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1 Introduction

This article gives a summary of [5]. We consider the artificial compressible
system

$\epsilon$^{2}\partial_{t}p+\mathrm{d}\mathrm{i}\mathrm{v}v = 0 , (1.1)
\partial_{t}v- $\nu$\triangle v+v\cdot\nabla v+\nabla p = g . (1.2)

on a bounded domain  $\Omega$ of \mathbb{R}^{3} with smooth boundary \partial $\Omega$ . Here  v =

\mathrm{T}(v^{1}(x, t), v^{2}(x, t), v^{3}(x, t)) and p=p(x, t) denote the unknown velocity field
and pressure, respectively, at time t > 0 and position x \in  $\Omega$ ;  g =g(x) is
a given external force; and  $\epsilon$ > 0 is a small parameter, called the artificial
Mach number.

We consider the system (1.1)-(1.2) under the boundary condition

v|_{\partial $\Omega$}=v_{*} . (1.3)

Here v_{*} =v_{*}(x) is a given velocity field satisfying \displaystyle \int_{\partial $\Omega$}v_{*}\cdot ndS=0 , where
n denotes the unit outward normal to \partial $\Omega$.

A. Chorin proposed the system (1.1)-(1.2) in numerical computation to
find a stationary solution of the incompressible Navier‐Stokes equations:

\mathrm{d}\mathrm{i}\mathrm{v}v = 0 , (1.4)
\partial_{t}v- $\nu$\triangle v+v\cdot\nabla v+\nabla p = g (1.5)
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with the boundary condition (1.3). The idea of the method proposed by
Chorin is stated as follows. Obviously, the sets of stationary solutions of
(1.1)-(1.2) and (1.4)-(1.5) are the same ones. If solutions of the artificial

compressible system (1.1)-(1.2) converge to a function u_{s} = \mathrm{T}(p_{s}, v_{s}) as
 t\rightarrow \infty , then the limit  u_{s} is a stationary solution of (1.1)-(1.2) , and thus,
u_{s} is a stationary solution of (1.4)-(1.5) . By using this method, Chorin
numerically obtained stationary cellular convection patterns of the Bénard
convection problem described by the Oberbeck‐Boussinesq equation.

A mathematical basis for Chorin’s method was given by Kagei and Nishida
([3, 4 The limit function u_{s} in Chorin’s method is a large time limit of
solutions of (1.1)-(1.2) , and so, u_{s} is stable as a solution of (1.1)-(1.2) . In
[3], it was shown that if u_{s} is stable as a solution of (1.1)-(1.2) , then it is
also stable as a solution of (1.4)-(1.5) . This means that stationary solutions
obtained by Chorin’s method represents observable flows in the real world.

It was also shown in [3] that, conversely, if stable stationary solutions of
(1.4)-(1.5) are also stable as a solution of (1.1)-(1.2) when 0< $\epsilon$\ll 1 , then
one can conclude that (1.1)-(1.2) give a good approximation of (1.4)-(1.5)
in the stability view point. Furthermore, a sufficient condition for a stable
stationary solution of (1.4)-(1.5) to be stable as a solution of (1.1)-(1.2) was
obtained in [3]. The condition was then improved in in [4].

We briefly explain the result in [4]. Let us introduce the linearized oper‐
ators around a stationary solution u_{s}=\mathrm{T}(p_{s}, v_{s}) for the systems (1.1)-(1.2)
and (1.4)-(1.5) with (1.3). Here and in what follows T. stands for the trans‐
position. Let \mathrm{L}:L_{ $\sigma$}^{2}( $\Omega$)\rightarrow L_{ $\sigma$}^{2}( $\Omega$) be the operator defined by

