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1. SPECTRAL AND SCATTERING THEORY

1.1. Introduction. This paper is an expanded version of the author’s talk
at the Tosio Kato centennial which took place in Tokyo, Japan, in the sum‐
mer of 2017. Tosio Kato’s contributions to operator theory in general, and
the spectral theory of Schrödinger operators in particular, are monumental
and we cannot do justice to them in this brief survey article. The purpose
here is rather to highlight certain developments which build upon his work
and would not have been possible without it. We will confine ourselves
strictly to two body Schrödinger equations. This being said, this survey
is by no means exhaustive even within that more narrowly defined scope.
The choices of topics is limited to the problem of asymptotic completeness,
its relation to the Fourier restriction theory (albeit in the simpler Stein‐
Tomas incarnation which does not rely on deep geometric considerations of
the Kakeya type), and finally, the Ư theory of the wave operators initiated
by Kenji Yajima1. The author hopes to present these topics from a fairly
general point of view, with the goal of pointing out the relevance of Fourier
restriction phenomena to the study of asymptotic completeness and wave
operators. The most recent results in this survey establish a structure for‐
mula for the intertwining wave operators in \mathbb{R}^{3} , obtained jointly with Marius
Beceanu in 2016.

On the one hand, these results also rely on Stein‐Tomas type Fourier
restriction results since they depend on the more recent form of the classi‐
cal Agmon‐Kato‐Kuroda theory due to M. Goldberg, A. Ionescu, and the
author, [GolSch], [IonSch]. On the other hand, they serve to illustrate the
power of Wiener‐type inversion theorems in Banach algebras, as applied to
spectral theory. This device was introduced into spectral and scattering
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theory in Beceanu’s 2009 Ph.D. thesis [Bec]. It is a powerful device which
allows one to sum otherwise divergent Born series expansions. The crucial
non‐vanishing condition for these Wiener theorems is provided by some form
of the limiting absorption principle, in other words, the invertibility of the
Birman‐Schwinger operator for positive energies (whereas for zero energy it
is guaranteed via the assumption that there are no zero energy eigenvalues
or resonance2). This invertibility condition already appears in the classical
Agmon‐Kato‐Kuroda theory from the 1960\mathrm{s} and 70\mathrm{s} . However, the form
in which it appears here falls outside the scope of this older theory, which
is based on weighted L^{2} spaces. The form in which it arises in the afore‐
mentioned structure theorems depends on Ư spaces rather than weighted
L^{2} , leading directly into Fourier restriction techniques. The most delicate
aspect of using Wiener theorems in spectral theory is to find the right spaces
and algebras. We will give some indication of this in Section 5.

1.2. Wave operators and asymptotic completeness. Let V be a real‐
valued potential in \mathbb{R}^{d} , bounded, and sufficiently decaying, and set H :=

-\triangle+V, H_{0} :=-\triangle . Define the wave operators

(1)  W_{\pm}:=\displaystyle \lim_{t\rightarrow\mp\infty}e^{itH}e^{-itH_{0}}
These limits are known to exist in the strong L^{2}‐sense, provided V has
sufficient decay. To illustrate this, suppose d \geq  3, f \in  L^{1} \cap L^{2}(\mathbb{R}^{d}) , and
assume the potential V lies in L^{2} . Then we have

(2) W\displaystyle \pm f=f\mp i\int_{0}^{\infty}e^{itH}Ve^{-itH_{0}} fdt

\displaystyle \int_{1}^{\infty}\Vert e^{itH}Ve^{-itH_{0}}f\Vert_{2}dt\leq\int_{1}^{\infty}\Vert V\Vert_{2}\Vert e^{-itH_{0}}f\Vert_{\infty}dt
\displaystyle \leq \Vert V\Vert_{2}\int_{1}^{\infty}t^{-\frac{d}{2}}\Vert f\Vert_{1}dt<\infty

using the pointwise decay of the free Schrödinger evolution. Thus, the in‐
tegral in the first line converges absolutely in the  L^{2} norm (this is called
Cook’s method). By unitarity of the Schrödinger evolution, and the density
of L^{1}\cap L^{2}(\mathbb{R}^{d}) in L^{2} , we conclude that the limit exists for all f\in L^{2} and
that  W\pm are isometries. Note that the condition  V\in L^{2} is in general not
optimal in terms of decay at infinity for the existence of wave operators.

