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1 Introduction

In the present article, we consider the asymptotic behavior of radially symmetric
solutions of the multi‐dimensional Burgers equation. Burgers equation in multi‐
dimensional space is written as

\displaystyle \frac{\partial u}{\partial t}+(u\cdot\nabla)u= $\mu$\triangle u, t>0, x\in \mathbb{R}^{n} , (1.1)

where u= (u_{1}(t, x), \cdots , u_{n}(t, x)) is a vector valued unknown function of t>0 and
x= (x_{1}, \cdots , x_{n}) , and  $\mu$ is a given positive constant.

In previous papers [1, 2], we investigated an initial boundary value problem
for radially symmetric solutions of (1.1) on the exterior domain |x| > r_{0} for some
positive constant r_{0} , where the initial data, and the boundary and far‐field conditions
are prescribed. Introducing a new unknown variable v(t, r) by u=(x/r)v(t, r) with
r=|x| , our problem for (1.1) can be rewritten with respect to r as follows:

\left\{\begin{array}{ll}
v_{t}+vv_{r}= $\mu$(v_{rr}+(n-1)(\frac{v}{r})_{r}) , & r>r_{0}, t>0,\\
v(t, r_{0})=v_{-}, \lim_{r\rightarrow+\infty}v(t,r)=v_{+}, & t>0,\\
v(0, r)=v_{0}(r) , & r>r_{0},
\end{array}\right. (1.2)

where the initial data v_{0} is assumed to satisfy the compatibility conditions v_{0}(r_{0})=
v_{-} and \displaystyle \lim_{r\rightarrow\infty}v_{0}(r)=v_{+}.

In a previous article [1], we considered the initial boundary value problem (1.2)
for  n\geq  2 for the cases in which the boundary and far field conditions satisfy (a):
v_{-} < v_{+} = 0 , (b): v_{-} < 0 < v_{+} , and (c): 0 = v_{-} < v_{+} , and we showed that
the asymptotic states of the time‐global solution are given by a monotonically in‐
creasing stationary wave in case (a), a superposition of a monotomically increasing
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stationary wave and a rarefaction wave in case (b), and a rarefaction wave in case
(c). These results are similar to those for the 1‐D Burgers equation investigated
by Liu‐Matsumura‐Nishihara [5]. Note that in all cases the corresponding 1‐D Rie‐
mann problem admits a single rarefaction wave. Here the monotomically increasing
property of the stationary wave played an important role.

In [2], we considered case (d), in which 0 < v_{-} <v_{+} , which waồ excluded in
[1]. We first showed that if and only if 0<v_{-} \leq 2(n-2) $\mu$/r_{0} and v+ =0 , there
exists a stationary wave, “ that decreases monotonically” to zero as  r\rightarrow\infty , which
never occurs for the 1‐D Burgers equation. Based on this result, we considered
the initial boundary value problem (1.2) for  n \geq  3 in case (d), and showed that
the asymptotic state of the time‐global solution is given by a superposition of a
monotonically decreasing stationary wave and a rarefaction wave under the condition
0<v_{-} < $\mu$/(2r_{0}) . Note that in this case the corresponding 1‐D Riemann problem
still admits a single rarefaction wave, and the asymptotic state for the solution of 1‐D
Burgers equation is proved to be the rarefaction wave by Liu‐Matsumura‐Nishihara
[5] and Nakamura [8].

