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1 introduction

This note is a survey on [8].
In the theory of Banach space geometry, several geometric constants of normed spaces

indicate characteristics of normed spaces from various geometric viewpoints, and some‐
times play very important roles. In this paper, we deal with two of the most important
such geometric constants so‐called von Neumann‐Jordan constant and. James constant.
Let X be a Banach space, and let S_{X} be its unit sphere. The the von Neumann‐Jordan
constant C_{NJ}(X) and James constant J(X) of X are defined by

C_{NJ}(X)=\displaystyle \sup\{\frac{\Vert x+y\Vert^{2}+\Vert x-y\Vert^{2}}{2(||x||^{2}+||y\Vert^{2})}: (x, y)\neq(0,0)\},
J(X)=\displaystyle \sup\{\min\{\Vert x+y \Vert x-y : x, y\in S_{X}\}.

The following are basic properties of these constants.

(i) 1 \leq C_{NJ}(X)\leq 2 for any Banach space X.

(ii) C_{NJ}(X)=1 if and only if X is a Hilbert space.

(iii) C_{NJ}(X) <2 if and only if X is uniformly non‐square, that is, there exists a \overline{ $\delta$}>0

such that \displaystyle \min\{\Vert x+y \Vert x-y <2(1- $\delta$) whenever x, y\in S_{X} ([11]).

(iv) \sqrt{2}\leq J(X) \leq 2 for any Banach space X ([3]).

(v) If X is a Hilbert space, then J(X)=\sqrt{2} . Moreover, provided that \dim X\geq 3 , then
J(X)=\sqrt{2} if and only if X is a Hilbert space ([5]).

(vi) There are many non‐Hilbert two‐dimensional normed space X with J(X) = \sqrt{2}
([5, 6, 7

There are some relationship between C_{NJ}(X) and J(X) . In particular, inequalities
comparing these two constants are especially interesting. For example, Wang [13], Taka‐
hashi and Kato [12] and Yang and Li [14] independently showed the simple inequality
C_{NJ}(X) \leq  J(X) . Moreover, as a further improvement (which is what Wang actually
showed), a bit complicated estimation

C_{NJ}(X) \displaystyle \leq 1+\frac{2(J(X)-1)}{\sqrt{J(X)^{2}+(2-J(X))^{2}}+2-J(X)}(\leq J(X))
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also holds.

The goal of the above topic is to find the function F : [\sqrt{2}, 2]\rightarrow \mathbb{R} satisfying the
following two conditions:

(I) for each normed space X , the inequality

C_{NJ}(X)\leq F(J(X))

holds; and

(II) if G : [\sqrt{2}, 2]\rightarrow \mathbb{R} also satisfies

C_{NJ}(X) \leq G(J(X))

for each normed space X , then F\leq G.

In fáct, the function F can be defined explicitly by

F(s) :=\displaystyle \sup {  C_{NJ}(X) : X is a normed space with J(X)=s }. (1)

for each s\in[\sqrt{2} , 2 but, then, we only know F(2)=2.
The purpose of this note is to provide the first step of the study on the function F

defined by (1). We present a partial estimation of F(\sqrt{2}) .

2 The Banach‐Mazur compactum

Let X and Y be normed spaces isomorphic to each other, and let GL(X, Y) be the
collection of all isomorphisms from X onto Y . Then the Bànach‐Mazur distance between
X and Y is defined by

 $\delta$(X, Y) :=\displaystyle \log(\inf\{\Vert T\Vert \Vert T^{-1}\Vert :  T\in GL(X, Y

If \dim X = \dim Y = n \in \mathrm{N} , it can be shown that  $\delta$(X, Y) = 0 if and only if X is
isometrically isomorphic to Y . Indeed, if  $\delta$(X, Y)=0 then there exists a sequence (T_{m}) in
GL(X, Y) such that \displaystyle \lim_{m}\Vert T_{m}\Vert \Vert T_{m}^{-1}\Vert =1 . Putting R_{m}= \Vert T_{m}^{-1}\Vert T_{m} and S_{n $\iota$}= \Vert T_{m}\Vert T_{m}^{-1}
yields the bounded sequences (R_{m}) and (Sm). Since \dim X=\dim Y=n< \infty , we may
assume that (R_{m}) and (S_{m}) converge in the operator norm topology to some R and S,
respectively. It follows that \Vert R\Vert = \Vert S\Vert = 1 , SR= I_{X} and RS = I_{Y} , that is, R is an
isometric isomorphism from X onto Y . The converse is obvious.

