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1 Introduction

This paper is a summary of [2] and discusses the wall effect on the motion of a
rigid body in a free molecular gas.

Consider a linear motion of a rigid body in a free molecular gas driven by a
constant force E . The equation describing the gas is the Vlasov equation and
the motion of the rigid body is governed by Newton’s equations of motion. The
boundary condition for the Vlasov equation is the specular boundary condition.
The shape of the rigid body is a cylinder and it moves in the direction of its
axis.

If the gas fills the whole space \mathbb{R}^{d} , the velocity V(t) of the rigid body ap‐
proaches the terminal velocity V_{\infty}=V_{\infty}(E) with the algebraic rate  V_{\infty}-V(t)\approx
 Ct^{-(d+2)} [1] . On the other hand, if the gas fills the half space \mathbb{R}_{+}^{d} — the rigid
body moves in the direction perpendicular to the boundary \partial \mathbb{R}_{+}^{d} , which can
be regarded as a plane wall — then V(t) obeys the power law V_{\infty}-V(t) \approx

 Ct^{-(d-1)} [2]^{1} The terminal velocity V_{\infty} is unchanged but the rate becomes
slower.

In both cases of \mathbb{R}^{d} and \mathbb{R}_{+}^{d} , a molecular process called recollision is respon‐
sible for the algebraic approach. In the \mathbb{R}_{+}^{d} case, recollisions involving the wall
\partial \mathbb{R}_{+}^{d} changes the asymptotic behaviour.

1d\geq 2 is assumed in this case; d=1 is not excluded in [1].
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2 Motion of a Rigid Body in a Ekee Molecular
Gas

In this section, I will explain the equations governing the rigid body and the
surrounding gas and explain how they are related to each other.

Consider a rigid body moving in a gas. Its shape is assumed to be a cylinder.
And it moves in the direction of its axis without rotation. Denote the spatial
variable by x= (x_{1}, x\perp) \in \mathbb{R}\times \mathbb{R}^{d-1} , where the x_{1} ‐axis is taken as the axis of
the cylinder. I assume d\geq 2 . The gas fills either the whole space \mathbb{R}^{d} [1] or the
right half space \mathbb{R}_{+}^{d}=\{x_{1} >0\} [2] . The boundary \partial \mathbb{R}_{+}^{d}=\{x_{1}=0\} represents
a wall placed behind the motion of the rigid body. Write the velocity of the
rigid body by V(t) and let X(t) =L+\displaystyle \int_{0}^{t}V(s)ds . Then the cylinder occupies
the region

C(t)=\{X(t)-1/2\leq x_{1}\leq X(t)+1/2, |x\perp|\leq 1\} . (2.1)

In the case of \mathbb{R}_{+}^{d}, L is the initial distance between the wall and the rigid body.
The radius and hight of the cylinder are taken as unity. Let  $\Omega$(t)\subset \mathbb{R}^{d} be the
region occupied by the gas:  $\Omega$(t)=\mathbb{R}^{d}\backslash C(t) or \mathbb{R}_{+}^{d}\backslash C(t) .

Before explaining the equations governing V(t) , I shall explain the type of
gas considered in this paper: a free molecular gas.

A free molecular gas consists of molecules moving freely without mutual in‐
teraction. Because there’s no interaction, there’s no reason the gas stays near
local thermal equilibrium. This means that macroscopic descriptions — like
the Navier‐Stokes equations — are not adequate; instead, mesoscopic descrip‐
tions — kinetic equations like the Boltzmann or Vlasov equations — are more
appropriate.

In the kinetic theory of gases, the state of a gas is described by the velocity
distribution function f = f(x,  $\xi$, t) . x \in  $\Omega$(t) is a position in the gas;  $\xi$ =

($\xi$_{1},  $\xi$\perp) \in \mathbb{R}\times \mathbb{R}^{d-1} is a velocity of molecules; t> 0 is time. f is the density
of the molecules in the phase space  $\Omega$(t) \times \mathbb{R}^{d} : If I want to know how many
molecules having velocity  $\xi$ are there at position  x at time t, f(x,  $\xi$, t) gives that.