In [3], we further investigate cases (e): 0=v_{+}<v_{-} , (f): 0<v+\leq v_{-} and (g):
v_{-}\leq v_{+} <0 . We show that the asymptotic states of the time‐global solutions are
still given by a monotonically decreasing stationary wave in case (e), and a hnear
superposition of a monotonically decreasing stationary wave and a rarefaction wave
in case (f) under the assumption 0<v_{-}<2 $\mu$/(r_{0}(1+\sqrt{(n-3)}/(n-\mathrm{I} For case
(g), we first show the existence of a non‐monotonic stationary wave, which neither
increases nor decreases monotonically. This never occurs in the case of the 1‐D Burg‐
ers equation, and we show that this non‐monotonic stationary wave is asymptotically
stable. Here, we use the spatial weighted energy method because of the difficulty
arising from the non‐monotonic property of the stationary wave. Note that in case
(g), the asymptotic state for the solution of the 1‐D Burgers equation is known to
be a monotonically increasing stationary wave (see Liu‐Matsumura‐Nishihara [5]).
This suggests that, the 1‐D Riemann problem for the non‐viscous part can never
classify all of the asymptotic states of the multi‐dimensional Burgers equation. In
particular, the remaining case (h): 0>v_{+} <v_{-} is open in general. Nevertheless,
for the case in which n=3 , due to the specific structure of the 3‐D equation, we
can reduce the problem (1.2) to that for the plain 1‐D Burgers equation, and we
eventually succeed in obtaining the complete classification of asymptotic states, in‐
cluding a linear superposition of stationary wave and a viscous shock wave. Thus,
we can exactly clarify the multi‐dimensional effects on the asymptotic behaviors for
the case in which n=3.

Some Notation. We denote the usual Lebesgue space of square integrable func‐
tions over (r_{0}, \infty) by L^{2} = L^{2}((r_{0}, \infty and denote the corresponding kth‐order
Sobolev space by  H^{k}, k = 1 , 2, . . .. Further, we denote the space of functions
f \in  H^{1} with f(r_{0}) = 0 by H_{0}^{1} = H_{0}^{1}((r_{0}, \infty For  $\beta$ > 0 , we also denote the
first‐order weighted Sobolev space, that is, the space of functions (1+r)^{ $\beta$/2}f\in H^{k},
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by H^{k, $\beta$}=H^{k, $\beta$}((r_{0}, \infty For an interval  I\subset R^{1} and a Banach space X, C^{k}(I;X)
denotes the space of k‐times continuously differentiable X‐valued functions on I,
and L^{2}(I;X) denotes the space of square integrable X‐valued functions on I.

2 Main theorems

Before we state the main theorems, let us recall the stationary and rarefaction waves
of (1.2). We call  $\phi$(r) the stationary wave of (1.2) if  $\phi$ satisfies the stationary problem
corresponding to (1.2):

\left\{\begin{array}{ll}
(\frac{1}{2}$\phi$^{2})_{r}= $\mu$($\phi$_{rr}+(n-1)(_{r}^{4})_{r}) , & r>r_{0},\\
 $\phi$(r_{0})=v_{-}, \lim_{r\rightarrow+\infty} $\phi$(r)=v_{+}. & 
\end{array}\right. (2.1)

In what follows, we write the solution of (2.1) as $\phi$_{v_{-},v+}(r) when we emphasize the
boundary value of the stationary solution v_{-} and the far‐field state v_{+} . The basic
properties of the stationary wave are given as follows.

Proposition 2.1 (Caee v_{+}=0). Suppose n\geq 3, 0<v_{-}\leq 2 $\mu$(n-2)/r_{0} , and v_{+}=0.
Then the stationary problem (2.1) has a unique smooth solution  $\phi$(r) satisfying the
following.
(i) If v_{-}=2 $\mu$(n-2)/r_{0} , then  $\phi$(r)=2 $\mu$(n-2)/r, r\geq r_{0}.

(ii) If 0<v_{-}<2 $\mu$(n-2)/r_{0} , then 0< $\phi$(r)\leq v_{-} and $\phi$_{r}(r)<0, r\geq r_{0}.

Moreover,  $\phi$ satisfies | $\phi$(r)|\sim(r+1)^{-n+1}, r\rightarrow\infty.

