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1 Introduction

The main purpose of this paper is to analyze mathematically the fundamental mech‐
anism of gas ionization processes. Nowadays plasmas are widely applied in various fields
such as environmental improvement and engineering. The environmental applications
are the production of ozone from air with water cleaning and the elimination of biologi‐
cal contamination. Engineers use plasma for material processing and surface deposition,
electromagnetic absorbers and reflectors, and so on. Therefore, interest in the study of
plasma generation has been increasing.

Townsend discovered the fundamental mechanism of gas ionization around 1900. He
experimented and considered what happens in a chamber formed from two planar parallel
plates and filled with a gas when a direct current high‐voltage is applied between these
two plates. Here the lower voltage plate is the cathode, and another one is the anode.
As a consequence, it was observed that there are two mechanisms for a gas ionization
process. If electrons are emitted by irradiation of \mathrm{X}‐rays to the cathode, these initial elec‐
trons are accelerated from the cathode to the anode by high‐voltage and simultaneously
make ions and additional electrons owing to the collision of electrons with gas particles.
This mechanism is called as  $\alpha$‐mechanism. Another mechanism, called as  $\gamma$‐mechanism,

is the secondary emission of electrons caused by impact of positive ions with the cathode.
If applied voltage is sufficiently high, these two mechamisms lead to the electric multipli‐
cation which permit large current flow throughout the gas which is an insulator. This
phenomenon is called as avalanche breakdown or gas discharge. Townsend also derived a
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threshold of voltage at which gas discharge happens continuously. The threshold is called
as sparking voltage. In this process, he used several simplification such as discretization
of time, ignorance of advection, and so on (for more details, see [14]). Hence, it is an in‐
teresting problem to analyze the sparking voltage by using a partial differential equation
with no simplification.

Morrow derived the mathematical model in [11]. After that, several models were
proposed and used in [1, 5, 6, 7, 8, 9]. These models vary with the constitutive equations
of velocities. On the other hand, Degond and Lucquin‐Desreux in 2007 gave the formal
derivation of the model, derived by Morrow, from the Euler‐Maxwell equations (see [4]).
At this point, it seems reasonable to analyze this model. In this paper, we call it as the
Degond−Lucquin‐Desreux−Morrow model. It consists of two continuity equations for the
densities of positive ions and of electrons, adopting constitutive velocity relations, coupled
with the Poisson equation for the electrostatic potential:

\partial_{t}$\rho$_{i}+\partial_{x}($\rho$_{i}u_{i})=a\exp(-b|\partial_{x} $\Phi$|^{-1})p_{e}|v_{e}| , (1a)

\partial_{t}$\rho$_{e}+\partial_{x}($\rho$_{e}v_{e})-k_{e}\partial_{xx}$\rho$_{e}=a\exp(-b|\partial_{x} $\Phi$|^{-1})$\rho$_{e}|v_{e}| , (1b)

 $\lambda$\partial_{xx} $\Phi$=$\rho$_{i}-$\rho$_{e} . (1c)

 v_{e}:=-k_{e}\partial_{x} $\Phi$, u_{i}:=k_{i}\partial_{x} $\Phi$ . (1d)

The unknown functions  $\rho$_{i}, p_{e} , and - $\Phi$ denote the positive ion density, the electron
density, and the electrostatic potential, respectively. The ion and electron velocities  u_{i}

and u_{e} are assumed to obey (1d). Moreover, k_{i}, k_{e}, a, b , and  $\lambda$ are positive constants.
The right hand sides of (1a) and (1b) come from  $\alpha$‐mechanism. In particular,  $\alpha$ =

aexp (-b|\partial_{x} $\Phi$|^{-1}) is the first Townsend ionization coefficient expressing the number of ion‐
electron pairs generated per unit volume by the electron impact ionization. We notice that
this model is a hyperbolic‐parabolic‐elliptic coupled system by substituting constitutive
velocity relations (1d) into continuity equations (1a) and (1b).

We consider the initial‐boundary value problem of this model over the bounded in‐
terval I :=(0, L) by prescribing the initial and boundary data

($\rho$_{i}, $\rho$_{e})(0, x)=($\rho$_{i0}, $\rho$_{e0})(x) , $\rho$_{i0}(x)\geq 0, $\rho$_{e0}(x)\geq 0, x\in I , (1e)

$\rho$_{i}(t, 0)=$\rho$_{e}(t, 0)= $\Phi$(t, 0)=0 , (1f)

$\rho$_{e}(t, L)=0,  $\Phi$(t, L)=V_{c}>0. (\mathrm{l}\mathrm{g})

The boundaries x=0 and x=L correspond to the anode and cathode, respectively, since
- $\Phi$ is the electrostatic potential. Boundary condition (1f) means that, in an instant,
electrons are absorbed to the anode and ions are excluded near the anode. We emphasize
that  $\gamma$‐mechanism is not taken into account on the cathode  x = L , and thus the zero

Dirichlet boundary condition is adopted. From physical point of view, it is reasonable to
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assume the non‐negativity of initial densities $\rho$_{i0} and $\rho$_{e0} . For the compatibility, we let
the initial data R_{i0} and R_{e0} satisfy

R_{i0}(0)=R_{e0}(0)=R_{\mathrm{e}0}(\mathrm{L})=0.