The velocity distribution function of a free molecular gas obeys the Vlasov
equation

\partial_{t}f+ $\xi$\cdot\nabla_{x}f=0 (2.2)

for x \in  $\Omega$(t) ,  $\xi$\in \mathbb{R}^{d} and t > 0 . I assume that the gas is initially in thermal
equilibrium:

f(x,  $\xi$, 0)=f_{0}( $\xi$):=$\pi$^{-d/2}\exp(-| $\xi$|^{2}) . (2.3)

The density and temperature are taken as unity. I also assume that f satisfies
the specular boundary condition described as follows. Let \mathrm{e}_{1} be the unit vector
parallel to the x_{1} ‐axis and denote by \mathrm{n}=\mathrm{n}(x, t) the unit normal to S(t)=\partial $\Omega$(t)
pointing towards the gas region. Note that S(t)=\partial C(t) or \partial C(t)\cup\partial \mathbb{R}_{+}^{d} . Then
the specular boundary condition is

f(x, $\xi$, t)=f(x, $\xi$-2[( $\xi$-V(t)\mathrm{e}_{1})\cdot \mathrm{n}]\mathrm{n}, t) (2.4)
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for x\in S(t) ,  $\xi$\in \mathbb{R}^{d} with ( $\xi$-V(t)\mathrm{e}_{1})\cdot \mathrm{n}>0 and t>0 . This physically means
that the molecules have elastic collisions at S(t) .

Now I move on to explain the equations governing V(t) .
The gas drag D(t) reduces the velocity of the rigid body. It has the expression

 D(t)=\displaystyle \int_{\partial C(t)} dS\int_{\mathbb{R}^{d}}$\xi$_{1}( $\xi$-V(t)\mathrm{e}_{1})\cdot \mathrm{n}fd $\xi$ . (2.5)

This is derived by considering the net momentum flux at \partial C(t) . Define I^{\pm}(t)
by

I^{\pm}(t)=\{x\in C(t) |x_{1}=X(t)\pm 1/2\}\times\{ $\xi$\in \mathbb{R}^{d}|$\xi$_{1}\lessgtr V(t)\} . (2.6)

(x,  $\xi$)\in I^{\pm}(t) is a position and velocity of molecules which are about to collide
with the rigid body. Then the drag D(t) is written as

D(t)=2(\displaystyle \int_{I+(t)}($\xi$_{1}-V(t))^{2}fd $\xi$ dS-\int_{I-(t)}($\xi$_{1}-V(t))^{2}fd $\xi$ dS) (2.7)

by using boundary condition (2.4).
Apply a constant external force E to make the rigid body move. Then V(t)

obeys the Newton’s equations of motion

\displaystyle \frac{dV(t)}{dt}=E-D(t) , V(0)=V_{0} , (2.8)

where V_{0} is the initial velocity. The mass of the cylinder is taken as unity.
Two equations — the Vlasov equation (2.2) and the Newton’s equations of

motion (2.8) — are coupled in both ways: Boundary condition (2.4) requires
the knowledge of X(t) and V(t) ; the formula (2.5) for drag requires f.

3 Theorems on the Asymptotic Behaviour

Now, the problem is to solve these equations and determine the asymptotic
behaviour of V(t) . Intuitively, it will approach the terminal velocity V_{\infty}(E)
determined by the external force E . But is it really so? How fast is the conver‐
gence? These questions are answered in the theorems stated below. And it will
be shown that the asymptotic behaviour is different in two cases: the motion in
\mathbb{R}^{d} or in \mathbb{R}_{+}^{d}.

Before stating the theorems and proving them, I need some preliminary
consideration on V_{\infty}(E) .

Define a function D_{0}:\mathbb{R}\rightarrow \mathbb{R} by

D_{0}(U):=2(\displaystyle \int_{I(t)}+($\xi$_{1}-U)^{2}f_{0}d $\xi$ dS-\int_{I-(t)}($\xi$_{1}-U)^{2}f_{0}d $\xi$ dS) (3.1)

=C_{d}(\displaystyle \int_{-\infty}^{U}(u-U)^{2}e^{-u^{2}}du-\int_{U}^{\infty}(u-U)^{2}e^{-u^{2}}du) (3.2)
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Note that C_{d}=2$\pi$^{(d-2)/2}/ $\Gamma$((d+1)/2) , where  $\Gamma$(z) is the gamma function. The
following lemma gives some properties of D_{0} . Its proof is easy [1].

Lemma 3.1. D_{0}:\mathbb{R}\rightarrow \mathbb{R} is convex on [0, \infty ); it is odd, smooth and uniformly
increasing on \mathbb{R} . In particular, it is bijective.

Suppose that V(t) \equiv  U is a stationary solution in the case of \mathbb{R}^{d.2} Sub‐
stituting V(t)\equiv U into equation (2.8) — besides the initial condition — gives
E = D(t) because dV(t)/dt = 0 . And by the method of characteristics, the
solution to equations (2.2), (2.3) and (2.4) satisfy f(x,  $\xi$, t) \equiv  f_{0}( $\xi$) on I_{\pm}(t) .
Hence D(t)\equiv D_{0}(U) by the definition of D_{0}(U) . Consequently, U must satisfy
E = D_{0}(U) , which uniquely determines U by Lemma 3.1. Denote this U by
V_{\infty}(E)=D_{0}^{-1}(E) . I take E so that V_{\infty}(E)=1 for simplicity.