The proof of Proposition 2.1 is clear because the solution of (2.1) is exactly given
by the formula

 $\phi$(r)=$\phi$_{v_{-},0}(r)=\displaystyle \frac{v_{-}}{(1-\frac{r\mathrm{o}v-}{2 $\mu$(n-2)})(r/r_{0})^{n-1}+\frac{r\mathrm{o}v-}{2 $\mu$(n-2)}(r/r_{0})} . (2.2)

Next, we state the non‐monotonic stationary wave which is used in Section 3.

Proposition 2.2 (Case v+<0). Suppose n\geq 3, v_{-}\leq v_{+}<0 . Then the stationary
problem (2.1) has a unique smooth solution  $\phi$ satisfying the following.
(i) There exists a negative constant \mathrm{v}_{0}\in(v_{+}, 0) such that

 $\phi$(r)<$\nu$_{0}, r\geq r_{0} . (2.3)

(ii) It holds that

 $\phi$(r)-\displaystyle \frac{ $\mu$(n-1)}{r}<v_{+}, r\geq r_{0} , (2.4)

and  $\phi$- $\mu$(n-1)^{2}/(2r) is monotonically increasing, that is,

$\phi$_{r}(r)>-\displaystyle \frac{ $\mu$(n-1)^{2}}{2r^{2}}, r\geq r_{0} . (2.5)
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(iii) It holds that

| $\phi$(r)-v_{+}-\displaystyle \frac{ $\mu$(n-1)}{r}|\leq O(r^{-2}) , r\rightarrow\infty . (2.6)

Next, for  0 \leq  v_{-} < v_{+} , we define the rarefaction wave $\psi$_{v_{-},v_{+}} of (1.2) which
connects constant states v_{-} to v_{+} by $\psi$_{v-,v_{+}}=\hat{ $\psi$}_{v_{-},v_{+}}((r-r_{0})/t) for t>0 , where

\hat{ $\psi$}_{v_{-},v+}( $\xi$) := \left\{\begin{array}{ll}
v_{-}, &  $\xi$\leq v_{-},\\
 $\xi$, & v_{-}\leq $\xi$\leq v_{+},\\
v+, & v+\leq $\xi$.
\end{array}\right. (2.7)

Now we are ready to state our first main theorem.

Theorem 2.3. Suppose n \geq  3, 0 < v_{-} < 2 $\mu$/(r_{0}(1+\sqrt{(n-3)}/(n-1 and
 0\leq v+\cdot Then we have the following results.

(1) (Asymptotic stability) Assume that  v_{0}-v_{+} \in H^{1} . Then the initial‐boundary
value problem (1.2) has a unique time‐global solution v satisfying

v-v+\in C^{0}([0, \infty);H^{1}) , v_{r}\in L^{2}(0, T;H^{1}) , T>0,

and the asymptotic behavior

\displaystyle \lim_{t\rightarrow\infty}\sup_{r>r0}|v(t, r)-$\phi$_{v_{-},0}(r)-\hat{ $\psi$}_{0,v+} (\frac{r-r_{0}}{t})|=0.
(2) (Decay rate) Further assume that v_{0}-v+ \in  H^{1}\cap L^{1} . Then the solution v

satisfies the following decay rate estimates: if v+>0 , it holds that

\Vert(v-$\phi$_{v-,0}-$\psi$_{0,v_{+}})(t)\Vert_{H^{1}} \leq C(1+t)^{-\frac{1}{4}}\log^{2}(2+t) , t\geq 1 , (2.8)

and if v_{+}=0 , it holds that

\Vert(v-$\phi$_{v_{-},0})(t)\Vert_{H^{1}} \leq C(1+t)^{-\frac{1}{4}}, t\geq 0 . (2.9)

As for the asymptotic stability of the non‐monotonic stationary solution  $\phi$ , we have
the following:

Theorem 2.4. Suppo \mathcal{S}e that n\geq 3, v_{-}\leq v_{+}<0 and v_{0}- $\phi$\in H^{1,\frac{n-1}{2}} Then there
exists a positive constant $\epsilon$_{0} such that if \Vert v_{0}- $\phi$\Vert_{H^{1^{\underline{n}}}'\overline{2}^{\underline{1}}} \leq$\epsilon$_{0} , then the initial‐boundary

value problem (1.2) has a unique time‐global solution v satisfying

v\in C^{0}([0, \infty);H^{1}) , v_{r}\in L^{2}(0, T;H^{1}) , T>0,

and the asymptotic behavior

\displaystyle \lim_{t\rightarrow\infty}\sup_{r>r0}|v(t, r)- $\phi$(r)|=0.
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Next, we state the theorem for the complete classification of asymptotic states
for the space dimension n=3 . In this case, if we introduce a new unknown valuable
V by

v(t, r)=\displaystyle \frac{2 $\mu$}{r}+V(t, r) , (2.10)

then our original problem (1.2) for the 3‐D Burgers equation is surprisingly reduced
to the 1‐D Burgers equation:

\left\{\begin{array}{ll}
V_{t}+VV_{r}= $\mu$ V_{rr}, & t>0, r>r_{0},\\
V(t, r_{0})=v_{-}-2 $\mu$/r_{0}=:V_{-}, & t>0,\\
\lim_{r\rightarrow+\infty}V(t, r)=v_{+}=:V_{+}, & t>0,\\
\mathrm{V}(0, r)=V_{0}(r):=v_{0}(r)-2 $\mu$/r, & r>r_{0}.
\end{array}\right. (2.11)

Once the problem is reduced to the 1‐D Burgers equation, all of the asymptotic
behaviors have been classified in terms of the boundary and far field values V\pm \mathrm{b}\mathrm{y}
Liu‐Matsumura‐Nishihara [5], Nakamura [8], Liu‐Nishihara [6], Nishihara [9], and
Liu‐Yu [7]. To state the results precisely, let us first recall the stationary wave
solution  $\Phi$ to the problem (2.11):

\left\{\begin{array}{l}
 $\Phi \Phi$_{r}= $\mu \Phi$_{rr}, r>r_{0},\\
 $\Phi$(r_{0})=V_{-}, \lim_{r\rightarrow+\infty} $\Phi$(r)=V_{+}.
\end{array}\right. (2.12)

An elementary calculation shows the following properties.

Proposition 2.5. If and only if V_{+}\leq 0 and V_{-}<|V_{+}| , a solution of (2.12), except
the trivial solution  $\Phi$\equiv 0 , uniquely exists and satisfies the following.
(i) For V_{-}=V_{+} , the solution is given by the constant state  $\Phi$(r)=V_{-}=V_{+}.
(ii) For V_{-}<V_{+}=0 , the solution is monotonically increasing and, given by

 $\Phi$(r)=\displaystyle \frac{V_{-}}{1-\frac{V-}{2 $\mu$}(r-r_{0})} . (2.13)

(iii) For V_{+}<0 and V_{-}<V_{+} (resp. V_{+}<V_{-}< |V_{+}| ), the solution is monotonically
increasing (resp. decreasing), and is given in both cases by

 $\Phi$(r)=\displaystyle \frac{V_{+}(1-\frac{V_{+}-V_{-}}{V_{-}+V_{-}}e^{V_{+}(r-r\mathrm{o})/ $\mu$})}{1+\frac{V_{+}-V_{-}}{V-+V_{-}}e^{V_{+}(r-r_{0})/ $\mu$}} . (2.14)

We write the stationary wave  $\Phi$ of (2.12) also as  $\Phi$_{V_{-},V_{+}} when the boundary
and the far field states are emphasized. Based on the result of Proposition 2.5, it
is easy to see that, for the original stationary problem (2.1) with n=3 , except the
trivial solution  $\phi$=0 , the necessary and sufficient condition for the existence of the
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nontrivial stationary solution is v_{+}\leq 0 and v_{-}-2 $\mu$/r_{0}<|v_{+}| , and then the solution
is given by the formula