For the Degond−Lucquin‐Desreux−Morrow model and the related models, there are a

lot of numerical researches (for example, see [10, 12, 13 On the other hand, only two
mathematical results for this model has been announced by the authors. The first result
[15] established a mathematical framework for analyzing this model rigorously. More
precisely, they showed the time‐local solvability of the initial boumdary value problem
over a domain  $\Omega$ :=\mathbb{R}_{+}^{3}\backslash K , where \mathbb{R}_{+}^{3} is a half space, K is a simply connected open set,

and the intersection of \partial \mathbb{R}_{+}^{3} and K is the empty set. The second result [16] investigated
the sparking voltage, which is required when gas discharge happens continuously, by using

(1). Specifically, the authors analyzed the bifurcation of the stationary solutions to (1)
and then concluded that gas discharge may happen even for the no  $\gamma$‐mechanism case.
This conclusion essentially differs from Townsend theory, since his theory explains that
no gas discharge happens if there is no  $\gamma$‐mechanism. In this short paper, we review this

bifurcation analysis. Before closing this section, we give a notation.

Notation For  1\leq p\leq\infty, L^{p}( $\Omega$) is the Lebesgue space equipped with the norm |\cdot|_{p} . For
a non‐negative integer k, H^{k}(I) is the k‐th order Sobolev space in L^{2} sense, equipped with
the norm \Vert\cdot\Vert_{k} . Moreover, H_{0}^{1}(I) and H_{0l}^{1}(I) are closures of C_{0}^{\infty}(I) and C_{0}^{\infty}((0, L]) with

respect to H^{1}‐norm, respectively. We denote by C^{m}([0, T];X) the space of the m‐times
continuously differentiable functions on the interval [0, T] with values in a Banach space
X , and by H^{m}(0, T;X) the space of H^{m}‐fUnctions on (0, T) with values in a Banach
space X.

2 Main results

For mathematical convenience, let us rewrite initial‐boundary value problem (1) by
using the new unknown functions

R_{ $\eta$}\cdot:=$\rho$_{i}e^{-\frac{L}{V_{\mathrm{C}}}x}, R_{e}:=$\rho$_{e}e^{V}\vec{2L}x

and the new given functions

h(x):= aexp (\displaystyle \frac{-b}{|x|})|x|, g(V_{c}):=h(\displaystyle \frac{V_{c}}{L}) -\displaystyle \frac{V_{c}^{2}}{4L^{2}}.
Furthermore, we also decompose the electrostatic potential‘as

 $\Phi$=V+\displaystyle \frac{V_{c}}{L}x,
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where V_{c}x/L is a solution to the equation \partial_{xx}u=0 with the boundary conditions u(0)=0
and u(L)=V_{c} . As a result, we have the following rewritten problem

\displaystyle \partial_{t}R_{i}+k_{i}\partial_{x}\{(\partial_{x}V+\frac{V_{c}}{L})R_{\dot{ $\eta$}}\}+k_{i}R_{\dot{ $\eta$}}=k_{e}h(\frac{V_{\mathrm{c}}}{L})e^{-\frac{L}{V_{\mathrm{c}}}x_{\vec{2L}}^{V}x}-R_{e}+k_{i}f_{i} , (2a)

\partial_{t}R_{e}-k_{e}\partial_{xx}R_{e}-k_{e}g(V_{c})R_{e}=k_{e}f_{e} , (2b)

V[R_{ $\eta$}\displaystyle \cdot, R_{e}]:=\frac{1}{ $\lambda$}\int_{0}^{L}G(x, y) ( e^{\frac{L}{V_{\mathrm{c}}}y} 瓦 (t, y)-e^{-\rightharpoonup y}2VLR_{e}(t, y)) dy , (2c)
(R_{ $\eta$}\cdot, R_{e})(0, x)=(R_{ $\eta$ 0}, R_{e0})(x) , R_{\dot{ $\eta$}0}(x)\geq 0, R_{e0}(x)\geq 0 , (2d)