\mathrm{L}=- $\nu$ \mathbb{P}\triangle+\mathbb{P}(v_{s} . \nabla+^{\mathrm{T}}(\nabla v_{s}))

with domain D(\mathrm{L})=[H^{2}( $\Omega$)\cap H_{0}^{1}( $\Omega$)]^{3}\cap L_{ $\sigma$}^{2}( $\Omega$) . Here H^{k}( $\Omega$) denotes the k

th order L^{2}‐Sobolev space on  $\Omega$, H_{0}^{1}( $\Omega$) is the set of all functions f satisfying
f|_{\partial $\Omega$} = 0, \mathbb{P} is the orthogonal projection, called the Helmholtz projection
from L^{2}( $\Omega$)^{3} to L_{ $\sigma$}^{2}( $\Omega$) , and L_{ $\sigma$}^{2}( $\Omega$) denotes the set of all L^{2}‐vector fields
w on  $\Omega$ satisfying \mathrm{d}\mathrm{i}\mathrm{v}w = 0 and w\cdot n|_{\partial $\Omega$} = 0 . We define the operator
L_{ $\epsilon$} : H_{*}^{1}( $\Omega$)\times L^{2}( $\Omega$)^{3}\rightarrow H_{*}^{1}( $\Omega$)\times L^{2}( $\Omega$)^{3} , acting on u=\mathrm{T}(p, w) , by

L_{ $\epsilon$}= (_{\nabla}^{0} - $\nu$\triangle+v_{s}^{\frac{1}{$\epsilon$^{2}}.\mathrm{d}\mathrm{i}\mathrm{v}}\nabla+^{\mathrm{T}}(\nabla v_{s}))
with domain  D(L_{ $\epsilon$})=H_{*}^{1}( $\Omega$)\times [H^{2}( $\Omega$)\cap H_{0}^{1}( $\Omega$)]^{3} . Here H_{*}^{1}( $\Omega$) denotes the

set of all H^{1} functions on  $\Omega$ that have zero mean value over  $\Omega$.
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The result of [4] is stated as follows: if  $\rho$(-\mathrm{L})\supset\{ $\lambda$\in \mathbb{C};{\rm Re} $\lambda$\geq-b_{0}\} for
some positive constant b_{0} , then there exist positive constants $\epsilon$_{0}, $\kappa$_{0} and b_{1}

such that  $\rho$(-L_{ $\epsilon$})\supset\{ $\lambda$\in \mathbb{C};{\rm Re} $\lambda$\geq-b_{1}\} for 0< $\epsilon$\leq$\epsilon$_{0} , provided that

\displaystyle \inf_{w\in H_{0}^{1}( $\Omega$)^{3},w\neq 0}\frac{{\rm Re}(\mathbb{Q}w\cdot\nabla v_{8},\mathbb{Q}w)_{L^{2}}}{\Vert\nabla \mathbb{Q}w||_{L^{2}}^{2}}\geq-$\kappa$_{0} . (1.6)

Here \mathbb{Q}=I-\mathbb{P} is the orthogonal projection from L^{2}( $\Omega$)^{3} to the space G^{2}( $\Omega$)=
\{\nabla p;p\in H_{*}^{1}( $\Omega$)\} which is the orthogonal complement of L_{ $\sigma$}^{2}( $\Omega$) . In general,

$\epsilon$_{0} depends on b_{0} , and so it may occur $\epsilon$_{0}\rightarrow 0 as b_{0}\rightarrow 0 . This implies that
if b_{0} approaches to zero, we have to take the range of  $\epsilon$ smaller and smaller.
This situation can happen when a stationary bifurcation occurs. Therefore,
when one considers the stability of a bifurcating stationary solution near
the bifurcation point, the range of  $\epsilon$ shrinks when the bifurcation parameter
approaches its critical value.

In this article we will investigate the spectrum of -L_{ $\epsilon$} near the origin
when a stationary bifurcation occurs, following [5]. We will show that the
range of  $\epsilon$ in the result of [4] can be taken uniformly near the bifurcation
point in the case of the stability of a bifurcating solution from a simple
eigenvalue. Our result is applicable to the Taylor and Bénard problems, i.e.,
a bifurcation of the Taylor vortex from the Couette flow and a bifurcation of
spatially periodic convective patterns from the motionless state, respectively.