For an n‐dimensional normed space X , let [X] be the collection of all n‐dimensional
normed spaces isometrically isomorphic to X . Then the Banach‐Mazur compactum Q(r $\iota$)
is definqd as the set of all isometry class [X] of n‐dimensional normed spaces equipped
with the metric given by

 $\delta$([X], [Y]):= $\delta$(X, Y) .

It is well‐known that Q(n) is a compact metric space.
If n=2 , we can find a specific representative elements for each [X] in Q(2) . This is

based on the result of Alonso [1]. Let $\Psi$_{2} be the set of all convex functions  $\psi$ on [0 , 1 ]
satisfying \displaystyle \max\{1-t, t\}\leq $\psi$(t)\leq 1 for each  t\in [0 , 1 ] . Then, for each  $\psi$\in$\Psi$_{2} , the formula

\Vert(a, b)\Vert_{ $\psi$}= \left\{\begin{array}{ll}
(|a|+|b|) $\psi$(\frac{|b|}{|a|+|b|}) & ((a, b)\neq(0,0))\\
0 & ((a, b)=(0,0))
\end{array}\right.
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defines an absolute normalized norm on \mathbb{R}^{2} , that is, \Vert(a, b)\Vert_{ $\psi$}= \Vert(|a|, |b|)\Vert_{ $\psi$} for each (a, b)
and ||(1,0)\Vert_{ $\psi$} =\Vert(0,1)\Vert_{ $\psi$}= 1 , see [2, 10]. Furthermore, using this kind of norms, we can
introduce more general normed spaces. Namely, for each  $\varphi$,  $\psi$\in $\Psi$_{2} , let

\Vert(a, b)\Vert_{ $\varphi,\ \psi$}= \left\{\begin{array}{l}
\Vert(a, b)\Vert_{ $\varphi$} (ab\geq 0)\\
\Vert(a, b)\Vert_{ $\psi$} (ab\leq 0)
\end{array}\right.
Then \Vert\cdot\Vert_{ $\varphi,\ \psi$} is a norm on \mathbb{R}^{2} . The space (\mathbb{R}^{2}, \Vert\cdot\Vert_{ $\varphi \psi$}) is called a Day‐James space, and
denoted by p_{ $\varphi,\ \psi$} ([9]).

Theorem 2.1 (Alonso [1]). Every two‐dimensional normed space is isometrically isomor‐
phic to some Day‐James space.

From this, we can always take a Day‐James space as a representative element for each
isometry class in Q(2) . Moreover, we have a useful estimation of Banach‐Mazur distance
between two Day‐James spaces in terms of corresponding convex functions in $\Psi$_{2} . For the
convenience, for  $\varphi$,  $\psi$\in$\Psi$_{2} , put

m_{ $\varphi,\ \psi$}= niin \underline{ $\psi$(t)} and M_{ $\varphi,\ \psi$}= \displaystyle \max\underline{ $\psi$(t)}
t\in[0,1] $\varphi$(t) t\in[0,1] $\varphi$(t)

’

respectively. It is easy to check that m_{ $\psi,\ \varphi$}=1/M_{$\varphi$_{:} $\psi$}.
The following result is important in this paper. The same idea can be found in [9,

Lemma 3.1].
Proposition 2.2. Let $\varphi$_{i}, $\psi$_{i}\in$\Psi$_{2}, i=1 , 2. Then

m\Vert\cdot\Vert_{$\varphi$_{1},$\psi$_{1}} \leq \Vert\cdot\Vert_{$\varphi$_{2},$\psi$_{2}} \leq M\Vert\cdot\Vert_{$\varphi$_{1},$\psi$_{1}},
where m=\displaystyle \min\{m_{$\varphi$_{1},$\varphi$_{2}}, m_{$\psi$_{1},$\psi$_{2}}\} and M=\displaystyle \max\{M_{$\varphi$_{1},$\varphi$_{2}}, M_{$\psi$_{1},$\psi$_{2}}\}.