$\phi$_{v_{-},v_{+}}(r)=\displaystyle \frac{2 $\mu$}{r}+$\Phi$_{v--2 $\mu$/r0,v+}(r) . (2.15)

Next, let us recall the viscous shock wave for the 1‐D Burgers equation on the
whole space \mathbb{R}^{1} with the far field states V_{\pm} :

\left\{\begin{array}{l}
V_{t}+VV_{r}- $\mu$ V_{rr}, t>0, r\in \mathbb{R}^{1},\\
\lim_{r\rightarrow\pm\infty}V(t, r)=V_{\pm}, t>0.
\end{array}\right. (2.16)

We refer to a traveling wave solution of (2.16) with the form V=\tilde{V}( $\xi$) ,  $\xi$=r-st,
as a viscous shock wave of (2.16), where s \in \mathbb{R}^{1} is the shock speed. The viscous
shock wave is known to exist uniquely up to the shift under the entropy condition
V_{-} >V_{+} and the Rankine‐Hugoniot condition -s(V_{+}-V_{-})+(V_{+}^{2}/2-V_{-}^{2}/2)=0,
that is, s=(V_{-}+V_{+})/2 , and has the properties V_{+}<\tilde{V}( $\xi$) <V_{-}, \tilde{V}_{ $\xi$}( $\xi$)<0,  $\xi$\in \mathbb{R}^{1}.
In fact, the viscous shock wave with \tilde{V}(0)=(V_{-}+V_{+})/2 is concretely given by

V=\tilde{V}(r-st) =\displaystyle \frac{V_{+}+V_{-}}{2}+\frac{V_{+}-V_{-}}{2}\mathrm{t}\Re \mathrm{A}(-\frac{(V_{-}-V_{+})}{2 $\mu$} (r- st)) . (2.17)

In the case s > 0 , that is V_{-}+V_{+} > 0 , note that the viscous shock wave \tilde{V} is
expected to be a good approximation of (2.11) because \tilde{V}(r_{0}-st) exponentially
tends toward V_{-} as  t\rightarrow \infty . We write the viscous shock wave \tilde{V} in (2.17) also as
\tilde{V}_{V_{-},V_{+}} when the far field states are emphasized

Now we are ready to state our second main theorem.

Theorem 2.6. Suppose that n=3 . Then we have the following classification of the
asymptotic states.

(I) Case v_{-}-2 $\mu$/r_{0}<v+\leq 0 :
Assume that v_{0}-v_{+} \in  H^{1} . Then the initial‐boundary value problem (1.2) has a
unique time‐global solution v satisfying

v-v_{+}\in C^{0}([0, \infty);H^{1}) , v_{r}\in L^{2}(0, T;H^{1}) , T>0,

and the asymptotic behavior

\displaystyle \lim_{t\rightarrow\infty}\sup_{r>r0}|v(t, r)-$\phi$_{v-,v+}(r)|=0.

(II) Case v_{-}-2 $\mu$/r_{0}<0<v_{+} :
Assume that v_{0}-v+ \in  H^{1} . Then the initial‐boundary value problem (1.2) has a
unique time‐global solution v satisfying

v-v_{+}\in C^{0}([0, \infty);H^{1}) , v_{r}\in L^{2}(0, T;H^{1}) , T>0,
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and the asymptotic behavior

t\displaystyle \rightarrow\infty_{r>r0}\mathrm{h}\mathrm{m}\sup|v(t, r)-$\phi$_{v_{-},0}(r)-\hat{ $\psi$}_{0,v_{+}}(\frac{r-r_{0}}{t})|=0.
Here note that \hat{ $\psi$}_{0,v+}=0 for v+=0.