R_{ $\eta$}\cdot(t, 0)=R_{e}(t, 0)=R_{e}(t, L)=0 , (2e)

where G(x, y) is the Green function of the Laplace operator with the Dirichlet zero con‐
dition, and the nonlinear terms f_{i} and f_{\mathrm{e}} are defined as

f_{i}:=-R_{ $\eta$}\displaystyle \cdot\partial_{x}V-\frac{k_{e}}{k_{i}}\{h(\frac{V_{c}}{L}) -h(\partial_{x}V+\frac{V_{c}}{L})\}e^{-\frac{L}{V_{c}}x_{2L}^{V}x}-\rightharpoonup R_{e},
f_{e} :=\displaystyle \partial_{x}V\partial_{x}R_{e}-\frac{V_{\mathrm{c}}}{2L}R_{e}\partial_{x}V+R_{e}\partial_{xx}V-\{h(\frac{V_{c}}{L}) -h(\partial_{x}V+\frac{V_{c}}{L})\}R_{e}.

It is easy to check that the corresponding stationary problem has a trivial stationary
solution

(鳥, R_{e} ) =(0,0) .

The advantage of using the new known functions R_{\dot{ $\eta$}} and R_{e} lies in the following two
facts. The first one is that the rewritten hyperbolic equation has the dissipative term
k_{i}R_{\dot{ $\eta$}} , although the original hyperbolic equation does not have any dissipative structure.
Secondly, the linear part of the rewritten parabolic equation is self‐adjoint. These two
facts play important roles in the proofs of both the nonlinear stability and instability of
the trivial stationary solution.

We are now in a position to state the stability and instabihty theorems for the trivial
solution.

Theorem 1. Let g(V_{c}) < $\pi$^{2}/L^{2} . There exists  $\epsilon$ > 0 such that if the initial data
(R_{ $\eta$ 0}, R_{e0}) \in  H_{0l}^{1} \times  H_{0}^{1} satisfies \Vert R_{n0}\Vert_{1} + \Vert R_{e0}\Vert_{1} <  $\epsilon$ , then problem (2) has a unique
time global solution (R_{\mathrm{h}}, R_{e}) as

凡 \geq 0 , 鳥 \in C([0, \infty);H_{0l}^{1})\cap C^{1}([0, \infty);L^{2}) , (3a)

R_{e}\geq 0, R_{e}\in C([0, \infty);H_{0}^{1})\cap L^{2}(0, \infty;H^{2})\cap H^{1}(0, \infty;L^{2}) . (3b)

Moreover, it converges to zero exponentially fast in H^{1}\times H^{1} as t goes to infinity.

Theorem 2. Let g(V_{c})>$\pi$^{2}/L^{2} and ($\psi$_{i}, $\psi$_{e})\in H_{0l}^{1}\times H_{0}^{1} satisfy

$\psi$_{i}, $\psi$_{e}\displaystyle \geq 0, \Vert$\psi$_{i}\Vert_{1}^{2}+\Vert$\psi$_{e}\Vert_{1}^{2}=1, \int_{0}^{L}$\psi$_{e}\sin\frac{ $\pi$}{L} xdx>0 . (4)
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There exists  $\varepsilon$ > 0 such that for any sufficiently small  $\delta$ > 0 , problem (2) with the
initial data (R_{ $\eta$ 0}, R_{e0}) = ( $\delta \psi$_{i},  $\delta \psi$_{e}) has a unique solution (R_{i}, R_{e}) satisfying \Vert R_{i}(T)\Vert_{1}+
\Vert R_{e}(T)\Vert_{1}\geq $\varepsilon$ for some  T>0.

In this instability theorem, the last inequality in (4) is equivalent to that the initial
data R_{e0} is a non‐zero function. One may ask what happens for the case that R_{e0} is

the zero function. Proposition 3 gives the answer that there exists a unique time global
solution, and it attains the trivial stationary solution at finite time.

Proposition 3. Let V_{c}>0 . There exists  $\epsilon$>0 such that if the initial data (R_{\dot{n}0}, R_{e0}) \in

 H_{0l}^{1} \times H_{0}^{1} satisfies R_{e0} = 0 and \Vert R_{n0}\Vert_{1} <  $\varepsilon$ , then problem (2) has a unique time global
solution (R_{ $\eta$}\cdot, R_{e}) as (3). Furthermore, there exists T_{0}>0 such that

(R_{ $\eta$}\cdot, R_{e})(t, x)=(0,0) for (t, x)\in[T_{0}, \infty) \times I . (5)

Remark 4. This proposition asserts that a set \{(R_{n0}, R_{e0}) \in H_{0l}^{1} \times H_{0}^{1}; R_{e0} = 0\} is a

local stable manifold of system (2\mathrm{a})-(2\mathrm{c}) for any V_{c}>0.