2_{\mathrm{T}\mathrm{h}\mathrm{e}} latter refers to a nontrivial solution  $\psi$ of  H $\psi$=0 which is not in L^{2} , but satisfies
other types of dimension‐dependent boundedness conditions, assuming suitable decay of
the potential V . In dimension d = 1 a resonance function is required to be bounded
‐ hence the free Laplacian exhibits a 0 energy resonance — and in dimension d = 3 \mathrm{a}

resonance function decays at the rate |x|^{-1} . In dimension d= 2 , there are two different
kinds of resonance functions, namely s‐waves and p‐waves, see [ErdGre, ErdGolGre]. If
d > 4 a resonance at 0 energy does not occur since the Newton potential is L^{2} at \infty.

Independently of the dimension this 0 energy obstruction is characterized via the Laurent
expansion of the resolvent near z=0 , cf. (9) and the discussion following it.
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It is clear that  e^{isH}W\pm = W\pm e^{isH_{0}} for all s \in \mathbb{R} , and therefore by the
Fourier transform also

f(H)W_{\pm}=W_{\pm}f(H_{0})

for Schwartz functions f . This is precisely the intertwining property. By
general properties of isometries we conclude that

(3) f(H)P=f(H)W\pm W_{\pm}^{*}=W\pm f(H_{0})W_{\pm}^{*},

where P is the orthogonal projection onto Ran (W_{\pm}) . By the dispersive
decay of the free Schrödinger evolution, one further has Ran (W_{\pm}) \perp L_{pp}^{2}.
The latter is the subspace spanned by the eigenfunctions of H . In fact,
the more precise inclusion Ran (W_{\pm})\subset L_{ac}^{2}(\mathbb{R}^{d}) (the absolutely continuous
subspace) holds. This is implied by (3), which in turn only depends on the
existence of the wave operators as strong limits.

The fundamental Asymptotic Completeness property goes beyond this
and states that Ran (W_{\pm})=L_{ac}^{2}(\mathbb{R}^{d}) and L_{sc}^{2}=\{0\} (the singular continuous
subspace). The Agmon‐Kato‐Kuroda theory of the 1960\mathrm{s} , and early 70\mathrm{s}

established that the short range condition

(4) |V(x)|\leq\langle x\rangle^{-1- $\varepsilon$}

guarantees this property, and by an earlier theorem of Kato there are no
embedded eigenvalues in the continuous spectrum [0, \infty ) for such potentials,
cf. the classical papers [Katl, KatKur, Agm, Kurl, Kur2, Kur3] and the
books [ \mathrm{R}\mathrm{e}\mathrm{e}\mathrm{S}\mathrm{i}\mathrm{m}3 , Yafl, Yaf2, Esk].

This theory is based on the Trace Lemma: for  $\gamma$> \displaystyle \frac{1}{2}
(5) \Vert\hat{f} \mathrm{r}s\Vert_{L^{2}(S)} \leq C( $\gamma$, S)\Vert\langle x\rangle^{ $\gamma$}f\Vert_{L^{2}(\mathbb{R}^{d})},
for all Schwartz functions f , where S \subset \mathbb{R}^{d} is a smooth compact hyper‐
surface. For the proof one straightens the surface locally into a plane, and
applies the estimate \Vert\hat{f}\Vert_{\infty}\leq \Vert f\Vert_{1} and Cauchy‐Schwarz. Define the restric‐
tion operator  $\rho$ f :=\hat{f} \mathrm{r} S . Then $\rho$^{*}g =\overline{g$\sigma$_{S}}, $\rho$^{*} $\rho$ f =\hat{$\sigma$_{S}}*f . The afore‐
mentioned trace lemma is therefore equivalent with the following weighted
L^{2} bound:

(6) \Vert w$\rho$^{*} $\rho$ wf\Vert_{2}\leq C( $\epsilon$, S)\Vert f\Vert_{2},

where w(x) =\langle x\rangle^{-\frac{1}{2}- $\varepsilon$}.
1.3. Limiting Absorption Principle. The bound (6) holds for the imag‐
inary parts of the free resolvents since

[(-\triangle-($\lambda$^{2}+i0))^{-1}-(-\triangle-($\lambda$^{2}-i0))^{-1}]f=c$\lambda$^{-1}\overline{$\sigma$_{ $\lambda$ \mathrm{S}^{d-1}}}*f
The Limiting Absorption Principle states that (6) remains valid for the full

resolvent, viz.