Combining this with the following simple fact, we obtain an estimation of the Banach‐
Mazur distance between two Day‐James spaces.

Lemma 2.3. Let \Vert . \Vert and \Vert . be two norms on the same underlying vector space  X.

Suppose that
m\Vert\cdot\Vert \leq \Vert. \leq M\Vert.

Then

 $\delta$((X, \Vert. (X, \Vert. \leq\log(M/m) .

Corollary 2.4. Let $\varphi$_{i}, $\psi$_{i}\in$\Psi$_{2}, i=1 , 2. Then

 $\delta$ ([\displaystyle \ell_{$\varphi$_{1},$\psi$_{1}}], [\ell_{$\varphi$_{2},$\psi$_{2}}]) \leq\log(\max\{M_{$\varphi$_{1},$\varphi$_{2}}, M_{$\psi$_{1},$\psi$_{2}}\}/\min\{m_{$\varphi$_{1},$\varphi$_{2}}, m_{$\psi$_{1},$\psi$_{2}}\}) .

On the other hand, we have the following simple lemma.

Lemma 2.5. Let  $\psi$ \in $\Psi$_{2} . If a \mathcal{S} equence ($\psi$_{n}) in $\Psi$_{2} converges uniformly to  $\psi$ , then
\displaystyle \lim_{n}m_{ $\psi,\psi$_{n}}=\lim_{n}M_{ $\psi,\psi$_{n}}=1.

Combining this with Corollary 2.4, we have the following result. We assume that the
set $\Psi$_{2}\times$\Psi$_{2} is equipped with the product topology induced by the usual supremum norm.

Proposition 2.6. The mapping ( $\varphi$,  $\psi$) \rightarrow [\ell_{ $\varphi,\ \psi$}] from $\Psi$_{2} \times $\Psi$_{2} into Q(2) is continuous
and surjective.

From this and the fact that $\Psi$_{2} is compact in the supremum norm topology [15], we
have a well‐known fact.

Corollary 2.7. Q(2) is a compact metric space.

74



3 A partial estimation of F(\sqrt{2})
Recall that the function F given in the introduction is defined by

F(s) :=\displaystyle \sup {  C_{NJ}(X) : X is a normed space with J(X)=s }.

for each s\in[\sqrt{2} , 2] . In this section, we first give a general estimation for the function F.

For this, we recall the following result of Takahashi and Kato [12, Corollary 3]

Lemma 3.1. Let X be a normed space. Then

0\leq J(X)-C_{NJ}(X) \leq\sqrt{2}-1.

Proposition 3.2. The inequality

s+1-\sqrt{2}\leq F(s)\leq s

holds for each  s\in [\sqrt{2} , 2].

Proof. This easily follows from the preceding lemma and the definition of F. \square 

In what follows, we consider the value of F(\sqrt{2}) , and give a partial estimation. As was
mentioned in the introduction, if \dim X\geq 3 , then J(X)=\sqrt{2} if and only if C_{NJ}(X)=1,
which happens if and only if X is an inner product space. Thus, in the case of s= \sqrt{2},
we may assume that \dim X=2.

Now we recall the following result.

Theorem 3.3 (Kato, Maligranda and Takahashi [4]). Let X and Y be normed spaces
tsomorphic to each other. Then

e^{- $\delta$(X,Y)}J(X) \leq J(Y)\leq e^{ $\delta$(X,Y)}J(X)

and

e^{-2 $\delta$(X,Y)}C_{NJ}(X) \leq C_{NJ}(Y)\leq e^{2 $\delta$(X,Y)}C_{NJ}(X) .

Since normed spaces isometrically isomorphic to each other have the same James and
von Neumann‐Jordan constants, we can define the functions J : Q(2) \rightarrow [\sqrt{2} , 2] and
C_{NJ} : Q(2) \rightarrow [1 , 2] by J([X]) := J(X) and C_{NJ}([X]) = C_{NJ}(X) for each [X]\in  Q(2) ,
respectively. The following fact immediately follows from the preceding theorem.

Corollary 3.4. The functions J : [X]\mapsto J(X) and C_{NJ} : [X]\rightarrow C_{NJ}(X) are continuous
on Q(2) .

