Spectrum of the artificial compressible system near bifurcation point

Yuka Teramoto

Graduate School of Mathematics, Kyushu University, Fukuoka 819-0395, Japan

1 Introduction

This article gives a summary of [5]. We consider the artificial compressible system

$$\epsilon^2 \partial_t p + \operatorname{div} \boldsymbol{v} = 0, \qquad (1.1)$$

$$\partial_t \boldsymbol{v} - \boldsymbol{\nu} \Delta \boldsymbol{v} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} + \nabla p = \boldsymbol{g}. \tag{1.2}$$

on a bounded domain Ω of \mathbb{R}^3 with smooth boundary $\partial\Omega$. Here $\boldsymbol{v} = {}^{\top}(v^1(x,t),v^2(x,t),v^3(x,t))$ and p = p(x,t) denote the unknown velocity field and pressure, respectively, at time t > 0 and position $x \in \Omega$; $\boldsymbol{g} = \boldsymbol{g}(x)$ is a given external force; and $\epsilon > 0$ is a small parameter, called the artificial Mach number.

We consider the system (1.1)-(1.2) under the boundary condition

$$\boldsymbol{v}|_{\partial\Omega} = \boldsymbol{v}_{\star}.\tag{1.3}$$

Here $\boldsymbol{v}_* = \boldsymbol{v}_*(x)$ is a given velocity field satisfying $\int_{\partial\Omega} \boldsymbol{v}_* \cdot \boldsymbol{n} \, dS = 0$, where \boldsymbol{n} denotes the unit outward normal to $\partial\Omega$.

A. Chorin proposed the system (1.1)-(1.2) in numerical computation to find a stationary solution of the incompressible Navier-Stokes equations:

$$\operatorname{div} \boldsymbol{v} = 0, \qquad (1.4)$$

$$\partial_t \boldsymbol{v} - \nu \Delta \boldsymbol{v} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} + \nabla p = \boldsymbol{g}$$
(1.5)

with the boundary condition (1.3). The idea of the method proposed by Chorin is stated as follows. Obviously, the sets of stationary solutions of (1.1)-(1.2) and (1.4)-(1.5) are the same ones. If solutions of the artificial compressible system (1.1)-(1.2) converge to a function $u_s = {}^{\mathsf{T}}(p_s, v_s)$ as $t \to \infty$, then the limit u_s is a stationary solution of (1.1)-(1.2), and thus, u_s is a stationary solution of (1.4)-(1.5). By using this method, Chorin numerically obtained stationary cellular convection patterns of the Bénard convection problem described by the Oberbeck-Boussinesq equation.

A mathematical basis for Chorin's method was given by Kagei and Nishida ([3, 4]). The limit function u_s in Chorin's method is a large time limit of solutions of (1.1)-(1.2), and so, u_s is stable as a solution of (1.1)-(1.2). In [3], it was shown that if u_s is stable as a solution of (1.1)-(1.2), then it is also stable as a solution of (1.4)-(1.5). This means that stationary solutions obtained by Chorin's method represents observable flows in the real world.

It was also shown in [3] that, conversely, if stable stationary solutions of (1.4)-(1.5) are also stable as a solution of (1.1)-(1.2) when $0 < \epsilon \ll 1$, then one can conclude that (1.1)-(1.2) give a good approximation of (1.4)-(1.5) in the stability view point. Furthermore, a sufficient condition for a stable stationary solution of (1.4)-(1.5) to be stable as a solution of (1.1)-(1.2) was obtained in [3]. The condition was then improved in in [4].