(7) \Vert w(-\triangle-($\lambda$^{2}+i0))^{-1}wf\Vert_{2}\leq C( $\lambda$)\Vert f\Vert_{2},
where C( $\lambda$)\rightarrow 0 as  $\lambda$\rightarrow\infty.
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The first step towards establishing (7) for H rather than H_{0} is the resol‐
vent identity:

R( $\lambda$)=(H-($\lambda$^{2}+i0))^{-1}=R_{0}( $\lambda$)-R_{4}( $\lambda$)VR( $\lambda$)=
(8)

= =R_{0}( $\lambda$)-R_{0}( $\lambda$)VR_{0}( $\lambda$)+R_{0}( $\lambda$)VR_{0}( $\lambda$)VR_{0}( $\lambda$)-\ldots

If  V is short range and small, then by means of this expansions R( $\lambda$) inherits
the limiting absorption principle. Indeed, split V = |V|^{\frac{1}{2}}\mathrm{s}\mathrm{i}\mathrm{g}\mathrm{n}(V)|V|^{\frac{1}{2}} =

|V|^{\frac{1}{2}}U and note that |V|^{\frac{1}{2}} has the decay required by w above. Therefore,
the infinite series is summable in the corresponding weighted L^{2} norm.

If V is large, then one cannot sum the infinite series. Instead, we treat the
first line of (8) as an implicit equation for the resolvent R( $\lambda$) , or equivalently
express the resolvent in the symmetric form

(9) R( $\lambda$)=R_{4}( $\lambda$)-R_{0}( $\lambda$)|V|^{\frac{1}{2}}(I+UR_{0}( $\lambda$)|V|^{\frac{1}{2}})^{-1}UR_{0}( $\lambda$) .

The main inversion problem to be solved now is that of the Birman‐Schwinger
operator I+UR_{4}( $\lambda$)|V|^{\frac{1}{2}} . The main conclusion of Agmon‐Kato‐Kuroda the‐
ory is that this operator does have an inverse on L^{2} for all  $\lambda$>0 . The ar‐
gument proceeds via compactness of UR_{0}( $\lambda$)|V|^{\frac{1}{2}} , the Fredholm alternative,
and the realization that the obstruction to invertibility lies with embedded
eigenvalues of H (which do not exist). The characterization of obstruc‐
tions is the most delicate step in the argument and requires showing that
embedded resonances are necessarily eigenvalues.

Zero energy  $\lambda$=0 is special and I+UR_{0}(0)|V|^{\frac{1}{2}} may be invertible on L^{2}

or not. The latter case is equivalent to zero energy being an eigenvalue or
a resonance. In the context of classical spectral theory such as asymptotic
completeness and Fourier expansions via generalized eigenfunctions with
an associated Plancherel theorem, the issue of zero energy eigenvalue or
resonance is irrelevant. Loosely speaking, this means that a zero energy
obstruction does not affect that L^{2} theory. However, for questions pertaining
to Ư with p\neq 2 (such as dispersive decay of the Schrödinger evolution of H

or Yajima’s Ư theory of the wave operators) the behavior of zero energy
has a profound effect as we will see below.

While the Fredholm approach to the limiting absorption principle is in‐
direct and thus noneffective, alternatives exist which allow for quantitative
control of the constants, see [RodTao].

2. FOURIER RESTRICTION

2.1. Stein‐Tomas theorem. In contrast to the trace lemma (5) which
does not take the curvature of the hyper‐surface into account, one has then
following classical Stein‐Tomas theorem:

Theorem 1. If S has nonzero Gaussian curvature, then

(10) \Vert\hat{f} \mathrm{r}S\Vert_{L^{2}(S)}\leq C\Vert f\Vert_{L^{\mathrm{p}_{d}}(\mathbb{R}^{d})}, p_{d}=(2d+2)/(d+3) .
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To motive this result, note the trivial bound:

\Vert\hat{f} |S\Vert_{L^{2}(S)} \leq C\Vert f\Vert_{Lp(\mathbb{R}^{d})}, p=1
for any compact surface S . This is false if p=2 by the Plancherel theorem.
It is natural to ask: could there exist some 1<p<2 for which this remains

true? If S (a piece of) a plane, then the answer is clearly “no”, since this
reduces to one variable for which we need that \hat{f} to be continuous. It turns

out, however, that for nonvanishing curvature the answer is “yes” To see
this, define the restriction operator  $\rho$ f := \hat{f} | S . Its dual is given by the
inverse Fourier transform

