Resolvent expansion for the Schrödinger operator on a graph with infinite rays

Kenichi Ito^{*} & Arne Jensen[†]

In this article we report on the authors' recent work [IJ3] on an expansion of the resolvent for the Schrödinger operator on a graph with rays. We obtain precise expressions for the first few coefficients of the expansion around the threshold 0 in terms only of the generalized eigenfunctions. This in particular justifies the natural definition of threshold resonances for the generalized eigenfunctions solely by the growth rate at infinity.

1 The free operator

In this section we define a graph with rays, and fix our free operator H_0 on it. Here we denote the set of vertices by G, and the set of edges by E_G , hence we consider the graph (G, E_G) . We sometimes call it simply the graph G. The free operator H_0 is defined as a direct sum of the free Dirichlet Schrödinger operators on a finite part and rays, being different from the graph Laplacian $-\Delta_G$.

Let (K, E_0) be a connected, finite, undirected and simple graph, without loops or multiple edges, and let (L_{α}, E_{α}) , $\alpha = 1, \ldots, N$, be N copies of the discrete half-line, i.e.

$$L_{\alpha} = \mathbb{N} = \{1, 2, \ldots\}, \quad E_{\alpha} = \{\{n, n+1\}; \ n \in L_{\alpha}\}.$$

We construct the graph (G, E_G) by jointing (L_α, E_α) to (K, E_0) at a vertex $x_\alpha \in K$ for $\alpha = 1, \ldots, N$:

$$G = K \cup L_1 \cup \dots \cup L_N,$$

$$E_G = E_0 \cup E_1 \cup \dots E_N \cup \{\{x_1, 1^{(1)}\}, \dots, \{x_N, 1^{(N)}\}\}$$

^{*}Department of Mathematics, Graduate School of Science, Kobe University, 1-1, Rokkodai, Nada-ku, Kobe 657-8501, Japan. E-mail: ito-ken@math.kobe-u.ac.jp.

[†]Department of Mathematical Sciences, Aalborg University, Skjernvej 4A, DK-9220 Aalborg Ø, Denmark. E-mail: matarne@math.aau.dk.

Here we distinguished 1 of L_{α} by a superscript: $1^{(\alpha)} \in L_{\alpha}$. Note that two different half-lines (L_{α}, E_{α}) and (L_{β}, E_{β}) , $\alpha \neq \beta$, could be jointed to the same vertex $x_{\alpha} = x_{\beta} \in K$.

Let h_0 be the free *Dirichlet* Schrödinger operators on K: For any function $u \colon K \to \mathbb{C}$ we define

$$(h_0 u)[x] = \sum_{\{x,y\} \in E_0} (u[x] - u[y]) + \sum_{\alpha=1}^N s_\alpha[x] u[x] \quad \text{for } x \in K,$$

where $s_{\alpha}[x] = 1$ if $x = x_{\alpha}$ and $s_{\alpha}[x] = 0$ otherwise. Note that the Dirichlet boundary condition is considered being set on the *boundaries* $1^{(\alpha)} \in L_{\alpha}$ outside K. Similarly, for $\alpha = 1, \ldots, N$ let h_{α} be the free Dirichlet Schrödinger operators on L_{α} : For any function $u: L_{\alpha} \to \mathbb{C}$ we define

$$(h_{\alpha}u)[n] = \begin{cases} 2u[1] - u[2] & \text{for } n = 1, \\ 2u[n] - u[n+1] - u[n-1] & \text{for } n \ge 2. \end{cases}$$

Then we define the free operator H_0 on G as a direct sum

$$H_0 = h_0 \oplus h_1 \oplus \dots \oplus h_N, \tag{1.1}$$

according to a direct sum decomposition

$$F(G) = F(K) \oplus F(L_1) \oplus \cdots \oplus F(L_N),$$

where $F(X) = \{u: X \to \mathbb{C}\}$ denotes the set of all the functions on a space X.