As the following theorems state, V_{\infty}(E) is the terminal velocity in both cases
of \mathbb{R}^{d} and \mathbb{R}_{+}^{d} ; the speed of approach, however, is different.

Theorem 3.1 (Caprino, Marchioro and Pulvirenti [1]). If the gas fills the whole
space \mathbb{R}^{d} , then the asymptotic behaviour is 1-V(t)\approx Ct^{-(d+2)} . More precisely,
if  $\gamma$=1-V_{0} is positive and sufficiently small, then there exists a solution (f, V)
— which at the present time has not been proved to be unique — satisfying

1-V(t)\displaystyle \leq $\gamma$ e^{-D_{\mathrm{O}}'(1/2)t}+$\gamma$^{3}\frac{A_{+}}{(1+t)^{d+2}} , (3.3)

1-V(t)\displaystyle \geq $\gamma$ e^{-D_{0}'(1)t}+$\gamma$^{4}\frac{A_{-}}{t^{d+2}}1_{\{t\geq t\urcorner} , (3.4)

where  A\pm and \overline{t} are positive constants depending only on d . Although unique‐
ness is not known, the asymptotic behaviour is at least unique: Any solution
(f, V) satisfies the above inequalities.

Theorem 3.2 (Koike [2]). If the gas fills the right half space \mathbb{R}_{+}^{d} , then the
asymptotic behaviour is 1-V(t) \approx  Ct^{-(d-1)} . More precisely, if  $\gamma$ = 1-V_{0}

is positive and sufficiently small, and L=X(0) is sufficiently large, then there
exists a solution (f, V) satisfying

1-V(t)\displaystyle \leq $\gamma$ e^{-D_{\mathrm{O}}'(1/2)t}+$\gamma$^{3}\frac{A_{+}}{(1+t)^{d+2}}+L^{-(d-1)}\underline{B+} (3.5)
(1+t/L)^{d-1}

’

1-V(t)\displaystyle \geq $\gamma$ e^{-D_{0}'(1)t}+\frac{B_{-}}{t^{d-1}}1_{\{t\geq L\}} (3.6)

where A_{+} and  B\pm are positive constants depending only on  d . And any solution
(f, V) satisfies the above inequalities.

Remark 3.1. The lower bound in Theorem 3.2 can be improved to

1-V(t)\displaystyle \geq $\gamma$ e^{-D_{0}'(1)t}+$\gamma$^{4}\frac{A_{-}}{t^{d+2}}1_{\{\overline{c} $\gamma$ L^{d-1}\geq t\geq t\urcorner}+\frac{B_{-}}{t^{d-1}}1_{\{t\geq L\}} (3.7)

2There is no stationary solution in the case of \mathbb{R}_{+}^{d}.
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if  $\gamma$ L^{d+1} is sufficiently large [2]. Here, \overline{c} is a positive constant depending only
on d. The estimates in Theorem 3.1 are obtained by taking the limit  L\rightarrow\infty in
inequalities (3.5) and (3.7).

In summary, the wall effect changes the asymptotic behaviour from  t^{-(d+2)}
to t^{-(d-1)} —a slower approach to the terminal velocity.

4 Proof of Theorem 3.2

I will partly prove Theorem 3.2 in this section: The existence of a solution (f, V)
satisfying inequality (3.5); the proof of inequality (3.6) and that any solution
(f, V) satisfies the bounds in Theorem 3.2 is not given. See [2] for these.

4.1 Construction of a Solution by Schauder’s Fixed Point
Theorem

This section explains how a solution (f, V) satisfying inequality (3.5) is con‐
structed — assuming that certain bounds hold. These bounds are later proved
in section 4.2.

First, let the motion of the rigid body be given by an arbitrary known
function W : [0, \infty ) \rightarrow (0 , 1 ) satisfying W(0) =  1- $\gamma$ = V_{0} . Let X_{W}(t) =

L+\displaystyle \int_{0}^{t}W(s)d_{\mathcal{S}} and define C_{W}(t) by replacing X(t) in equation (2.1) by X_{W}(t) .
Furthermore, let S_{W}(t)=\partial C_{W}(t)\cup\partial \mathbb{R}_{+}^{d} . And define I_{W}^{\pm}(t) by replacing C(t) ,
X(t) and V(t) in equation (2.6) by C_{W}(t) , X_{W}(t) and W(t) .