$\rho$^{*}g=\overline{g$\sigma$_{S}},

and $\rho$^{*} $\rho$ f=\check{$\sigma$_{S}}*f . The Stein‐Tomas theorem is equivalent to the following
bound (“factoring through L^{2}

(11) T:=$\rho$^{*} $\rho$:L^{p_{d}}(\mathbb{R}^{d})\rightarrow L^{p_{d}'}(\mathbb{R}^{d})

For the sake of completeness we recall the main elements of the proof. First,
we show how to cover the range p\rightarrow p' with p<\mathrm{P}d . Write

T=\displaystyle \sum_{j}T_{j}, T_{j}f=\check{$\sigma$_{S}}$\chi$_{[|x|\simeq 2^{j}]}*f, j\geq 0.
Then

(12) \Vert T_{j}\Vert_{1\rightarrow\infty}\leq 2^{-j\frac{d-1}{2}}, \Vert T_{j}\Vert_{2\rightarrow 2}\leq 2^{jd}2^{-j(d-1)} =2^{j}
The first bound uses the decay of the Fourier transform of the surface
measure. By means of stationary phase, this is a consequence of the non‐
degeneracy of the second fundamental form, i.e., the non‐vanishing of the
Gaussian curvature: |\check{ $\sigma$ s}( $\xi$)| \leq C\langle $\xi$\rangle^{-\frac{d-1}{2}} By Plancherel’s theorem the sec‐
ond bound in (12) reduces to the size of the intersection of a small ball with
a hyper‐surface and does not use curvature.

By interpolation |T_{j}\Vert_{p\rightarrow p'} \sim< 1 where  $\theta$- (1- $\theta$)(d- 1)/2 = 0 , and
 1/p= $\theta$/2+1- $\theta$ . This gives exactly  p= (2d+2)/(d+3) =p_{d} . For p<p_{d}

one gains a convergent geometric factor 2^{-j $\delta$} with some  $\delta$ =  $\delta$(p) > 0.

To compensate for the divergence at the critical value p = p_{d} , one can
invoke Stein complex interpolation, which is a method for summing divergent
series. Loosely speaking, the idea is to sum first with complex weights and
then interpolate, rather than first interpolate and then sum. More strictly
speaking, one embeds the operator T into a family depending analytically
on a complex parameter.

The Stein‐Tomas theorem is sharp, as can be seen by the Knapp example:
let f =$\chi$_{K} be smoothed out indicator function of the cap K\subset \mathbb{S}^{d-1} of
diameter  $\delta$ . Then |f$\sigma$_{\mathrm{S}^{d-1}}| behaves (up to tails) like an indicator function
of a cylinder of dimensions R^{2}\times R\times\cdots\times R\times R of height R^{-(d-1)}, R=$\delta$^{-1}

This exactly balances the inequality \Vert\hat{f $\sigma$}\Vert_{p_{d}'}\leq \Vert f\Vert_{L^{2}(\mathrm{S}^{d-1})}.
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2.2. Strichartz estimates. Before discussing applications of the Stein‐
Tomas theorem to spectral theory and the intertwining operators (1) we
point out the close connection between the Fourier restriction theory and
another of Tosio Kato’s main interests, namely nonlinear dispersive evolu‐
tion equations. To be specific, consider the Schrödinger flow

 e^{-it\triangle}f(x)=\displaystyle \int_{\mathbb{R}^{d}}e^{ix\cdot $\xi$}e^{it| $\xi$|^{2}}\hat{f}( $\xi$)d $\xi$
=\displaystyle \int_{\mathbb{R}^{d+1}}e^{i(x\cdot $\xi$+t $\tau$)} $\delta$( $\tau$-| $\xi$|^{2})\hat{f}( $\xi$)d $\xi$ d $\tau$=(\hat{f} $\mu$)^{\sim}

where  $\mu$ is the measure on the paraboloid  $\tau$=| $\xi$|^{2} given by d $\xi$.
By the Stein‐Tomas, with increased dimension d\rightarrow d+1 , we obtain

(13) \displaystyle \Vert e^{-it $\Delta$}f\Vert_{L_{t,x}^{q}(\mathbb{R}^{d+1})} \leq \Vert\hat{f}\Vert_{L^{2}( $\mu$)} = \Vert f\Vert_{L^{2}(\mathbb{R}^{d})}, q=2+\frac{4}{d}
Notice an essential difference between (13) and the Stein‐Tomas theorem.
While in the latter the surface is compact, here it is not. Therefore one
needs to scale a compact piece of the paraboloid to the full one. This is an
example of many Strichartz estimates, and similar ones hold for the wave
equation, cf. [KeeTao]. For the latter the characteristic surface is a cone
with one vanishing principal curvature, so there is a “loss”’ of one dimension.
In addition, there is a singularity at the origin, which brings in Littlewood‐
Paley theory in order to sum the contributions coming from dyadic pieces
of the cone, see [Str] for the original reference.