2 Main Results

In this section we summarize the results in [5]. For  1 \leq p\leq \infty we denote
by  L^{p}( $\Omega$) the usual Lebesgue space over  $\Omega$ and its norm is denoted by \Vert\cdot\Vert_{p}.
The mth order L^{2} Sobolev space over  $\Omega$ is denoted by  H^{m}( $\Omega$) , and its norm
is denoted by \Vert \Vert_{H^{m}} . The inner product of L^{2}( $\Omega$) is denoted by i.e.,

(f, g)=\displaystyle \int_{ $\Omega$}f(x)\overline{g(x)}dx.
Here \overline{z} denotes the complex conjugate of z\in \mathbb{C} . We also defined the weighted
inner product \rangle\}_{ $\epsilon$} by

\{\langle u_{1}, u_{2}\rangle\}_{ $\epsilon$}=$\epsilon$^{2}(p\mathrm{i},p_{2})+(w_{1}, w_{2})

for u_{j}=\mathrm{T}(p_{j}, w_{j}) , j=1 , 2. The functions spaces L_{ $\sigma$}^{2}( $\Omega$) , H_{0}^{1}( $\Omega$) , and H_{*}^{1}( $\Omega$)
are the ones defined in section 1.
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We are interested in the stability of a stationary solution bifurcating from
a basic stationary flow. Let \mathcal{R} be the Reynolds number and let v_{\mathcal{R}} be a basic
stationary flow. We consider the following situation.

(AO) There exists a positive number \mathcal{R}_{c} such that if \mathcal{R} is smaller than \mathcal{R}_{c},
then v_{\mathcal{R}} is stable; and if \mathcal{R} is larger than \mathcal{R}_{c} , then v_{\mathcal{R}} is unstable and
a stationary bifurcation occurs at \mathcal{R}=\mathcal{R}_{c}.

Let us introduce a bifurcation parameter  $\eta$=\mathcal{R}-\mathcal{R}_{c} and write v_{R} as v_{ $\eta$}.

The linearized operator \mathrm{L}_{ $\eta$} around v_{ $\eta$} then takes the form,

\mathrm{L}_{ $\eta$} = -\mathbb{P}\triangle+(\mathcal{R}_{c}+ $\eta$)\mathbb{P}(v_{ $\eta$}\cdot\nabla+(^{\mathrm{T}}\nabla v_{ $\eta$}))
= \mathrm{A}+(\mathcal{R}_{c}+ $\eta$)\mathbb{P}\mathbb{M}[v_{ $\eta$}],

with domain D(\mathrm{L}_{ $\eta$})=D(\mathrm{A})=[H^{2}( $\Omega$)\cap H_{0}^{1}( $\Omega$)]^{3}\cap L_{ $\sigma$}^{2}( $\Omega$) , where

\mathrm{A}= −PA, \mathbb{M}[v]w=v\cdot\nabla w+w\cdot\nabla v.

The adjoint operator of \mathrm{L}_{ $\eta$} is defined by \mathrm{L}_{ $\eta$}^{*} :

\mathrm{L}_{ $\eta$}^{*}=\mathrm{A}+(\mathcal{R}_{c}+ $\eta$)\mathbb{P}\mathbb{M}^{*}[v_{ $\eta$}]

with domain D(\mathrm{L}_{ $\eta$})=D(\mathrm{A}) , where

\mathbb{M}^{*}[v]w=-v\cdot\nabla w+(\nabla v)w.

The following assumptions are made in this article.

(A1) v_{ $\eta$} is a smooth stationary solution.

(A2) v_{ $\eta$} is analytic in  $\eta$ in (H^{2}\cap H_{0}^{1})( $\Omega$)^{3}.

(A3) 0 is a simple eigenvalue of -\mathrm{L}_{0} with \mathrm{K}\mathrm{e}\mathrm{r}(\mathrm{L}_{0})=\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{n}\{w_{0}\} . The eigen‐
projection P_{0} for the eigenvalue 0 is

P_{0}w=\{w\rangle w_{0}.