Next, denote by f=f_{W} the solution to equations (2.2), (2.3) and

f(x,  $\xi$, t)=f(x,  $\xi$-2[( $\xi$-W(t)\mathrm{e}_{1})\cdot n]\mathrm{n}, t) (4.1)

for x\in S_{W}(t) ,  $\xi$\in \mathbb{R}^{d} with ( $\xi$-W(t)\mathrm{e}_{1})\cdot n>0 and t>0 . This is constructed
by the method of characteristics. I will only consider f(x,  $\xi$, t) for (x,  $\xi$)\in I_{W}^{\pm}(t)
and t > 0- which is all I need to estimate the drag. Define the backward‐
characteristics starting from (x,  $\xi$)\in I_{W}^{\pm}(t) by  x(s)=x-(t-s) $\xi$ and  $\xi$(s)= $\xi$
for  s \leq  t until x(s) hits the boundary S_{W}(s) = \partial C_{W}(s)\cup\partial \mathbb{R}_{+}^{d} . Denote this
time of recollision by $\tau$_{1} . If x($\tau$_{1}) \in \partial C_{W}($\tau$_{1}) , then put $\xi$'($\tau$_{1}) = (2W($\tau$_{1})-
$\xi$_{1}($\tau$_{1}) ,  $\xi$\perp($\tau$_{1})) ; if x_{1}($\tau$_{1})=0 , then put $\xi$'($\tau$_{1})=(-$\xi$_{1}($\tau$_{1}), $\xi$_{\perp}($\tau$_{1})) . Using $\xi$'($\tau$_{1}) ,
extend the characteristics by x(s)=x($\tau$_{1})-($\tau$_{1}-s)$\xi$'($\tau$_{1}) and  $\xi$(s)=$\xi$'($\tau$_{1}) for
s < $\tau$_{1} — until x(s) again hits the boundary. Repeat this to define $\tau$_{n} until
s = 0 is reached; infinite recollisions does not happen except on a subset of
I_{W}^{\pm}(t) of measure zero by [1, Proposition A.1]. Then f_{W}(x,  $\xi$, t)=f_{0}($\xi$_{0}) , where
$\xi$_{0}= $\xi$(0) since equations (2.2) and (4.1) imply that f(x(s),  $\xi$(s), s) is constant.

Next, define the updated velocity V_{W} as follows. Let

r_{W}^{\pm}(t)=\displaystyle \pm 2\int_{I_{W}^{\pm}(t)}($\xi$_{1}-W(t))^{2}(f_{W}-f_{0})d $\xi$ dS. (4.2)

Define a function K : (0,1)\rightarrow \mathbb{R} by

K(U)=\displaystyle \frac{D_{0}(1)-D_{0}(U)}{1-U} . (4.3)
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Define V_{W} by solving the equations

\displaystyle \frac{d}{dt}V_{W}(t)=K(W(t))(1-V_{W}(t))-r_{W}^{+}(t)-r_{W}^{-}(t) ,  V_{W}(0)=1- $\gamma$ . (4.4)

This is solved explicitly:

 1-V_{W}(t)= $\gamma$ e^{-\int_{0}^{t}K(W(\mathrm{s}))ds}+\displaystyle \int_{0}^{t}e^{-\int_{\mathrm{s}}^{t}K(W( $\tau$))d $\tau$}(r_{W}^{+}(s)+r_{W}^{-}(s))ds . (4.5)

Suppose that V is a fixed point of the map W\mapsto V_{W} . Then equations (4.4)
become equations (2.8) because E = D_{0}(1) and D(t) = D_{0}(V(t))+r_{V}^{+}(t)+
r_{V}^{-}(t) . Thus (f_{V}, V) satisfies the original equations (2.2), (2.3) and (2.4); and
equations (2.8) with (2.5).

To show the existence of a fixed point, the function space \mathcal{K}- which is the
domain of the map W\mapsto V_{W}-\mathrm{i}\mathrm{s} defined as follows.

Definition 4.1. Let A_{+}, B_{+} and M be positive constants. A C^{1} ‐smooth func‐
tion W : [0, \infty ) \rightarrow(0 , 1 ) belongs to \mathcal{K}( $\gamma$, L, A_{+}, B_{+}, M) if W(0)=1- $\gamma$,

1-W(t)\displaystyle \leq $\gamma$ e^{-D_{0}'(1/2)t}+$\gamma$^{3}\frac{A_{+}}{(1+t)^{d+2}}+L^{-(d-1)}\underline{B+} (4.6)
(1+t/L)^{d-1}

’

1-W(t)\geq $\gamma$ e^{-D_{0}'(1)t} (4.7)

and |dW(t)/dt| \leq M for t\geq 0.

An important part of the proof is to show that W\in \mathcal{K} implies V_{W}\in \mathcal{K}.

Proposition 4.1. There exist positive constants A+, B_{+} and M independent
of  $\gamma$ and  L such that W\in \mathcal{K}( $\gamma$, L, A_{+}, B_{+}, M) implies V_{W}\in \mathcal{K}( $\gamma$, L, A_{+}, B_{+}, M)
if  $\gamma$ and  L^{-1} are sufficiently small.