From this, the set \{[X] \in Q(2) : J([X]) = \sqrt{2}\} is closed (and hence, it is compact).
Moreover, since the function C_{NJ} : [X]\rightarrow  C_{NJ}(X) is continuous on Q(2) , there exists
a two‐dimensional normed space X such that J(X) = \sqrt{2} and C_{NJ}(X) = C_{NJ}([X]) =

F(\sqrt{2}) . On the other hand, since C_{NJ}(X)=J(X) if and only if C_{NJ}(X)=J(X)=2 , at
least, we have

F(\sqrt{2})=C_{NJ}(X)<J(X)=\sqrt{2}.
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Unfortunately, there is no effect,ive characterization of two‐dimensional normed spaces
with James constant \sqrt{2} ; and so it is difficult to consider the general case. However, for
the class of  $\pi$/2‐rotation invariant norms on \mathbb{R}^{2} , we can compute the exact value of

\displaystyle \sup\{(_{\text{ノ}}^{ $\gamma$}NJ([X]) : X=(\mathbb{R}^{2}, \Vert is  $\pi$/2‐rotation invariant, J(X)=\sqrt{2}}.

Recall that a norm ||\cdot\Vert on \mathbb{R}^{2} is said to be  $\theta$ ‐rotation invariant if the  $\theta$‐rotation matrix

 R( $\theta$)= \left(\begin{array}{ll}
\mathrm{c}\mathrm{o}\mathrm{s} $\theta$ & -\mathrm{s}\mathrm{i}\mathrm{n} $\theta$\\
\mathrm{s}\mathrm{i}\mathrm{n} $\theta$ & \mathrm{c}\mathrm{o}\mathrm{s} $\theta$
\end{array}\right)
is an isometry on (\mathbb{R}^{2}, \Vert . As was shown in [6], each  $\pi$/2‐rotation invariant normed
space is isometrically isomorphic to some Day‐James space of the form l_{ $\psi$,\overline{ $\psi$}} , where \overline{ $\psi$} is

an element of $\Psi$_{2} given by \overline{ $\psi$}(t) =  $\psi$(1-t) for each t \in [0 , 1 ] . So we may assume that

X=\ell_{ $\psi$,\overline{ $\psi$}} for some  $\psi$\in$\Psi$_{2}.

In [6], it was shown that if \Vert\cdot\Vert is  $\pi$/2‐rotation invariant, then J((\mathbb{R}^{2}, \Vert. =\sqrt{2} if
and only if \Vert\cdot\Vert is  $\pi$/4‐rotation invariant. Furthermore, the class of  $\pi$/4‐rotation invariant
Day‐James spaces are in a one‐to‐one correspondence with a certain collection of convex
functions on [0 , 1 ] ; see [6]. Namely, let

 $\Gamma$= \displaystyle \{ $\psi$\in$\Psi$_{2}:\max\{1- (1-\frac{1}{\sqrt{2}})t, \frac{1}{\sqrt{2}}+ (1-\frac{1}{\sqrt{2}}) $\iota$\} \leq $\psi$(t)\}.
For each  $\psi$\in$\Psi$_{2} such that \Vert\cdot\Vert_{ $\psi$,\overline{ $\psi$}} is  $\pi$/4‐rotation invariant, let

$\psi$^{\mathrm{b}}(t)=(1+(\displaystyle \sqrt{2}-1)t) $\psi$(\frac{t}{\sqrt{2}+(2-\sqrt{2})t}) (2)

for each t\in[0 , 1 ] . Then $\psi$^{\mathrm{b}} \in $\Gamma$ . Conversely, if  $\psi$\in $\Gamma$ , then