In the definition (1.1) interactions between K and L_{α} are absent, and the free operator H_0 does not coincide with the graph Laplacian $-\Delta_G$ defined as

$$(-\Delta_G u)[x] = \sum_{\{x,y\}\in E_G} (u[x] - u[y]).$$

In fact, we can write

$$-\Delta_G = H_0 + J, \quad J = -\sum_{\alpha=1}^N \Big(|s_\alpha\rangle \langle f_\alpha| + |f_\alpha\rangle \langle s_\alpha| \Big), \tag{1.2}$$

where $f_{\alpha}[x] = 1$ if $x = 1^{(\alpha)}$ and $f_{\alpha}[x] = 0$ otherwise. The operator H_0 is actually simpler and more useful than $-\Delta_G$, since it does not have a zero eigenvalue or a zero resonance, and the asymptotic expansion of its resolvent around 0 does not have a singular part. This fact effectively simplifies the expansion procedure for the perturbed resolvent, and enables us to obtain more precise expressions for the coefficients than those in [IJ1]. The interaction J is a special case of general perturbations considered in Assumption 2.1, see Proposition 2.2. Hence the graph Laplacian $-\Delta_G$ can be treated as a perturbation of the free operator H_0 .

2 The perturbed operator

In this section we introduce our class of perturbations. We also provide a simple classification of threshold types in terms of the growth rate of the generalized eigenfunctions. This classification will be justified by our main results presented in Section 3.

Set for $s \in \mathbb{R}$

$$\mathcal{L}^{s} = \ell^{1,s}(G) = \left(\ell^{1}(K)\right) \oplus \left(\ell^{1,s}(L_{1})\right) \oplus \cdots \oplus \left(\ell^{1,s}(L_{N})\right),$$
$$(\mathcal{L}^{s})^{*} = \ell^{\infty,-s}(G) = \left(\ell^{\infty}(K)\right) \oplus \left(\ell^{1,s}(L_{1})\right) \oplus \cdots \oplus \left(\ell^{1,s}(L_{N})\right),$$

where for $\alpha = 1, \ldots, N$

$$\ell^{1,s}(L_{\alpha}) = \left\{ x \colon L_{\alpha} \to \mathbb{C}; \ \sum_{n \in L_{\alpha}} (1+n^2)^{s/2} |x[n]| < \infty \right\},$$
$$\ell^{\infty,-s}(L_{\alpha}) = \left\{ x \colon L_{\alpha} \to \mathbb{C}; \ \sup_{n \in L_{\alpha}} (1+n^2)^{-s/2} |x[n]| < \infty \right\}.$$

We consider the following class of perturbations, cf. [JN1, IJ1, IJ2].

Assumption 2.1. Assume that $V \in \mathcal{B}(\mathcal{H})$ is self-adjoint, and that there exist an injective operator $v \in \mathcal{B}(\mathcal{K}, \mathcal{L}^{\beta})$ with $\beta \geq 1$ and a self-adjoint unitary operator $U \in \mathcal{B}(\mathcal{K})$, both defined on some abstract Hilbert space \mathcal{K} , such that

$$V = vUv^* \in \mathcal{B}((\mathcal{L}^{\beta})^*, \mathcal{L}^{\beta}).$$

We note that V is compact on \mathcal{H} under Assumption 2.1. Let us provide a criterion for Assumption 2.1 in terms of weighted ℓ^2 -spaces. We use the standard weighted space notation such as $\ell^{2,s}(G)$, $s \in \mathbb{R}$.

Proposition 2.2. Assume that $V \in \mathcal{B}(\mathcal{H})$ is self-adjoint, and that it extends to an operator in $\mathcal{B}(\ell^{2,-\beta-1/2-\epsilon}(G), \ell^{2,\beta+1/2+\epsilon}(G))$ for some $\beta \geq 1$ and $\epsilon > 0$. Then V satisfies Assumption 2.1 for the same β .

By this criterion we can see that the interaction J from (1.2) satisfies Assumption 2.1. For another criterion for Assumption 2.1 we refer to [IJ1, Appendix B].