The following estimates of r_{W}^{\pm}(t) are needed to prove this.

Proposition 4.2. If W\in \mathcal{K} , then

0\displaystyle \leq r_{W}^{+}(t)\leq C[\frac{( $\gamma$+$\gamma$^{3}A_{+})^{3}}{(1+t)^{d+2}}+L^{-3(d-1)}\frac{B_{+}^{3}}{(1+t/L)^{d-1}}] , (4.8)

where C is a positive constant depending only on d.

Proposition 4.3. If W\in \mathcal{K} , then

0\displaystyle \leq r_{W}^{-}(t)\leq C[\frac{( $\gamma$+$\gamma$^{3}A_{+})^{3}}{(1+t)^{3(d+2)}}+L^{-3(d-1)}\frac{B_{+}^{3}}{(1+t/L)^{3(d-1)}}+\frac{L^{-(d-1)}}{(1+t/L)^{d-1}}] ,

(4.9)
where C is a positive constant depending only on d.

Now I can prove Proposition 4.1 by using these estimates of r_{W}^{\pm}(t)- which
are later proven in section 4.2.
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Proof. Let W\in \mathcal{K}( $\gamma$, L, A_{+}, B_{+}, M) . The constants A+, B_{+} and M are speci‐
fied later.

First, I shall show that V_{W} satisfies inequality (4.7). Note that K is increas‐
ing since D_{0} is convex on [0, \infty ) by Lemma 3.1. Thus  K(W(t))\displaystyle \leq\lim_{U\rightarrow 1}K(U)=
DÓ(1). Also note that r_{W}^{+}(t)+r_{W}^{-}(t) is non‐negative by Propositions 4.2 and 4.3.
Therefore, by equation (4.5),

1-V_{W}(t)\geq $\gamma$ e^{-D_{0}'(1)t} . (4.10)

Next, I shall prove that V_{W} satisfies inequality (4.6). Note that by inequal‐
ity (4.7), W(t) \geq  1/2 if  $\gamma$ and  L^{-1} are sufficiently small. Since D_{0} is convex,
K(W(t)) \geq DÓ(l/2). By Propositions 4.2 and (4.3),

 1-V_{W}(t)\displaystyle \leq $\gamma$ e^{-D_{\mathrm{O}}'(1/2)t}+C( $\gamma$+$\gamma$^{3}A_{+})^{3}\int_{0}^{t}\frac{e^{-D_{\mathrm{O}}'(1/2)(t-s)}}{(1+s)^{d+2}}ds
+C[L^{-3(d-1)}B_{+}^{3}+L^{-(d-1)}]\displaystyle \int_{0}^{t}\frac{e^{-D_{0}'(1/2)(t-s)}}{(1+s/L)^{d-1}}ds.

(4.11)

Splitting the integral at s=t/2 and considering them separately gives

1-V_{W}(t)\displaystyle \leq $\gamma$ e^{-D_{\mathrm{O}}'(1/2)t}+\overline{C}[\frac{( $\gamma$+$\gamma$^{3}A_{+})^{3}}{(1+t)^{d+2}}+\frac{L^{-3(d-1)}B_{+}^{3}+L^{-(d-1)}}{(1+t/L)^{d-1}}] , (4.12)

where \overline{C} is a positive constant depending only on d . Let A+=B_{+}=2\overline{C} . Now
take  $\gamma$ and  L^{-1} sufficiently small so that

1 - V_{W}(t) \displaystyle \leq  $\gamma$ e^{-D_{\mathrm{O}}'(1/2)t} +$\gamma$^{3}\frac{A_{+}}{(1+t)^{d+2}} +L^{-(d-1)}\frac{B+}{(1+t/L)^{d-1}}. (4.13)

Let M = DÓ(I) + I. Showing |dV_{W}(t)| \leq  M is easy. Note that |r_{W}^{+}(t)+
r_{W}^{-}(t)| \leq  1 if  $\gamma$ and  L^{-1} are sufficiently small by Propositions 4.2 and (4.3).
Now equation (4.4) implies

|dV_{W}(t)/dt|\leq|K(W(t))(1-V_{W}(t))|+|r_{W}^{+}(t)+r_{W}^{-}(\mathrm{t})|\leq \mathrm{D}_{0}'(\mathrm{I})+\mathrm{I}=M . (4.14)

These show that V_{W}\in \mathcal{K}( $\gamma$, L, A_{+}, B_{+}, M) . \square 

Now I can apply Schauder’s fixed point theorem to the map \mathcal{K}\ni W\mapsto V_{W}\in
\mathcal{K} . What must be proved is that \mathcal{K} is a compact convex subset of C_{b}([0, \infty))
— the space of bounded continuous functions — and that the map W\mapsto V_{W}

is continuous with respect to the topology of C_{b}([0, \infty)) defined by the norm
||W|| =\displaystyle \sup_{0\leq t<\infty}|W(t)| . The convexity is trivial; the compactness is proved
by the Arzelà‐Ascoli theorem;3 the continuity is not difficult but the proof is

3Since the domain [0, \infty ) is non‐compact, uniform boundedness and uniform continuity are
not enough: Also use the fact that  1-W(t) decays uniformly for W\in \mathcal{K}.
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lengthy. See [1] or [2] for this. These consideration guarantees the existence of
a fixed point V.