Here and in what follows the symbol \langle w\rangle for  w\in L^{2}( $\Omega$)^{3} is defined by

\{w\rangle=(w, w_{0}^{*}) ,

where w_{0}^{*} is the eigenfunction for the eigenvalue 0 of \mathrm{L}_{0}^{*} satisfying
\{w_{0}\rangle=1.
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(A4) \{\mathbb{M}[v_{0}]w_{0}+\mathcal{R}_{c}\mathbb{M}[v_{1}]w_{0}\}\neq 0 , where v_{1}=\partial_{ $\eta$}v_{ $\eta$}|_{ $\eta$=0}.

(A5) There exists a positive constant \tilde{b_{0}}>0 such that

\{ $\lambda$\in \mathbb{C};{\rm Re} $\lambda$\geq-\tilde{b_{0}}\}\backslash \{0\}\subset $\rho$(-\mathrm{L}_{0})

Our interest is concerned with a nontrivial solution branch \{ $\eta$, w_{ $\eta$}\},  w_{ $\eta$}\neq
 0 , of

(\mathrm{N}\mathrm{S})_{ $\eta$} \mathrm{L}_{ $\eta$}w_{ $\eta$}+(\mathcal{R}_{c}+ $\eta$)\mathbb{P}\mathrm{N}(w_{ $\eta$}, w_{ $\eta$})=0

near \{ $\eta$, w\}=\{0, 0\} . Here \mathrm{N}(w_{ $\eta$}, w_{ $\eta$})=w_{ $\eta$}\cdot\nabla w_{ $\eta$} . We note that w_{ $\eta$}=0 is

a solution of (\mathrm{N}\mathrm{S})_{ $\eta$} for all  $\eta$ . Under (\mathrm{A}1)-(\mathrm{A}4) we have a nontrivial solution

branch. In fact, by applying the standard bifurcation theory ([2]), one can
prove the following proposition.

Proposition 2.1. As\mathcal{S}ume (Al)-(A4) . There exist a positive constant $\delta$_{0}
and a solution branch \{ $\eta$( $\delta$), w_{ $\eta$}( $\delta$)\} of (\mathrm{N}\mathrm{S})_{ $\eta$} with  $\eta$= $\eta$( $\delta$) of the form

 $\eta$( $\delta$)= $\delta \sigma$( $\delta$) ,

w_{ $\eta$}( $\delta$)= $\delta$(w_{0}+ $\delta$ w_{1}( $\delta$)) ,

where  $\sigma$( $\delta$) is analytic in  $\delta$(| $\delta$|\leq$\delta$_{0}) , and w_{1}( $\delta$) is analytic in  $\delta$ in  H^{2}( $\Omega$) (| $\delta$|\leq
$\delta$_{0}) .

Our next issue is the stability of \tilde{v}( $\delta$) = v_{ $\eta$( $\delta$)}+w_{ $\eta$}( $\delta$) . The linearized
operator around \tilde{v}( $\delta$) is denoted by

\mathrm{L}( $\delta$)=-\mathbb{P}\triangle+(\mathcal{R}_{c}+ $\eta$( $\delta$))\mathbb{M}[\tilde{v}( $\delta$)].

The spectrum of -\mathrm{L}( $\delta$) has the following properties.

Proposition 2.2. Assume (Al)\rightarrow(A5) . There exists a positive number $\delta$_{0}
such that

 $\rho$(-\displaystyle \mathrm{L}( $\delta$))\supset\{ $\lambda$\in \mathbb{C};{\rm Re} $\lambda$\geq-\frac{3}{4}\tilde{b}_{0}, | $\lambda$|>\frac{\tilde{b}_{0}}{4}\},
 $\sigma$(-\mathrm{L}( $\delta$))\cap\{ $\lambda$\in \mathbb{C}; | $\lambda$|\leq\overline{\frac{b_{0}}{4}}\}=\{ $\lambda$( $\delta$)\},
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for all  $\delta$\in(-$\delta$_{0}, $\delta$_{0}) . Here  $\lambda$( $\delta$) is a simple eigenvalue given by

 $\lambda$( $\delta$)=- $\alpha$( $\delta$) $\delta$\displaystyle \frac{d $\eta$}{d $\delta$}( $\delta$) ,

where  $\alpha$( $\delta$) is an analytic function of  $\delta$\in(-$\delta$_{0}, $\delta$_{0}) satisfying

 $\alpha$(0)=-\{\mathbb{M}[v_{0}]w_{0}+\mathcal{R}_{c}\mathbb{M}[v_{1}]w_{0}\}(\neq 0) .