We briefly explain the result in [4]. Let us introduce the linearized operators around a stationary solution $u_s = {}^{\top}(p_s, v_s)$ for the systems (1.1)–(1.2) and (1.4)–(1.5) with (1.3). Here and in what follows ${}^{\top}\cdot$ stands for the transposition. Let $\mathbb{L}: L^2_{\sigma}(\Omega) \to L^2_{\sigma}(\Omega)$ be the operator defined by

$$\mathbb{L} = -\nu \mathbb{P}\Delta + \mathbb{P}(\boldsymbol{v}_s \cdot \nabla + {}^{\top}(\nabla \boldsymbol{v}_s))$$

with domain $D(\mathbb{L}) = [H^2(\Omega) \cap H^1_0(\Omega)]^3 \cap L^2_{\sigma}(\Omega)$. Here $H^k(\Omega)$ denotes the k th order L^2 -Sobolev space on Ω , $H^1_0(\Omega)$ is the set of all functions f satisfying $f|_{\partial\Omega} = 0$, \mathbb{P} is the orthogonal projection, called the Helmholtz projection from $L^2(\Omega)^3$ to $L^2_{\sigma}(\Omega)$, and $L^2_{\sigma}(\Omega)$ denotes the set of all L^2 -vector fields \boldsymbol{w} on Ω satisfying div $\boldsymbol{w} = 0$ and $\boldsymbol{w} \cdot \boldsymbol{n}|_{\partial\Omega} = 0$. We define the operator $L_{\epsilon}: H^1_*(\Omega) \times L^2(\Omega)^3 \to H^1_*(\Omega) \times L^2(\Omega)^3$, acting on $u = {}^{\top}(p, \boldsymbol{w})$, by

$$L_{\epsilon} = \begin{pmatrix} 0 & \frac{1}{\epsilon^2} \text{div} \\ \nabla & -\nu\Delta + \boldsymbol{v}_s \cdot \nabla + {}^{\mathsf{T}} (\nabla \boldsymbol{v}_s) \end{pmatrix}$$

with domain $D(L_{\epsilon}) = H^1_*(\Omega) \times [H^2(\Omega) \cap H^1_0(\Omega)]^3$. Here $H^1_*(\Omega)$ denotes the set of all H^1 functions on Ω that have zero mean value over Ω .

The result of [4] is stated as follows: if $\rho(-\mathbb{L}) \supset \{\lambda \in \mathbb{C}; \operatorname{Re} \lambda \geq -b_0\}$ for some positive constant b_0 , then there exist positive constants ϵ_0 , κ_0 and b_1 such that $\rho(-L_{\epsilon}) \supset \{\lambda \in \mathbb{C}; \operatorname{Re} \lambda \geq -b_1\}$ for $0 < \epsilon \leq \epsilon_0$, provided that

$$\inf_{\boldsymbol{w}\in H_0^1(\Omega)^3, \boldsymbol{w}\neq \boldsymbol{0}} \frac{\operatorname{Re}\left(\mathbb{Q}\boldsymbol{w}\cdot\nabla\boldsymbol{v}_s, \mathbb{Q}\boldsymbol{w}\right)_{L^2}}{\|\nabla\mathbb{Q}\boldsymbol{w}\|_{L^2}^2} \ge -\kappa_0.$$
(1.6)

Here $\mathbb{Q} = I - \mathbb{P}$ is the orthogonal projection from $L^2(\Omega)^3$ to the space $G^2(\Omega) = \{\nabla p; p \in H^1_*(\Omega)\}$ which is the orthogonal complement of $L^2_{\sigma}(\Omega)$. In general, ϵ_0 depends on b_0 , and so it may occur $\epsilon_0 \to 0$ as $b_0 \to 0$. This implies that if b_0 approaches to zero, we have to take the range of ϵ smaller and smaller. This situation can happen when a stationary bifurcation occurs. Therefore, when one considers the stability of a bifurcating stationary solution near the bifurcation point, the range of ϵ shrinks when the bifurcation parameter approaches its critical value.

In this article we will investigate the spectrum of $-L_{\epsilon}$ near the origin when a stationary bifurcation occurs, following [5]. We will show that the range of ϵ in the result of [4] can be taken uniformly near the bifurcation point in the case of the stability of a bifurcating solution from a simple eigenvalue. Our result is applicable to the Taylor and Bénard problems, i.e., a bifurcation of the Taylor vortex from the Couette flow and a bifurcation of spatially periodic convective patterns from the motionless state, respectively.