(III) Case 0\leq v_{-}-2 $\mu$/r_{0}<v+ :
Assume that v_{0}-v+ \in  H^{1} . Then the initial‐boundary value problem (1.2) has a
unique time‐global solution v satisfying

v-v_{+}\in C^{0}([0, \infty);H^{1}) , v_{r}\in L^{2}(0, T;H^{1}) , T>0,

and the asymptotic behavior

\displaystyle \lim_{t\rightarrow\infty}\sup_{r>r0}|v(t, r)-\frac{2 $\mu$}{r}-\hat{ $\psi$}_{v_{\overline{r}}^{2}}--40^{v_{+}} (\frac{r-r_{0}}{t})|=0.
(IV) Case v_{-}-2 $\mu$/r_{0}>v_{+}, v_{-}+v_{+}<2 $\mu$/r_{0} :
Assume that v_{0}-2 $\mu$/r-v_{+} \in  H^{1}\cap L^{1} . Then there exists a positive constant $\epsilon$_{0}

such that if \Vert$\chi$_{0}\Vert_{H^{2}} \leq$\epsilon$_{0} then the initial‐boundary value problem (1.2) has a unique
time‐global solution v satisfying

v-v_{+}\in C^{0}([0, \infty);H^{1}) , v_{r}\in L^{2}(0, T;H^{1}) , T>0,

and the asymptotic behavior

\displaystyle \lim_{t\rightarrow\infty}\sup_{r>r_{\mathrm{O}}}|v(t, r)-$\phi$_{v-,v_{+}}(r)|=0,
where the function $\chi$_{0} is defined by

$\chi$_{0}(r)=\displaystyle \int_{r}^{\infty}(v_{0}(y)-2 $\mu$/y-$\phi$_{v-,v+}(y))dy, r\geq r_{0}.
(V) Case v_{-}-2 $\mu$/r_{0}>v_{+}, v_{-}+v_{+}>2 $\mu$/r_{0} :
Assume that v_{0}-2 $\mu$/r-v+ \in H^{2}\cap L^{1} and \displaystyle \int_{r_{0}}^{\infty}(v_{0}(r)-2 $\mu$/r-v_{+})dr> 0 . Then

there exist positive constants $\epsilon$_{0} and $\beta$_{0} such that if (1/d_{0})+\Vert W_{0}\Vert_{H^{3,$\beta$_{0}}} <$\epsilon$_{0} , then the
initial‐boundary value problem (1.2) has a unique time‐global solution v satisfying

v-v_{+}\in C^{0}([0, \infty);H^{2}) , v_{r}\in L^{2}(0, T;H^{2}) , T>0,

and the asymptotic behavior

\displaystyle \lim_{t\rightarrow\infty}\sup_{r>r\mathrm{o}}|v(t, r)-(2 $\mu$/r+\tilde{V}_{v--2 $\mu$/r0,v+}(r-st-d(t)))|=0,

136



for a function d(t) \in  C^{0}([0, \infty)) which has a finite limit d_{\infty} = \displaystyle \lim_{t\rightarrow\infty}d(t) . Here
s=(v_{+}+v_{-}-2 $\mu$/r_{0})/2>0 , and d_{0} and, W_{0} are defined as

\displaystyle \int_{r0}^{\infty}(v_{0}(r)-2 $\mu$/r-\tilde{V}_{v--2 $\mu$/r\mathrm{o},v_{+}}(r-d_{0}))dr=0,
W_{0}(r)=l^{\infty}(v_{0}(y)-2 $\mu$/y-\tilde{V}_{v--2 $\mu$/r0,v+}(y-d_{0}))dy, r\geq r_{0}.