Under Assumption 2.1 we let

$$H = H_0 + V,$$

and consider the solutions to the zero eigen-equation $H\Psi = 0$ in the largest space where it can be defined. Define the generalized zero eigenspace $\tilde{\mathcal{E}}$ as

$$\widetilde{\mathcal{E}} = \big\{ \Psi \in (\mathcal{L}^{\beta})^*; \ H\Psi = 0 \big\}.$$

Let $\mathbf{n}^{(\alpha)} \in (\mathcal{L}^1)^*, \, \mathbf{1}^{(\alpha)} \in (\mathcal{L}^0)^*$ be the functions defined as

$$\mathbf{n}^{(\alpha)}[x] = \begin{cases} m & \text{for } x = m \in L_{\alpha}, \\ 0 & \text{for } x \in G \setminus L_{\alpha}, \end{cases} \qquad \mathbf{1}^{(\alpha)}[x] = \begin{cases} 1 & \text{for } x \in L_{\alpha}, \\ 0 & \text{for } x \in G \setminus L_{\alpha}, \end{cases}$$

respectively, and abbreviate the spaces spanned by these functions as

$$\mathbb{C}\mathbf{n} = \mathbb{C}\mathbf{n}^{(1)} \oplus \cdots \oplus \mathbb{C}\mathbf{n}^{(N)}, \quad \mathbb{C}\mathbf{1} = \mathbb{C}\mathbf{1}^{(1)} \oplus \cdots \oplus \mathbb{C}\mathbf{1}^{(N)}$$

We can show that under Assumption 2.1 with $\beta \ge 1$ the generalized eigenfunctions have specific asymptotics:

$$\widetilde{\mathcal{E}} \subset \mathbb{C}\mathrm{n} \oplus \mathbb{C}\mathrm{1} \oplus \mathcal{L}^{eta-2}$$
 .

With this asymptotics we consider the following subspaces:

$$\mathcal{E} = \widetilde{\mathcal{E}} \cap (\mathbb{C}\mathbf{1} \oplus \mathcal{L}^{\beta-2}), \quad \mathsf{E} = \widetilde{\mathcal{E}} \cap \mathcal{L}^{\beta-2}$$

A function in $\widetilde{\mathcal{E}} \setminus \mathcal{E}$ should be called a *non-resonance eigenfunction*, one in $\mathcal{E} \setminus \mathsf{E}$ a *resonance eigenfunction*, and one in E a *bound eigenfunction*, but we shall often call them *generalized eigenfunctions* or simply *eigenfunctions*.

Let us introduce the same classification of threshold as in [IJ1, Definition 1.6].

Definition 2.3. The threshold z = 0 is said to be

- 1. a regular point, if $\mathcal{E} = \mathsf{E} = \{0\};$
- 2. an exceptional point of the first kind, if $\mathcal{E} \supseteq \mathsf{E} = \{0\}$;
- 3. an exceptional point of the second kind, if $\mathcal{E} = \mathsf{E} \supseteq \{0\}$;
- 4. an exceptional point of the third kind, if $\mathcal{E} \supseteq \mathsf{E} \supseteq \{0\}$.

It should be noted here that there is a dimensional relation:

$$\dim(\mathcal{E}/\mathcal{E}) + \dim(\mathcal{E}/\mathsf{E}) = N, \quad 0 \le \dim \mathsf{E} < \infty,$$

the former of which reflects a certain topological stability of the non-decaying eigenspace under small perturbations.