2 Main Results

In this section we summarize the results in [5]. For $1 \leq p \leq \infty$ we denote by $L^p(\Omega)$ the usual Lebesgue space over Ω and its norm is denoted by $\|\cdot\|_p$. The *m*th order L^2 Sobolev space over Ω is denoted by $H^m(\Omega)$, and its norm is denoted by $\|\cdot\|_{H^m}$. The inner product of $L^2(\Omega)$ is denoted by (\cdot, \cdot) , i.e.,

$$(f,g) = \int_{\Omega} f(x)\overline{g(x)}dx.$$

Here \bar{z} denotes the complex conjugate of $z \in \mathbb{C}$. We also defined the weighted inner product $\langle \langle \cdot, \cdot \rangle \rangle_{\epsilon}$ by

$$\langle \langle u_1, u_2 \rangle \rangle_{\epsilon} = \epsilon^2(p_1, p_2) + (\boldsymbol{w}_1, \boldsymbol{w}_2)$$

for $u_j = {}^{\top}(p_j, \boldsymbol{w}_j), j = 1, 2$. The functions spaces $L^2_{\sigma}(\Omega), H^1_0(\Omega)$, and $H^1_*(\Omega)$ are the ones defined in section 1.

We are interested in the stability of a stationary solution bifurcating from a basic stationary flow. Let \mathcal{R} be the Reynolds number and let $v_{\mathcal{R}}$ be a basic stationary flow. We consider the following situation.

(A0) There exists a positive number \mathcal{R}_c such that if \mathcal{R} is smaller than \mathcal{R}_c , then $\boldsymbol{v}_{\mathcal{R}}$ is stable; and if \mathcal{R} is larger than \mathcal{R}_c , then $\boldsymbol{v}_{\mathcal{R}}$ is unstable and a stationary bifurcation occurs at $\mathcal{R} = \mathcal{R}_c$.

Let us introduce a bifurcation parameter $\eta = \mathcal{R} - \mathcal{R}_c$ and write $\boldsymbol{v}_{\mathcal{R}}$ as \boldsymbol{v}_{η} . The linearized operator \mathbb{L}_{η} around \boldsymbol{v}_{η} then takes the form,

$$\begin{split} \mathbb{L}_{\eta} &= -\mathbb{P}\Delta + (\mathcal{R}_{c} + \eta)\mathbb{P}(\boldsymbol{v}_{\eta} \cdot \nabla + (^{\top}\nabla\boldsymbol{v}_{\eta})) \\ &= \mathbb{A} + (\mathcal{R}_{c} + \eta)\mathbb{P}\mathbb{M}[\boldsymbol{v}_{\eta}], \end{split}$$

with domain $D(\mathbb{L}_{\eta}) = D(\mathbb{A}) = [H^2(\Omega) \cap H^1_0(\Omega)]^3 \cap L^2_{\sigma}(\Omega)$, where

$$\mathbb{A} = -\mathbb{P}\Delta, \ \mathbb{M}[\boldsymbol{v}]\boldsymbol{w} = \boldsymbol{v}\cdot\nabla\boldsymbol{w} + \boldsymbol{w}\cdot\nabla\boldsymbol{v}.$$

The adjoint operator of \mathbb{L}_{η} is defined by \mathbb{L}_{η}^* :

$$\mathbb{L}_{\eta}^{*} = \mathbb{A} + (\mathcal{R}_{c} + \eta) \mathbb{P} \mathbb{M}^{*}[\boldsymbol{v}_{\eta}]$$

with domain $D(\mathbb{L}_{\eta}) = D(\mathbb{A})$, where

$$\mathbb{M}^*[\boldsymbol{v}]\boldsymbol{w} = -\boldsymbol{v}\cdot\nabla\boldsymbol{w} + (\nabla\boldsymbol{v})\boldsymbol{w}.$$

The following assumptions are made in this article.