Proposition 2.2 was obtained by Crandall‐Rabinowitz [2] (See also [1,
Theorem 27.2]).

Assuming (AO), we have  $\alpha$(0) > 0 . Therefore, we have the following
proposition.

Proposition 2.3. Assume (A0)-(A5) .

(i)  $\alpha$(0)=-\langle \mathbb{M}[v_{0}]w_{0}+\mathcal{R}_{\mathrm{c}}\mathbb{M}[v_{1}]w_{0}\rangle>0.

(ii)  $\lambda$( $\delta$)=$\lambda$_{k}$\delta$^{k}+\mathcal{O}($\delta$^{k+1}) if and only if  $\eta$( $\delta$)=$\eta$_{k}$\delta$^{k}+\mathcal{O}($\delta$^{k+1}) . In thi\mathcal{S} case,
it follows that $\lambda$_{k}=-k $\alpha$(0)$\eta$_{k} . Therefore, \mathrm{s}\mathrm{g}\mathrm{n}( $\lambda$( $\delta$))=-\mathrm{s}\mathrm{g}\mathrm{n}( $\eta$( $\delta$)) for
0<| $\delta$|\ll 1.

We next consider relations between $\lambda$^{(l)} and $\eta$^{(l)} . We can prove the fol‐
lowing proposition by induction on k.

Proposition 2.4. The following (a)-(c) are equivalent:

(a) $\lambda$^{(l)}(0)=0 for l=1, \cdots ,  k.

(b) $\eta$^{(l)}(0)=0 for l=1, \cdots ,  k.

(c) $\sigma$^{(l-1)}(0)=0 for l=1, \cdots, k.

Under the above situation we consider the stability of the bifurcating
solution \tilde{v}( $\delta$) as a solution of the artificial compressible system (1.4)-(1.5) .
The linearized operator around \tilde{v}( $\delta$) is defined by L( $\epsilon$,  $\delta$) which is an operator
on H_{*}^{1}( $\Omega$)\times L^{2}( $\Omega$)^{3} given by

L( $\epsilon$,  $\delta$)= \left(\begin{array}{ll}
0 & \frac{\mathrm{l}}{$\epsilon$^{2}}\mathrm{d}\mathrm{i}\mathrm{v}\\
\nabla & -\triangle+(\mathcal{R}_{c}+ $\eta$( $\delta$))\mathbb{M}[\tilde{v}( $\delta$)]
\end{array}\right)
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with domain D(L( $\epsilon$,  $\delta$))=D :=H_{*}^{1}( $\Omega$)\times[H^{2}( $\Omega$)\cap H_{0}^{1}( $\Omega$)]^{3} . We also introduce

\mathrm{K}( $\delta$) and K( $\delta$) defined by

\mathrm{K}( $\delta$)=(\mathcal{R}_{c}+ $\eta$( $\delta$))\mathrm{M}[\tilde{v}( $\delta$)]-\mathcal{R}_{c}\mathbb{M}[v_{0}],

K( $\delta$)= \left(\begin{array}{ll}
0 & 0\\
0 & \mathrm{K}( $\delta$)
\end{array}\right)
Proposition 2.1 implies that \mathbb{M}( $\delta$) and M( $\delta$) can be expanded as

\displaystyle \mathrm{K}( $\delta$)=\sum_{k=1}^{\infty}$\delta$^{k}\mathrm{K}_{k},

K( $\delta$)=\displaystyle \sum_{k=1}^{\infty}$\delta$^{k}K_{k},
Here \mathrm{K}_{k} satisfies the estimate

K_{k}= \left(\begin{array}{ll}
0 & 0\\
0 & \mathrm{K}_{k}
\end{array}\right)
\Vert \mathrm{K}_{k}w\Vert_{2}\leq c_{k}\Vert w\Vert_{H^{1}} (2.1)

uniformly for w\in H^{1}( $\Omega$) with positive constant c_{k} satisfying \displaystyle \sum_{k=1}^{\infty}c_{k}$\delta$^{k}<\infty
for | $\delta$|\leq$\delta$_{1}.

