartesian
 P_{0} function. Then, any accumulation point of the sequence \{w^{k}\} generated by Algorithm 2 solves
MNSOCCP(2.1).

Proof. By the definition (2.10) of H_{ $\mu,\ \varepsilon$} and Theorem 3.3, we can easily see that the assumptions
(\mathrm{i})-(\mathrm{i}\mathrm{i}\mathrm{i}) of Corollary 1.1 holds. Moreover, by the same argument in [3], we have v^{(\mathrm{J}+1)} satisfying (2.13)
with a finite j , i.e., Assumption \mathrm{B} holds. Hence, by Corollary 1.1, we obtain the result. \blacksquare

When Algorithm 2 is applied to MCP (2.3), we readily have the following corollary.

Corollary 3.4 Let  F:\mathbb{R}^{n+\ell}\rightarrow \mathbb{R}^{n+\ell} be given by (3.5). Suppose that (a) the solution set of MCP (2.3)
is nonempty and bounded, and (b) F is a P_{0} function. Then, any accumulation point of the sequence
\{w^{k}\} generated by Algorithm 2 solves MCP(2.3).
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