We can also show that for any $\Psi_1 \in \widetilde{\mathcal{E}}$ and $\Psi_2 \in \mathcal{E}$, if we let

$$\Psi_1 - \sum_{\alpha=1}^N c_{\alpha}^{(1)} \mathbf{n}^{(\alpha)} \in \mathbb{C} \mathbf{1} \oplus \mathcal{L}^{\beta-2}, \quad \Psi_2 - \sum_{\alpha=1}^N c_{\alpha}^{(2)} \mathbf{1}^{(\alpha)} \in \mathcal{L}^{\beta-2},$$

then these coefficients are orthogonal:

$$\sum_{\alpha=1}^N \overline{c}_\alpha^{(2)} c_\alpha^{(1)} = 0.$$

By this fact it would be natural to introduce *orthogonality* in $\tilde{\mathcal{E}}$ in terms of the asymptotics, and accordingly define the generalized orthogonal projections. We use $\langle \cdot, \cdot \rangle$ to denote the duality between between \mathcal{L}^s and $(\mathcal{L}^s)^*$. If $\beta \geq 2$ then $\langle \Phi, \Psi \rangle$ is defined for $\Phi \in \mathsf{E}$ and $\Psi \in \mathcal{E}$. If we only assume $\beta \geq 1$ then we must assume $\Phi \cdot \Psi \in \mathcal{L}^0$ to justify the notation $\langle \Phi, \Psi \rangle$. Here $(\Phi \cdot \Psi)[n] = \Psi[n]\Phi[n], n \in G$, is the pointwise product.

Definition 2.4. We call a subset $\{\Psi_{\gamma}\}_{\gamma} \subset \mathcal{E}$ a resonance basis, if the set $\{[\Psi_{\gamma}]\}_{\gamma}$ of representatives forms a basis in \mathcal{E}/E . It is said to be orthonormal, if

- 1. for any γ and $\Psi \in \mathsf{E}$ one has $\overline{\Psi} \cdot \Psi_{\gamma} \in \mathcal{L}^{0}$ and $\langle \Psi, \Psi_{\gamma} \rangle = 0$;
- 2. there exists an orthonormal system $\{c^{(\gamma)}\}_{\gamma} \subset \mathbb{C}^N$ such that for any γ

$$\Psi_{\gamma} - \sum_{\alpha=1}^{N} c_{\alpha}^{(\gamma)} \mathbf{1}^{(\alpha)} \in \mathcal{L}^{\beta-2}.$$

The orthogonal resonance projection \mathcal{P} is defined as

$$\mathcal{P} = \sum_{\gamma} |\Psi_{\gamma}\rangle \langle \Psi_{\gamma}|.$$

Definition 2.5. We call a basis $\{\Psi_{\gamma}\}_{\gamma} \subset \mathsf{E}$ a *bound basis* to distinguish it from a resonance basis. It is said to be *orthonormal*, if for any γ and γ' one has $\overline{\Psi_{\gamma'}} \cdot \Psi_{\gamma} \in \mathcal{L}^0$ and

$$\langle \Psi_{\gamma'}, \Psi_{\gamma} \rangle = \delta_{\gamma\gamma'}.$$

The orthogonal bound projection P is defined as

$$\mathsf{P} = \sum_{\gamma} |\Psi_{\gamma}\rangle \langle \Psi_{\gamma}|.$$

We remark that the above orthogonal projections \mathcal{P} and P are independent of choice of orthonormal bases.

3 Main results

In this section we present the main theorems of [IJ3] classifying the resolvent expansions according to threshold types given in Definition 2.3. In the statements below we have to impose different assumptions on the parameter β depending on threshold types. For simplicity we state the results only for integer values of β , but an extension to general β is straightforward.

We set

$$R(\kappa) = (H + \kappa^2)^{-1} \text{ for } -\kappa^2 \notin \sigma(H), \quad \mathcal{B}^s = \mathcal{B}\big(\mathcal{L}^s, (\mathcal{L}^s)^*\big).$$