We now state the result on the spectrum of -L( $\epsilon$,  $\delta$) near the origin.

Theorem 2.5. ([5]) Let  $\lambda$( $\delta$)=$\lambda$_{k}$\delta$^{k}+\mathcal{O}($\delta$^{k+1}) with $\lambda$_{k}\neq 0 for some k\geq 1.
Then there exist positive constants $\delta$_{1} =$\delta$_{1}(\tilde{b}_{0}, v_{0}) and $\epsilon$_{1} = $\epsilon$_{1}(\tilde{b}_{0}, v_{0}) such
that

 $\sigma$(-L( $\epsilon$,  $\delta$))\displaystyle \cap\{ $\lambda$\in \mathbb{C}; | $\lambda$|\geq\frac{\tilde{b}_{0}}{4}\}=\{ $\lambda$( $\epsilon$,  $\delta$
 $\lambda$( $\epsilon,\ \delta$)=$\delta$^{k}((1+c_{1}($\epsilon$^{2}))$\lambda$_{k}+$\Lambda$_{k}( $\epsilon$,  $\delta$))

with some $\Lambda$_{k}( $\epsilon$,  $\delta$) = \mathcal{O}( $\delta$) uniformly for 0 <  $\epsilon$ \leq $\epsilon$_{1}, 0 < | $\delta$| \leq $\delta$_{1} . Here
c_{1}($\epsilon$^{2}) satisfies |c_{1}($\epsilon$^{2})|\displaystyle \leq\frac{1}{2} for 0< $\epsilon$\leq$\epsilon$_{1}.

Theorem 2.5, together with the argument of the proof of [4, Theorem 2.1],
yields the following result on the stability of the bifurcating solution \tilde{v}( $\delta$) as
a solution of the artificial compressible system (1.4)-(1.5) .
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Theorem 2.6. ([5]) Assume that (A0)-(A5) . Then there exist positive con‐
stants $\epsilon$_{1} =$\epsilon$_{1}(\tilde{b_{0}}, v_{0}) and $\delta$_{1} =$\delta$_{1}(\tilde{b_{0}}, v_{0}) such that the following assertion\mathcal{S}

hold true for 0<| $\delta$|\leq$\delta$_{1}.
(i) If \tilde{v}( $\delta$) is unstable as a \mathcal{S} olution of(1.1) -(1.2) then so is \tilde{v}( $\delta$) as a solution
of(1.4) -(1.5) for 0< $\epsilon$\leq$\epsilon$_{1}.

(ii) Let \tilde{v}( $\delta$) be stable as a solution of (1.1) -(1.2) . Then there exist positive
constants $\epsilon$_{2}=$\epsilon$_{2}(\tilde{b}_{0}, v_{0}) and  $\kappa$ such that if

\displaystyle \inf_{w\in H_{0}^{1}( $\Omega$)^{3},w\neq 0}\frac{{\rm Re}(\mathbb{Q}w\cdot\nabla\tilde{v}( $\delta$),\mathbb{Q}w)}{\Vert\nabla \mathbb{Q}w||^{2}}\geq- $\kappa$ , (2.2)

then \tilde{v}( $\delta$) ?\dot{S} stable a\mathcal{S}a\mathcal{S}olution of (1.4) -(1.5) for 0< $\epsilon$\leq$\epsilon$_{2}.