- (A1) \boldsymbol{v}_{η} is a smooth stationary solution.
- (A2) \boldsymbol{v}_{η} is analytic in η in $(H^2 \cap H^1_0)(\Omega)^3$.
- (A3) 0 is a simple eigenvalue of $-\mathbb{L}_0$ with $\operatorname{Ker}(\mathbb{L}_0) = \operatorname{span}\{w_0\}$. The eigenprojection P_0 for the eigenvalue 0 is

$$P_0 \boldsymbol{w} = \langle \boldsymbol{w} \rangle \boldsymbol{w}_0.$$

Here and in what follows the symbol $\langle \boldsymbol{w} \rangle$ for $\boldsymbol{w} \in L^2(\Omega)^3$ is defined by

$$\langle \boldsymbol{w}
angle = (\boldsymbol{w}, \boldsymbol{w}_0^*)$$

where \boldsymbol{w}_0^* is the eigenfunction for the eigenvalue 0 of \mathbb{L}_0^* satisfying $\langle \boldsymbol{w}_0 \rangle = 1$.

- (A4) $\langle \mathbb{M}[\boldsymbol{v}_0]\boldsymbol{w}_0 + \mathcal{R}_c\mathbb{M}[\boldsymbol{v}_1]\boldsymbol{w}_0 \rangle \neq 0$, where $\boldsymbol{v}_1 = \partial_\eta \boldsymbol{v}_\eta|_{\eta=0}$.
- (A5) There exists a positive constant $\tilde{b_0} > 0$ such that

$$\{\lambda \in \mathbb{C}; \operatorname{Re} \lambda \geq -b_0\} \setminus \{0\} \subset \rho(-\mathbb{L}_0)$$

Our interest is concerned with a nontrivial solution branch $\{\eta, \boldsymbol{w}_{\eta}\}, \, \boldsymbol{w}_{\eta} \neq \mathbf{0}$, of

$$(NS)_{\eta} \qquad \qquad \mathbb{L}_{\eta} \boldsymbol{w}_{\eta} + (\mathcal{R}_{c} + \eta) \mathbb{PN}(\boldsymbol{w}_{\eta}, \boldsymbol{w}_{\eta}) = 0$$

near $\{\eta, \boldsymbol{w}\} = \{0, 0\}$. Here $\mathbb{N}(\boldsymbol{w}_{\eta}, \boldsymbol{w}_{\eta}) = \boldsymbol{w}_{\eta} \cdot \nabla \boldsymbol{w}_{\eta}$. We note that $\boldsymbol{w}_{\eta} = \boldsymbol{0}$ is a solution of $(NS)_{\eta}$ for all η . Under (A1)-(A4) we have a nontrivial solution branch. In fact, by applying the standard bifurcation theory ([2]), one can prove the following proposition.

Proposition 2.1. Assume (A1)-(A4). There exist a positive constant δ_0 and a solution branch $\{\eta(\delta), w_{\eta}(\delta)\}$ of $(NS)_{\eta}$ with $\eta = \eta(\delta)$ of the form

$$\eta(\delta) = \delta\sigma(\delta),$$

$$\boldsymbol{w}_{\eta}(\delta) = \delta(\boldsymbol{w}_0 + \delta \boldsymbol{w}_1(\delta)),$$

where $\sigma(\delta)$ is analytic in δ ($|\delta| \leq \delta_0$), and $\boldsymbol{w}_1(\delta)$ is analytic in δ in $H^2(\Omega)$ ($|\delta| \leq \delta_0$).

Our next issue is the stability of $\tilde{\boldsymbol{v}}(\delta) = \boldsymbol{v}_{\eta(\delta)} + \boldsymbol{w}_{\eta}(\delta)$. The linearized operator around $\tilde{\boldsymbol{v}}(\delta)$ is denoted by

$$\mathbb{L}(\delta) = -\mathbb{P}\Delta + (\mathcal{R}_c + \eta(\delta))\mathbb{M}[\tilde{\boldsymbol{v}}(\delta)].$$

The spectrum of $-\mathbb{L}(\delta)$ has the following properties.