V(t) satisfies inequality (3.5) since V\in \mathcal{K} . An appropriate lower bound of
r_{V}^{-}(t) shows that V also satisfies inequality (3.6). For the proof of this and that
any solution (f, V) also satisfies the bounds in Theorem 3.2, see [2].

4.2 Estimates of r_{W}^{\pm}(t)
This section proves Propositions 4.2 and 4.3 — which was used in the previous
section without proof.

4.2.1 Estimate of r_{W}^{+}(t)

First, I shall show that r_{W}^{+}(t) \geq  0 . It suffices to show that f_{W}-f_{0} \geq  0 by
equation (4.2). Let (x,  $\xi$) \in I_{W}^{+}(t) . Note that |$\xi$'($\tau$_{1})|=| $\xi$($\tau$_{1})| if x_{1}($\tau$_{1})=0 and

($\xi$_{1}'($\tau$_{1}))^{2}=$\xi$_{1}^{2}+4W($\tau$_{1})(W($\tau$_{1})-$\xi$_{1}) (4.15)

if x($\tau$_{1})\in\partial C_{W}($\tau$_{1}) . W($\tau$_{1})-$\xi$_{1} <0 because x(s) is about to hit the right side
of \partial C_{W}(s) . Hence |$\xi$'($\tau$_{1})| < | $\xi$| in the latter case. Repeating this argument,
|$\xi$_{0}| \leq | $\xi$| is proved. Then f_{W}-f_{0} \geq  0 since f_{W} = f_{0}($\xi$_{0}) . This proves that
r_{W}^{+}(t)\geq 0 . Also note that

 0\leq f_{W}-f_{0}\leq f_{W}=$\pi$^{-d/2}e^{-|$\xi$_{0}|^{2}}\leq$\pi$^{-d/2}e^{-1 $\xi$|^{2}}\perp (4.16)

Next, decompose  r_{W}^{\pm}(t) into two parts as follows. Define the subset A_{t} \subset

 I_{W}^{+}(t) by

A_{t}= { (x,  $\xi$)\in I_{W}^{+}(t)|$\tau$_{1}>0 and x($\tau$_{1})\in\partial C_{W}($\tau$_{1}) }. (4.17)

And let

A_{\leq t/2}=\{(x,  $\xi$)\in A_{t}|$\tau$_{1} \leq t/2\} ; A_{>t/2}=\{(x,  $\xi$)\in A_{t}|$\tau$_{1} >t/2\} . (4.18)

Using this, define I and II by

I=\displaystyle \int_{A_{\leq t/2}}($\xi$_{1}-W(t))^{2}(f_{W}-f_{0})d $\xi$ dS ; II=\displaystyle \int_{A_{>t/2}}($\xi$_{1}-W(t))^{2}(f_{W}-f_{0})d $\xi$ dS.
(4.19)

Then r_{W}^{+}(t)=I+II . This is because (x, $\xi$) \not\in A. implies |$\xi$_{0}| = | $\xi$| and hence
f_{W} = f_{0} — which means that these (x,  $\xi$) do not contribute to the integral
defining r_{W}^{+}(t) .

I has the following bound:

Lemma 4.1. If W\in \mathcal{K} , then

I\displaystyle \leq C[\frac{( $\gamma$+$\gamma$^{3}A_{+})^{3}}{(1+t)^{d+2}}+L^{-3(d-1)}\frac{B_{+}^{3}}{(1+t/L)^{d-1}}] , (4.20)

where C is a positive constant depending only on d.
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Proof. I will only prove the case of d\geq 3 for simplicity.
Let (x,  $\xi$)\in A_{\leq t/2} . Then

$\xi$_{1}=\displaystyle \frac{1}{t-$\tau$_{1}}\int_{$\tau$_{1}}^{t}W(s)ds (4.21)

by x($\tau$_{1})\in\partial C_{W}($\tau$_{1}) .
This and inequality (4.6) give an upper bound of W(t)-$\xi$_{1} :