Theorem 3.1. Assume that the threshold 0 is a regular point, and that Assumption 2.1 is fulfilled for some integer $\beta \geq 2$. Then

$$R(\kappa) = \sum_{j=0}^{\beta-2} \kappa^j G_j + \mathcal{O}(\kappa^{\beta-1}) \quad in \ \mathcal{B}^{\beta-2}$$

with $G_j \in \mathcal{B}^{j+1}$ for j even, and $G_j \in \mathcal{B}^j$ for j odd. The coefficients G_j can be computed explicitly. In particular,

$$G_{-2} = \mathsf{P} = 0, \quad G_{-1} = \mathcal{P} = 0.$$

Theorem 3.2. Assume that the threshold 0 is an exceptional point of the first kind, and that Assumption 2.1 is fulfilled for some integer $\beta \geq 3$. Then

$$R(\kappa) = \sum_{j=-1}^{\beta-4} \kappa^j G_j + \mathcal{O}(\kappa^{\beta-3}) \quad in \ \mathcal{B}^{\beta-1}$$

with $G_j \in \mathcal{B}^{j+3}$ for j even, and $G_j \in \mathcal{B}^{j+2}$ for j odd. The coefficients G_j can be computed explicitly. In particular,

$$G_{-2} = \mathsf{P} = 0, \quad G_{-1} = \mathcal{P} \neq 0.$$

Theorem 3.3. Assume that the threshold 0 is an exceptional point of the second kind, and that Assumption 2.1 is fulfilled for some integer $\beta \ge 4$. Then

$$R(\kappa) = \sum_{j=-2}^{\beta-6} \kappa^j G_j + \mathcal{O}(\kappa^{\beta-5}) \quad in \ \mathcal{B}^{\beta-2}$$

with $G_j \in \mathcal{B}^{j+3}$ for j even, and $G_j \in \mathcal{B}^{j+2}$ for j odd. The coefficients G_j can be computed explicitly. In particular,

$$G_{-2} = \mathsf{P} \neq 0, \quad G_{-1} = \mathcal{P} = 0.$$

$$R(\kappa) = \sum_{j=-2}^{\beta-6} \kappa^j G_j + \mathcal{O}(\kappa^{\beta-5}) \quad in \ \mathcal{B}^{\beta-2}$$

with $G_j \in \mathcal{B}^{j+3}$ for j even, and $G_j \in \mathcal{B}^{j+2}$ for j odd. The coefficients G_j can be computed explicitly. In particular,

$$G_{-2} = \mathsf{P} \neq 0, \quad G_{-1} = \mathcal{P} \neq 0.$$

Theorems 3.1–3.4 justify the classification of threshold types only by the growth properties of eigenfunctions:

Corollary 3.5. The threshold type determines and is determined by the coefficients G_{-2} and G_{-1} from Theorems 3.1–3.4.

We can also compute the coefficients G_0 and G_1 . They can be considered as part of the main results of [IJ3]. However, their expressions are very long, and we omit them in this article, see [IJ3, Appendix B]. These results are generalizations of [IJ1] on the discrete full line \mathbb{Z} and [IJ2] on the discrete half-line \mathbb{N} . The strategy for proofs is also similar to [IJ1, IJ2], implementing the expansion scheme of [JN1, JN2] in its full generality. However, due to our choice of the free operator the expansion procedure gets simplified.

Acknowledgements

KI was supported by JSPS KAKENHI Grant Number 17K05325. The authors were partially supported by the Danish Council for Independent Research | Natural Sciences, Grant DFF-4181-00042.

References

- [IJ1] K. Ito and A. Jensen, A complete classification of threshold properties for one-dimensional discrete Schrödinger operators. Rev. Math. Phys. 27 (2015), no. 1, 1550002, 45 pp.
- [IJ2] K. Ito and A. Jensen, Resolvent expansions for the Schrödinger operator on the discrete half-line. J. Math. Phys. 58 (2017), no. 5, 052101, 24 pp.
- [IJ3] K. Ito and A. Jensen, Resolvent expansion for the Schrodinger operator on a graph with infinite rays. Preprint 2017. https://arxiv.org/abs/1712.01592

- [JN1] A. Jensen and G. Nenciu, A unified approach to resolvent expansions at thresholds. Rev. Math. Phys., **13** (2001), 717–754.
- [JN2] A. Jensen and G. Nenciu, Erratum: "A unified approach to resolvent expansions at thresholds" [Rev. Math. Phys. 13(6), 717–754 (2001)]. Rev. Math. Phys. 16(5), 675–677 (2004).