Proposition 2.2. Assume (A1)-(A5). There exists a positive number δ_0 such that

$$egin{aligned} &
ho(-\mathbb{L}(\delta))\supset\{\lambda\in\mathbb{C};\,\mathrm{Re}\,\lambda\geq-rac{3}{4} ilde{b}_0,\,|\lambda|>rac{b_0}{4}\},\ &\sigma(-\mathbb{L}(\delta))\cap\{\lambda\in\mathbb{C};\,|\lambda|\leqrac{\widetilde{b_0}}{4}\}=\{\lambda(\delta)\}, \end{aligned}$$

for all $\delta \in (-\delta_0, \delta_0)$. Here $\lambda(\delta)$ is a simple eigenvalue given by

$$\lambda(\delta) = -\alpha(\delta)\delta \frac{d\eta}{d\delta}(\delta),$$

where $\alpha(\delta)$ is an analytic function of $\delta \in (-\delta_0, \delta_0)$ satisfying

$$\alpha(0) = -\langle \mathbb{M}[\boldsymbol{v}_0]\boldsymbol{w}_0 + \mathcal{R}_c \mathbb{M}[\boldsymbol{v}_1]\boldsymbol{w}_0 \rangle (\neq 0).$$

Proposition 2.2 was obtained by Crandall-Rabinowitz [2] (See also [1, Theorem 27.2]).

Assuming (A0), we have $\alpha(0) > 0$. Therefore, we have the following proposition.

Proposition 2.3. Assume (A0)-(A5).

- (i) $\alpha(0) = -\langle \mathbb{M}[\boldsymbol{v}_0]\boldsymbol{w}_0 + \mathcal{R}_c\mathbb{M}[\boldsymbol{v}_1]\boldsymbol{w}_0 \rangle > 0.$
- (ii) $\lambda(\delta) = \lambda_k \delta^k + \mathcal{O}(\delta^{k+1})$ if and only if $\eta(\delta) = \eta_k \delta^k + \mathcal{O}(\delta^{k+1})$. In this case, it follows that $\lambda_k = -k\alpha(0)\eta_k$. Therefore, $\operatorname{sgn}(\lambda(\delta)) = -\operatorname{sgn}(\eta(\delta))$ for $0 < |\delta| \ll 1$.

We next consider relations between $\lambda^{(l)}$ and $\eta^{(l)}$. We can prove the following proposition by induction on k.

Proposition 2.4. The following (a)-(c) are equivalent:

(a) $\lambda^{(l)}(0) = 0$ for $l = 1, \dots, k$. (b) $\eta^{(l)}(0) = 0$ for $l = 1, \dots, k$. (c) $\sigma^{(l-1)}(0) = 0$ for $l = 1, \dots, k$.

Under the above situation we consider the stability of the bifurcating solution $\tilde{\boldsymbol{v}}(\delta)$ as a solution of the artificial compressible system (1.4)–(1.5). The linearized operator around $\tilde{\boldsymbol{v}}(\delta)$ is defined by $L(\epsilon, \delta)$ which is an operator on $H^1_*(\Omega) \times L^2(\Omega)^3$ given by

$$L(\epsilon, \delta) = \begin{pmatrix} 0 & \frac{1}{\epsilon^2} \operatorname{div} \\ \nabla & -\Delta + (\mathcal{R}_c + \eta(\delta)) \mathbb{M}[\tilde{v}(\delta)] \end{pmatrix}$$

$$\mathbb{K}(\delta) = (\mathcal{R}_c + \eta(\delta))\mathbb{M}[\tilde{\boldsymbol{v}}(\delta)] - \mathcal{R}_c\mathbb{M}[\boldsymbol{v}_0],$$
$$K(\delta) = \begin{pmatrix} 0 & 0\\ 0 & \mathbb{K}(\delta) \end{pmatrix}.$$

Proposition 2.1 implies that $\mathbb{M}(\delta)$ and $M(\delta)$ can be expanded as

$$\mathbb{K}(\delta) = \sum_{k=1}^{\infty} \delta^k \mathbb{K}_k,$$
$$K(\delta) = \sum_{k=1}^{\infty} \delta^k K_k, \quad K_k = \begin{pmatrix} 0 & 0 \\ 0 & \mathbb{K}_k \end{pmatrix}$$

Here \mathbb{K}_k satisfies the estimate

$$\|\mathbb{K}_k \boldsymbol{w}\|_2 \le c_k \|\boldsymbol{w}\|_{H^1} \tag{2.1}$$

uniformly for $\boldsymbol{w} \in H^1(\Omega)$ with positive constant c_k satisfying $\sum_{k=1}^{\infty} c_k \delta^k < \infty$ for $|\delta| \leq \delta_1$.