W(t)-$\xi$_{1}=\displaystyle \frac{1}{t-$\tau$_{1}}\int_{$\tau$_{1}}^{t}[(1-W(s))-(1-W(t))]ds
\displaystyle \leq \frac{1}{t-$\tau$_{1}}\int_{$\tau$_{1}}^{t}[ $\gamma$ e^{-D_{0}'(1/2)s}+$\gamma$^{3}\frac{A+}{(1+s)^{d+2}}+L^{-(d-1)}\frac{B_{+}}{(1+s/L)^{d-1}}] ds
= $\gamma$ e^{-D_{0}'(1/2) $\tau$ 1}\displaystyle \frac{1-e^{-D_{0}'(1/2)(t-$\tau$_{1})}}{D_{0}'(1/2)(t-$\tau$_{1})}

+\displaystyle \frac{$\gamma$^{3}A_{+}}{(d+1)(t-$\tau$_{1})} [\frac{1}{(1+$\tau$_{1})^{d+1}}-\frac{1}{(1+t)^{d+1}}]
+\displaystyle \frac{L^{-(d-1)}B_{+}}{(d-2)(t-$\tau$_{1})} [\frac{L}{(1+$\tau$_{1}/L)^{d-2}}-\frac{L}{(1+t/L)^{d-2}}]

(4.22)

By the mean value theorem, there exists s\in($\tau$_{1}, t) such that

\displaystyle \frac{1}{(1+$\tau$_{1})^{d+1}}-\frac{1}{(1+t)^{d+1}}=\frac{(d+1)(t-$\tau$_{1})(1+s)^{d}}{(1+$\tau$_{1})^{d+1}(1+t)^{d+1}} (4.23)

and similarly for the last term in inequality (4.22). Using the condition $\tau$_{1}\leq t/2,

W(t)-$\xi$_{1}\displaystyle \leq C\frac{ $\gamma$+$\gamma$^{3}A+}{1+t}+L^{-(d-1)}\frac{B_{+}}{1+t/L} . (4.24)

Next, note that x($\tau$_{1})\in\partial C_{W}($\tau$_{1}) implies |x\perp-(t-$\tau$_{1}) $\xi$\perp| \leq 1 . Thus

|$\xi$_{\perp}|\leq 4/t (4.25)

since $\tau$_{1} \leq t/2.
Inequalities (4. 16), (4.24) and (4.25) give

I\displaystyle \leq C[\frac{( $\gamma$+$\gamma$^{3}A_{+})^{3}}{(1+t)^{3}}+L^{-3(d-1)}\frac{B_{+}^{3}}{(1+t/L)^{3}}]\int_{1 $\xi$\perp}|\leq 4/t^{e^{-1 $\xi$\perp}d $\xi$\perp}|^{2}
(4.26)

\displaystyle \leq C[\frac{( $\gamma$+$\gamma$^{3}A_{+})^{3}}{(1+t)^{d+2}}+L^{-3(d-1)}\frac{B_{+}^{3}}{(1+t/L)^{d-1}}] .

\square 

II has the following bound:
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Lemma 4.2. If W\in \mathcal{K} , then

II\displaystyle \leq C[\frac{( $\gamma$+$\gamma$^{3}A_{+})^{3}}{(1+t)^{3(d+2)}}+L^{-3(d-1)}\frac{B_{+}^{3}}{(1+t/L)^{3(d-1)}}] , (4.27)

where C is a positive constant depending only on d.

Proof. Let (x, $\xi$)\in A_{>t/2} . An upper bound of W(t)-$\xi$_{1} is derived similarly to
inequality (4.24):

W(t) -$\xi$_{1} \leq \displaystyle \frac{1}{t-$\tau$_{1}}\int_{$\tau$_{1}}^{t} [ $\gamma$ e^{-D_{0}'(1/2)s}+$\gamma$^{3}\displaystyle \frac{A+}{(1+s)^{d+2}} +L^{-(d-1)}\frac{B_{+}}{(1+s/L)^{d-1}}] ds

\displaystyle \leq  $\gamma$ e^{-D_{\mathrm{o}}'(1/2)$\tau$_{1}} +$\gamma$^{3}\frac{A_{+}}{(1+$\tau$_{1})^{d+2}} +L^{-(d-1)}\frac{B+}{(1+$\tau$_{1}/L)^{d-1}}
\displaystyle \leq C [\frac{ $\gamma$+$\gamma$^{3}A_{+}}{(1+t)^{d+2}} +L^{-(d-1)}\frac{B_{+}}{(1+t/L)^{d-1}}]

(4.28)

since $\tau$_{1} >t/2 . This implies inequality (4.27). \square 

Proposition 4.2 is an immediate consequence of Lemmas 4.1 and 4.2.