(VI) Case v_{-}-2 $\mu$/r_{0}>v+, v_{-}+v_{+}=2 $\mu$/r_{0} :
Assume that v_{0}-2 $\mu$/r-v_{+} \in  H^{2}\cap L^{1} and \displaystyle \int_{r_{0}}^{\infty}(v_{0}(r)-2 $\mu$/r-v_{+})dr>0 . Then

there exist positive constants $\epsilon$_{0} and $\beta$_{0} such that if (1/d_{0})+\Vert W_{0}\Vert_{H^{3,$\beta$_{0}}} <$\epsilon$_{0} , then the
initial‐boundary value problem (1.2) has a unique time‐global solution v satisfying

v-v+\in C^{0}([0, \infty);H^{2}) , v_{r}\in L^{2}(0, T;H^{2}) , T>0,

and the asymptotic behavior

t\displaystyle \rightarrow\infty_{r>r_{0}}\mathrm{h}\mathrm{m}\sup|v(t, r)-(2 $\mu$/r+\tilde{V}_{-v+,v+}(r-d(t)))|=0,
for a function d(t)\in C^{0}([0, \infty)) which has the property d(t)\sim\log t, t\rightarrow\infty.

The proofs for cases (I) and (II) are based on the arguments in Liu‐Matsumura‐
Nishihara [5]. The proof for case (III) is based on the arguments in Nakamura [8],
and the proofs for cases (IV) and (V) are based on the arguments in Liu‐Nishihara
[6]. The proof for case (VI), which is the most subtle case, is based on the arguments
in Nishihara [9] and Liu‐Yu [7]. Note that the arguments in [7] are made in a classical
function space by using the maximum principle.

Because Theorem 2.3 is proved by combining the results of [1] and [4], we only
show the rough sketch of the proof of Theorem 2.4.

3 Asymptotic stability of stationary wave in the
case v_{+}<0

3.1 Reformulation of the problem

Recall the non‐monotonic stationary wave which satisafies (2.1) with v_{-} \leq v+ <0.

Integrating the equation in (2.1) with respect to r once, we have

\left\{\begin{array}{l}
 $\mu \phi$_{r}+\frac{ $\mu$(n-1)}{r} $\phi$=\frac{1}{2}($\phi$^{2}-v_{+}^{2}) , r>r_{0},\\
 $\phi$(r_{0})=v_{-},  $\phi$(\infty)=v_{+}.
\end{array}\right. (3.1)
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Letting us introduce the perturbation w(t, r) from  $\phi$(r) by

v(t, r)= $\phi$(r)+w(t, r) ,

we rewrite our original problem (1.2) in terms of w as

\left\{\begin{array}{ll}
w_{t}+\frac{1}{2}(w^{2}+2 $\phi$ w)_{r}= $\mu$(w_{rr}+(n-1)(\frac{w}{r})_{r}) , & r>r_{0}, t>0,\\
w(t, r_{0})=0, & t>0,\\
w(0, r)=w_{0}(r) :=v_{0}(r)- $\phi$(r) , & r>r_{0}.
\end{array}\right. (3.2)

Now we further define a new unknown function z by

z(t, r)=r^{\frac{n-1}{2}}w(t, r) .

Then the problem (3.2) is again rewritten in terms of z as in the form

\left\{\begin{array}{ll}
z_{t}+( $\phi$ z)_{r}+(-\frac{n-1}{2r} $\phi$+\frac{ $\mu$(n^{2}-1)}{4r^{2}})z- $\mu$ z_{rr} & \\
=R(z):=\frac{n-1}{2r^{\frac{n+1}{2}}}z^{2}-\frac{1}{2r^{\frac{n-1}{2}}}(z^{2})_{r}, & r>r_{0}, t>0,\\
z(t, r_{0})=0, & t>0,\\
z(0, r)=z_{0}(r) :=r^{\frac{n-1}{2}}(v_{0}(r)- $\phi$(r)) , & r>r_{0}.
\end{array}\right. (3.3)

The theorem corresponding to Theorem 2.4 for the reformulated problem (3.3) is
written as follows.