We now state the result on the spectrum of $-L(\epsilon, \delta)$ near the origin.

Theorem 2.5. ([5]) Let $\lambda(\delta) = \lambda_k \delta^k + \mathcal{O}(\delta^{k+1})$ with $\lambda_k \neq 0$ for some $k \geq 1$. Then there exist positive constants $\delta_1 = \delta_1(\tilde{b}_0, \boldsymbol{v}_0)$ and $\epsilon_1 = \epsilon_1(\tilde{b}_0, \boldsymbol{v}_0)$ such that

$$\sigma(-L(\epsilon,\delta)) \cap \{\lambda \in \mathbb{C}; |\lambda| \ge \frac{b_0}{4}\} = \{\lambda(\epsilon,\delta)\},\$$
$$\lambda(\epsilon,\delta) = \delta^k((1+c_1(\epsilon^2))\lambda_k + \Lambda_k(\epsilon,\delta))$$

with some $\Lambda_k(\epsilon, \delta) = \mathcal{O}(\delta)$ uniformly for $0 < \epsilon \leq \epsilon_1, 0 < |\delta| \leq \delta_1$. Here $c_1(\epsilon^2)$ satisfies $|c_1(\epsilon^2)| \leq \frac{1}{2}$ for $0 < \epsilon \leq \epsilon_1$.

Theorem 2.5, together with the argument of the proof of [4, Theorem 2.1], yields the following result on the stability of the bifurcating solution $\tilde{\boldsymbol{v}}(\delta)$ as a solution of the artificial compressible system (1.4)–(1.5).

Theorem 2.6. ([5]) Assume that (A0)-(A5). Then there exist positive constants $\epsilon_1 = \epsilon_1(\widetilde{b_0}, \boldsymbol{v}_0)$ and $\delta_1 = \delta_1(\widetilde{b_0}, \boldsymbol{v}_0)$ such that the following assertions hold true for $0 < |\delta| \le \delta_1$.

(i) If $\tilde{\boldsymbol{v}}(\delta)$ is unstable as a solution of (1.1)–(1.2) then so is $\tilde{\boldsymbol{v}}(\delta)$ as a solution of (1.4)–(1.5) for $0 < \epsilon \leq \epsilon_1$.

(ii) Let $\tilde{\boldsymbol{v}}(\delta)$ be stable as a solution of (1.1)–(1.2). Then there exist positive constants $\epsilon_2 = \epsilon_2(\tilde{b}_0, \boldsymbol{v}_0)$ and κ such that if

$$\inf_{\boldsymbol{w}\in H_0^1(\Omega)^3, \boldsymbol{w}\neq \boldsymbol{0}} \frac{\operatorname{Re}\left(\mathbb{Q}\boldsymbol{w}\cdot\nabla\tilde{\boldsymbol{v}}(\delta), \mathbb{Q}\boldsymbol{w}\right)}{\|\nabla\mathbb{Q}\boldsymbol{w}\|^2} \ge -\kappa, \tag{2.2}$$

then $\tilde{\boldsymbol{v}}(\delta)$ is stable as a solution of (1.4)–(1.5) for $0 < \epsilon \leq \epsilon_2$.

Similarly to the proof of Theorems 2.5 and 2.6, one can prove the stability and instability of the basic flow v_{η} . In fact, it is possible to show that the spectrum of the linearized operator \mathbb{L}_{η} satisfies

$$\sigma(-\mathbb{L}_{\eta}) = \{\lambda \in \mathbb{C}; \operatorname{Re} \lambda \geq -\frac{3}{4}\tilde{b}_0\} \cup \{\lambda_{\eta}\}, \, \eta \in [-\eta_0, \eta_0]$$

for some positive constant η_0 . Here λ_{η} is a simple eigenvalue of $-\mathbb{L}_{\eta}$ and satisfies

$$\lambda_{\eta} = \alpha(0)\eta + \mathcal{O}(\eta^2).$$

Let $L_{\epsilon,\eta}$ be the linearized operator around $u_{\eta} = {}^{\top}(p_{\eta}, v_{\eta})$ of the artificial compressible system. Here p_{η} is the pressure corresponding to v_{η} . We have the following result.