Similarly to the proof of Theorems 2.5 and 2.6, one can prove the stability
and instability of the basic flow v_{ $\eta$} . In fact, it is possible to show that the
spectrum of the linearized operator \mathrm{L}_{ $\eta$} satisfies

 $\sigma$(-\displaystyle \mathrm{L}_{ $\eta$})=\{ $\lambda$\in \mathbb{C};{\rm Re} $\lambda$\geq-\frac{3}{4}\tilde{b}_{0}\}\cup\{$\lambda$_{ $\eta$}\},  $\eta$\in[-$\eta$_{0}, $\eta$_{0}]
for some positive constant $\eta$_{0} . Here $\lambda$_{ $\eta$} is a simple eigenvalue of -\mathrm{L}_{ $\eta$} and
satisfies

$\lambda$_{ $\eta$}= $\alpha$(0) $\eta$+\mathcal{O}($\eta$^{2}) .

Let L_{ $\epsilon,\ \eta$} be the linearized operator around u_{ $\eta$} = \mathrm{T}(p_{ $\eta$}, v_{ $\eta$}) of the artificial
compressible system. Here p_{ $\eta$} is the pressure corresponding to v_{ $\eta$} . We have
the following result.

Theorem 2.7. ([5]) There exist positive constants \tilde{ $\eta$}_{1} =\tilde{ $\eta$}_{1}(\tilde{b}_{0}, v_{0}) and $\epsilon$_{3}=

$\epsilon$_{3}(\tilde{b}_{0}, v_{0}) such that

 $\sigma$(-L_{ $\epsilon,\ \eta$})\displaystyle \cap\{ $\lambda$\in \mathbb{C}; | $\lambda$|\leq\frac{\tilde{b}_{0}}{4}\}=\{$\lambda$_{ $\epsilon,\ \eta$}\}
$\lambda$_{ $\epsilon,\ \eta$}= $\eta$(c_{1}($\epsilon$^{2}) $\alpha$(0)+$\Lambda$_{ $\epsilon,\ \eta$})

with some $\Lambda$_{ $\epsilon,\ \eta$}=O( $\eta$) uniformly for 0< $\epsilon$\leq$\epsilon$_{3} and 0<| $\eta$|\leq\tilde{ $\eta$}_{1}.

Theorems 2.5 and 2.7 imply that the same exchange of stability as in
the case of (1.1)-(1.2) holds for the case of (1.4)-(1.5) uniformly for small  $\epsilon$.

For definiteness, we consider the case where k is even and $\eta$_{k} is positive in
Proposition 2.3 (ii). In this case one can prove the following result.
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Theorem 2.8. ([5]) Let k be even and $\eta$_{k} be positive in Proposition 2.3 (ii).
Then there exi\mathcal{S}t positive constants $\epsilon$_{4} and $\delta$_{2} such that
(i) The ba\mathcal{S}ic flow v_{ $\eta$( $\delta$)} is unstable for 0<| $\delta$|\leq$\delta$_{2} and 0< $\epsilon$\leq$\epsilon$_{4}.

(ii) There exist po\mathcal{S}itive constants $\epsilon$_{5}, $\delta$_{3}, \tilde{ $\eta$}_{2} and \tilde{ $\kappa$} such that if

\displaystyle \inf_{w\in H_{0}^{1}( $\Omega$)^{3},uf\neq 0\frac{{\rm Re}(\mathbb{Q}w\cdot\nabla v_{0},\mathbb{Q}w)}{||\nabla \mathbb{Q}w||^{2}}\geq-\tilde{ $\kappa$}},
then v_{ $\eta$} is stable for -\tilde{ $\eta$}_{2} \leq  $\eta$ < 0 and 0 <  $\epsilon$ \leq $\epsilon$_{5} and \tilde{v}( $\delta$) is stable for
0<| $\delta$|\leq$\delta$_{3} and 0< $\epsilon$\leq$\epsilon$_{5}.

The other cases where k is odd or $\eta$_{k} is negative, we have similar results.

Remark 2.9. Theorem 2.8 i\mathcal{S} applicable to the Taylor and Bénard problems,
i.e., a bifurcation of the Taylor vortex from the Couette flow and a bifurca‐
tion of spatially periodic convective patterns from the motionless state, re‐
spectively.
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