We can expect from Crandall and Rabinowitz’s Theorem (see [2, 3 and Theorems 1
and 2 by regarding the voltage V_{c} as the bifurcation parameter that there is a non‐trivial
solution curve near the point (R_{ $\eta$}\cdot, R_{e}, V_{c})=(0,0, V_{c}^{*}) , where V_{c}^{*} is defined as

g(V_{c}^{*})=\displaystyle \frac{$\pi$^{2}}{L^{2}}, g'(V_{c}^{*})>0 . (6)

It is straightforward to check that the graph of the function g is drown as Figures 1 and
2, where there exists two cases subject to the physical parameters a, b , and L . For the
first case as Figure 1, it has one local minimum and one global maximum. For the second
case as Figure 2, it is strictly decreasing. Note that both cases are truly possible. We

study only the first case hereafter and thus see that V_{\mathrm{c}}^{*} in (6) is well‐defined.

\mathrm{c}

Figure 1: case 1

)

Figure 2: case 2

The bifurcation results are summarized in Theorem 5 and Corollary 6.
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Theorem 5. For V_{c}^{*} defined in (6), there exist  $\eta$ > 0, V_{c} \in  C^{2}([- $\eta$,  $\eta$];\mathbb{R}) , and z \in

 C^{2}([- $\eta$,  $\eta$];H^{1}\times H^{2}) such that V_{\mathrm{c}}(0)=V_{c}^{*}, z(0)=0, and stationary problem to (2) with
V_{c}=V_{c}(s) has a non‐trivial solution (R_{ $\eta$}\cdot, R_{e})(s)=s($\varphi$_{i}, $\varphi$_{e})+sz(s) for s\in[- $\eta$,  $\eta$] , where

$\varphi$_{i}(x) :=\displaystyle \frac{k_{e}}{k_{i}}\exp(\frac{-bL}{V_{c}^{*}})e^{-\frac{L}{V_{c}^{*}}x}\int \mathrm{o}^{x*}e^{-\frac{V}{2}c_{-y}}L$\varphi$_{e}(y)dy, $\varphi$_{e}(x) :=\sin\frac{ $\pi$}{L}x.
Moreover, \dot{V}_{c}(0)>\leq 0 holds if and only if

-Lg'(V_{\mathrm{c}}^{*})\displaystyle \int_{0}^{L}$\varphi$_{e}^{2}\partial_{x}V[$\varphi$_{i}, $\varphi$_{e}]dx-\frac{1}{2}\int_{0}^{L}$\varphi$_{e}^{2}\partial_{xx}V[$\varphi$_{i}, $\varphi$_{\mathrm{e}}]dx\leq 0>.
Corollary 6. Let \dot{V}_{c}(0)\neq 0 . For s\neq 0 , it holds for any x\in(0, L) that

s\dot{V}_{c}(0)R_{ $\eta$}\cdot(s)>0, s\dot{V}_{c}(0)R_{e}(s)>0.

Furthermore, the positive non‐trivial solution is linearly stable if \dot{V}_{c}(0) > 0 , and the
positive non‐trivial solution is linearly unstable if \dot{V}_{c}(0)<0.

From Theorem 5 and Corollary 6, we can draw the bifurcation diagram of stationary
solutions as Figures 3 and 4. The both diagrams are truly possible for some physical
parameters k_{i}, k_{e}, a, b , and L . For example, one can have \dot{V}_{c}(0) > 0 by letting k_{e}/k_{i}
sufficiently small; one can have \dot{V}_{c}(0)<0 by letting k_{e}/k_{i} sufficiently large and assuming
an additional condition for a, b , and L.

Figure 3: Case \dot{V}_{c}(0)>0 Figure 4: Case \dot{V}_{c}(0)<0

Let us mention physical observation from the above bifurcation analysis. Townsend
defined the sparking voltage as a threshold of voltage at which gas discharge happens
continuously. In the following his manner, it is reasonable to define the sparking voltage for

the Degond−Lucquin‐Desreux−Morrow model by V_{c}^{*} in (6). In fact, for the case V_{c}>V_{c}^{*},
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the solution to this model may approach to the positive non‐trivial stationary solution
as t tends to infinity if \dot{V}_{\mathrm{c}}(0) > 0 ; the solution may either blow up or grow up as time
goes by if \dot{V}_{c}(0) < 0 . Hence, the solution never goes to the trivial stationary solution
(R_{ $\eta$}\cdot, R_{e})=(0,0) . On the other hand, for the case V_{c}<V_{c}^{*} , the solution converges to the

trivial solution as t tends to infinity. These facts mean that V_{c}^{*} is a threshold of voltage at
which gas discharge happens continuously from physical point of view. Therefore we can
conclude that gas discharge can happen even if  $\gamma$‐mechanism is not taken into account,
whereas it cannot happen without  $\gamma$‐mechanism in Townsend theory.
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Tani at Keio University.
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