 $\psi$^{\#}(t)= \left\{\begin{array}{ll}
(1-(2-\sqrt{2})t) $\psi$(\frac{\sqrt{2}t}{1-(2-\sqrt{2})t}) & (t\in[0,1/2]) ,\\
(\sqrt{2}-1)(1+\sqrt{2}t) $\psi$(\frac{2t-1}{(\sqrt{2}-1)(1+\sqrt{2}t)}) & (t\in[1/2,1])
\end{array}\right.
defines an element of $\Psi$_{2} , and \Vert . \Vert_{ $\psi$\#,\overline{ $\psi$\#}} is  $\pi$/4‐rotation invariant. Obviously, these con‐

structions preserve the usual order of functions. Moreover, ($\psi$^{\mathrm{b}})^{\#}= $\psi$ for each  $\psi$\in$\Psi$_{2} ; and
($\psi$^{\#})^{\mathrm{b}}= $\psi$ for each  $\psi$\in $\Gamma$ . Combining these facts with [5, Example 3.7] and [6, Remark
4.6], we have

\displaystyle \max\{1-t, t, 1/\sqrt{2}\}\leq $\psi$(t)\leq\max\{1-(2-\sqrt{2})t, \sqrt{2}-1+(2-\sqrt{2})t\} (3)

for each  $\psi$\in$\Psi$_{2} such that \Vert\cdot\Vert_{r1} is  $\pi$/4‐rotation invariant. We here note that the functions

$\psi$_{\mathrm{c}\mathrm{r}\mathrm{o}}(t)=\displaystyle \max\{1-t, t, 1/\sqrt{2}\}

and

$\psi$_{\mathrm{i}\mathrm{r}\mathrm{o}}(t)=\mathrm{m}\mathrm{s}\mathrm{x}\{1-(2-\sqrt{2})t, \sqrt{2}-1+(2-\sqrt{2})t\}
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are corresponding to the norms on \mathbb{R}^{2} whose unit spheres are, respectively, the circum‐
scribed and inscribed regular octagons of the unit circle. In other words, if \Vert\cdot\Vert_{ $\psi$,\overline{ $\psi$}} is  $\pi$/4-
rotation invariant,, \mathrm{t}\mathrm{h}\mathrm{e}\mathrm{n} its unit sphere lies “between” the circumscribed and inscribed
regular octagons of the unit circle.

In what follows, the symbol $\psi$_{2} denotes the fixed function given by

$\psi$_{2}(t)=((1-t)^{2}+t^{2})^{1/2}

for each t \in [0 , 1 ] . Clearly, \Vert\cdot\Vert_{$\psi$_{2}} = \Vert . \Vert_{2} , the Euclidean norm on \mathbb{R}^{2} . Using the above
correspondence, we have the following lemma.

Lemma 3.5. Let  $\psi$\in$\Psi$_{2} . Suppose that \Vert\cdot\Vert_{ $\psi$,\tilde{ $\psi$}} is  $\pi$/4 ‐rotation invariant. Then

m_{$\psi$_{2}, $\psi$}\Vert\cdot\Vert_{2}\leq \Vert\cdot\Vert_{ $\psi$,\tilde{ $\psi$}}\leq M_{$\psi$_{2}, $\psi$}\Vert\cdot\Vert_{2}.

Moreover, the equalities

m_{$\psi$_{2}, $\psi$}=\displaystyle \min_{t\in[0,1/2]}\frac{ $\psi$(t)}{$\psi$_{2}(t)}=\min_{t\in[0,1]}\frac{$\psi$^{\mathrm{b}}(t)}{$\psi$_{2}^{\mathrm{b}}(t)}
and

M_{$\psi$_{2}, $\psi$}=\displaystyle \max_{t\in[0,1/2_{\mathrm{J}}^{1}}\frac{ $\psi$(t)}{$\psi$_{2}(t)}=\max_{t\in[0,1]}\frac{$\psi$^{\mathrm{b}}(t)}{$\psi$_{2}^{\mathrm{b}}(t)}
hold.

From this, we have the main result in this note.

Theorem 3.6.

\displaystyle \sup\{C_{NJ}([X]) : X=(\mathbb{R}^{2}, \Vert . is  $\pi$/2 ‐rotation invariant, J(X)=\sqrt{2}}
=4-2\sqrt{2}.

Since each  $\pi$/4‐rotation invariant Day‐James space can be constructed by an element
of  $\Gamma$ , there are various examples of such spaces. So  4-2\sqrt{2} is seemed to be the upper
bound also in the general case. However, the authors do not know whether this is true.
The problem is still open.

Conjecture 3.7. F(\sqrt{2})=4-2\sqrt{2}.
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