Theorem 2.7. ([5]) There exist positive constants $\tilde{\eta}_1 = \tilde{\eta}_1(\tilde{b}_0, \boldsymbol{v}_0)$ and $\epsilon_3 = \epsilon_3(\tilde{b}_0, \boldsymbol{v}_0)$ such that

$$\sigma(-L_{\epsilon,\eta}) \cap \{\lambda \in \mathbb{C}; |\lambda| \le \frac{\tilde{b}_0}{4}\} = \{\lambda_{\epsilon,\eta}\}$$
$$\lambda_{\epsilon,\eta} = \eta(c_1(\epsilon^2)\alpha(0) + \Lambda_{\epsilon,\eta})$$

with some $\Lambda_{\epsilon,\eta} = \mathcal{O}(\eta)$ uniformly for $0 < \epsilon \leq \epsilon_3$ and $0 < |\eta| \leq \tilde{\eta}_1$.

Theorems 2.5 and 2.7 imply that the same exchange of stability as in the case of (1.1)–(1.2) holds for the case of (1.4)–(1.5) uniformly for small ϵ . For definiteness, we consider the case where k is even and η_k is positive in Proposition 2.3 (ii). In this case one can prove the following result.

Theorem 2.8. ([5]) Let k be even and η_k be positive in Proposition 2.3 (ii). Then there exist positive constants ϵ_4 and δ_2 such that (i) The basic flow $\boldsymbol{v}_{\eta(\delta)}$ is unstable for $0 < |\delta| \le \delta_2$ and $0 < \epsilon \le \epsilon_4$. (ii) There exist positive constants ϵ_5 , δ_3 , $\tilde{\eta}_2$ and $\tilde{\kappa}$ such that if

$$\inf_{\boldsymbol{w}\in H_0^1(\Omega)^3, \boldsymbol{w}\neq \boldsymbol{0}} \frac{\operatorname{Re}\left(\mathbb{Q}\boldsymbol{w}\cdot\nabla\boldsymbol{v}_0, \mathbb{Q}\boldsymbol{w}\right)}{\|\nabla\mathbb{Q}\boldsymbol{w}\|^2} \geq -\tilde{\kappa},$$

then v_{η} is stable for $-\tilde{\eta}_2 \leq \eta < 0$ and $0 < \epsilon \leq \epsilon_5$ and $\tilde{v}(\delta)$ is stable for $0 < |\delta| \leq \delta_3$ and $0 < \epsilon \leq \epsilon_5$.

The other cases where k is odd or η_k is negative, we have similar results.

Remark 2.9. Theorem 2.8 is applicable to the Taylor and Bénard problems, *i.e.*, a bifurcation of the Taylor vortex from the Couette flow and a bifurcation of spatially periodic convective patterns from the motionless state, respectively.

References

- H. Amann, Ordinary differential equations. An introduction to nonlinear analysis, Translated from the German by Gerhard Metzen, De Gruyter Studies in Mathematics, 13, Walter de Gruyter & Co., Berlin, 1990.
- [2] M. Crandall and P. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal., 52 (1973), pp. 161–180.
- [3] Y. Kagei and T. Nishida, On Chorin's method for stationary solutions of the Oberbeck-Boussinesq equation, J. Math. Fluid Mech., 19 (2017), pp. 345–365.
- [4] Y. Kagei, T. Nishida and Y. Teramoto, On the spectrum for the artificial compressible system, J. Differential Equations, 264 (2018), pp. 897–928.
- [5] Y. Teramoto, Stability of bifurcating stationary solutions of the artificial compressible system, to appear in J. Math. Fluid Mech.