Theorem 3.1. Suppose that n\geq 3, v_{-}\leq v_{+}<0 and z_{0}\in H^{1} Then there exists a
positive constant $\epsilon$_{0} such that if \Vert z_{0}\Vert_{H^{1}} \leq$\epsilon$_{0} , then the initial‐boundary value problem
(3.3) has a unique time‐global solution z satisfy ing

z\in C^{0}([0, \infty);H^{1}) , z_{r}\in L^{2}(0, T;H^{1}) , T>0,

and the asymptotic behavior

\displaystyle \lim_{t\rightarrow\infty}\sup_{r>r0}|z(r, t)|=0.
Proof. We only show a desired a priori estimate for the solution. First, put

N(T)=\displaystyle \sup_{0\leq t\leq T}\Vert v(t)\Vert_{H^{1}},
and then we suppose N(T) \leq  1 in what follows. Multiplying the equation in (3.3)
by z and integrating the resultant equality in terms of r over [r_{0}, \infty ), we get

\displaystyle \frac{1}{2}\frac{d}{dt}\int_{r_{0}}^{\infty}z^{2}dr+\frac{1}{2}\int_{r0}^{\infty}($\phi$_{r}-\frac{n-1}{r} $\phi$+\frac{ $\mu$(n^{2}-1)}{2r^{2}})z^{2}dr
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十  $\mu$\displaystyle \int_{r0}^{\infty}|z_{r}|^{2}dr=\int_{r_{0}}^{\infty}zR(z) dr.

Hence, due to Proposition 2.2, we have

(3.4)

\displaystyle \frac{1}{2}\frac{d}{dt}\int_{r\mathrm{o}}^{\infty}z^{2}dr+\frac{1}{2}\int_{r0}^{\infty}(\frac{n-1}{r}$\nu$_{0}+\frac{ $\mu$(n-1)}{r^{2}})z^{2}dr
+ $\mu$\displaystyle \int_{r0}^{\infty}|z_{r}|^{2}dr\leq\int_{r_{0}}^{\infty}zR(z)dr,

which implies

||z(t)||_{L^{2}}^{2}+\displaystyle \int_{0}^{t}(\int_{r_{0}}^{\infty}\frac{z^{2}( $\tau$,r)}{r}dr+||z_{r}( $\tau$)||^{2})d $\tau$
(3.5)

\displaystyle \leq C(||z_{0}||_{L^{2}}^{2}+N(t)\int_{0}^{t}(\int_{r0}^{\infty}\frac{z^{2}( $\tau$,r)}{r}dr+||z_{r}( $\tau$)||^{2})d $\tau$) .

Next we proceed to the higher order estimate. Multiplying the equation in (3.3)
by -z_{rr} and integrating the resultant equality in terms of r and t over [r_{0}, \infty ) \times[0,  $\iota$],
we get

\Vert z_{r}(t)\Vert_{L^{2}}^{2} +\displaystyle \int_{0}
オ

\Vert z_{rr}( $\tau$)\Vert^{2}d $\tau$
(3.6)

\displaystyle \leq C(\Vert z_{0,r}\Vert_{L^{2}}^{2}+N(t)\int_{0}^{t}(\int_{r0}^{\infty}\frac{z^{2}( $\tau$,r)}{r}dr+||z_{r}( $\tau$)||^{2})d $\tau$) ,

where we used the equation in (3.1) and basic estimate (3.5). Combining (3.5) and
(3.6) and taking N(t) suitably small, we have the desired estimate

\displaystyle \Vert z(t)\Vert_{H^{1}}^{2}+\int_{0}^{t}(\Vert\frac{z}{r}( $\tau$)\Vert_{L^{2}}^{2}+\Vert z_{r}( $\tau$)\Vert_{H^{1}}^{2})d $\tau$\leq C\Vert z_{0}\Vert_{H^{1}}^{2} . (3.7)

Once the a priori estimate (3.7) is established, we can show the existence of time‐
global solution and its asymptotic behavior as in the same way as the previous
papers. Thus the proof of the Theorem 3.1 is completed. \square 
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