4.2.2 Estimate of r_{W}^{-}(t)

The proof of the non‐negativity of r_{W}^{-}(t) is similar to that of r_{W}^{+}(t) . Note that

0\leq f_{0}-f_{W}\leq f_{0}=$\pi$^{-d/2}e^{-| $\xi$|^{2}} (4.29)

Decompose r_{W}^{-}(t) into two parts as follows:

r_{W}^{-}(t)=\displaystyle \int_{I_{\overline{W}}(t)\cap\{$\xi$_{1}\leq 1\}}($\xi$_{1}-W(t))^{2}(f_{0}-f_{W})d $\xi$ dS
+l_{W(t)\cap\{$\xi$_{1}>1\}^{($\xi$_{1}-W(t))^{2}(f_{0}-f_{W})d $\xi$ dS}}- (4.30)

=:III+IV.

III has the following bound, which is easily proved by noting that 0 <

$\xi$_{1}-W(t)\leq 1-W(t) and inequality (4.6).

Lemma 4.3. If W\in \mathcal{K} , then

III\displaystyle \leq C[\frac{( $\gamma$+$\gamma$^{3}A_{+})^{3}}{(1+t)^{3(d+2)}}+L^{-3(d-1)}\frac{B_{+}^{3}}{(1+t/L)^{3(d-1)}}] , (4.31)

where C is a positive constant depending only on d.

IV has the following bound:
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Lemma 4.4. Let W \in \mathcal{K} . Take  $\gamma$ and  L^{-1} sufficiently small so that inequal‐
ity (4.6) implies W(t)\geq 1/2 . Then

IV\displaystyle \leq C\frac{L^{-(d-1)}}{(1+t/L)^{d-1}} , (4.32)

where C is a positive constant depending only on d.

Proof. Let (x,  $\xi$) \in  I_{W}^{-}(t) and suppose that $\xi$_{1} > 1 . I can safely assume that
$\tau$_{2}>0 : Otherwise, there is at most one recollision, which is necessarily on \partial \mathbb{R}_{+}^{d}
since $\xi$_{1} > 1 . This implies that |$\xi$_{0}| = | $\xi$| and hence f_{W} = f_{0} . These do not
contribute to the integral defining r_{W}^{-}(t) .

Next, a bound of |$\xi$_{\perp}| is derived as follows. Since the second recollision is
necessarily on the left side of \partial C_{W}($\tau$_{2}) , the following relation must hold:

(t-$\tau$_{2})$\xi$_{1}+\displaystyle \int_{$\tau$_{2}}^{t}W(s)ds=2X_{W}(t) . (4.33)

Note that this implies

t-$\tau$_{2}=\displaystyle \frac{2(L+\int_{0}^{t}W(s)ds)}{$\xi$_{1}+\frac{1}{t-$\tau$_{2}}\int_{$\tau$_{2}}^{t}W(s)ds}\geq\frac{2(L+t/2)}{$\xi$_{1}+1} (4.34)

because 1/2\leq W(t)<1 . Next, x($\tau$_{2})\in\partial C_{W}($\tau$_{2}) implies |x\perp-(t-$\tau$_{2}) $\xi$\perp|<1.
Hence

|$\xi$_{\perp}|\displaystyle \leq \frac{2}{t-$\tau$_{2}}\leq \frac{2($\xi$_{1}+1)}{2L+t} (4.35)

by inequality (4.34).
Inequalities(4.29) and (4.35) give the bound of IV:

 IV\displaystyle \leq C\int_{1}^{\infty}($\xi$_{1}-W(t))^{2}e^{-$\xi$_{1}^{2}}d$\xi$_{1}\int_{1 $\xi$\perp}|\leq^{2$\xi$_{\lrcorner}\rightharpoonup 1}e^{-1 $\xi$|^{2}}\perp d $\xi$\perp (4.36)

\displaystyle \leq C\frac{L^{-(d-1)}}{(1+t/L)^{d-1}}\int_{1}^{\infty}($\xi$_{1}-1/2)^{2}($\xi$_{1}+1)^{d-1}e^{-$\xi$_{1}^{2}}d$\xi$_{1} (4.37)

\displaystyle \leq C\frac{L^{-(d-1)}}{(1+t/L)^{d-1}} . (4.38)

\square 

Proposition 4.3 is an immediate consequence of Lemmas 4.3 and 4.4.

5 Discussion

Now that Propositions 4.2 and 4.3 are proved, this concludes the proof of The‐
orem 3.2 — although I left some details to the references.
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The effect of the wall \partial \mathbb{R}_{+}^{d} is seen in the estimate of r_{W}^{-}(t) . See also the

proof of its lower bound derived in [2, Proposition 8]. It is caused by molecules
leaving the left side of \partial C_{W}(t) , reaching \partial \mathbb{R}_{+}^{d} at time $\tau$_{1} and then coming back
to the left side of \partial C_{W}($\tau$_{2}) . See equation (4.33). An important point is that
this effect dominates the rate of approach to the terminal velocity however large
L is.
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