To illustrate the usefulness of this type of estimate consider the example
of an L^{2}(\mathbb{R}^{d}) critical nonlinear Schrödinger equation

i\partial_{t} $\psi$-\triangle $\psi$=\pm| $\psi$|^{\frac{4}{d}} $\psi$,  $\psi$(0)=$\psi$_{0}\in L^{2}

It is invariant under the scaling $\psi$_{0}(x)\rightarrow$\lambda$^{\frac{d}{2}}$\psi$_{0}( $\lambda$ x) ,  $\psi$(t, x)\rightarrow$\lambda$^{\frac{d}{2}} $\psi$($\lambda$^{2}t,  $\lambda$ x) .
This PDE reduces to an integral equation via Duhamel’s formula, to wit

 $\psi$(t)=e^{-it\triangle}$\psi$_{0}\displaystyle \mp i\int_{0}^{t}e^{-i(t-s) $\Delta$}| $\psi$|^{\frac{4}{d}} $\psi$(s)ds
(14)

\displaystyle \Vert $\psi$(t)\Vert_{2}\leq \Vert$\psi$_{0}\Vert_{2}+\int_{0}^{t}\Vert $\psi$(s)\Vert_{L^{2\mathrm{p}}}^{p}ds, p=1+\frac{4}{d}
By the contraction mapping principle, the Strichartz estimate

\Vert e^{-it\triangle}$\psi$_{0}\Vert_{L_{t}^{\mathrm{p}}L_{x}^{2p}}\leq \Vert$\psi$_{0}\Vert_{2}
allows us to find a unique fixed point of the integral equation (14) in the
space C(\mathbb{R}, L^{2}(\mathbb{R}^{d})) \cap L_{t}^{p}L_{x}^{2p}(\mathbb{R}^{1+d}) for small data. See [Tao2, Bou] for
introductions to the vast subject of nonlinear dispersive equations.
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2.3. Finer restriction properties. The Stein‐Tomas theorem (10) is op‐
timal for L^{2} restriction. The appearance of L^{2} is essential since it allows one
to factor through that space in a T^{*}T argument, cf. (11) and (6). In the
applications to spectral theory this aspect is also relevant, since it is mostly
this operator which arises, rather than restriction itself.

For the sake of completeness we nevertheless formulate the analogue
of (10) without L^{2} on the left‐hand side. The fundamental restriction
conjecture states that in dimensions 3 and higher

\displaystyle \Vert\overline{f$\sigma$_{S}}\Vert_{L^{q}(\mathbb{R}^{d})}\leq \Vert f\Vert_{L^{\infty}(S)}, q>\frac{2d}{d-1}
(15)

or \leq \Vert f\Vert_{L^{\mathrm{p}}(S)}, p'\displaystyle \leq\frac{(d-1)q}{d+1}
where S \subset \mathbb{R}^{d} is the sphere or another compact surface with nonzero
curvature. The range of q here is optimal by the decay estimate |\hat{ $\sigma$ s}( $\xi$)| \leq

\langle $\xi$\rangle^{-\frac{d-1}{2}} , and the range of p in the second line of (15). If true, the conjecture
(15) would imply optimal bounds on the Hausdorff dimension of Kakeya‐
Besicovitch sets (namely that they have full dimension equal to that of
the ambient space). There are other remarkable connections with number
theory, and additive combinatorics. It is fair to say that this conjecture, its
ramifications, and other geometric/combinatorial problems connected with
it such as the Erdös distance set problem, have been the driving force behind
the development of harmonic analysis over the past 20 years or so. For many
aspects of the modern theory and numerous references, see [Gut], and for a
more classical survey cf. [Tao], [Wol]. In the plane, the restriction conjecture
as well as the dimension of Kakeya sets are known.

3. SCATTERING THEORY AND FOURIER RESTRICTION

We now describe a rendition of Agmon‐Kato‐Kuroda based on the Stein‐
Tomas theorem (10) rather than the trace lemma (5). The starting point is
again the formula for the imaginary part of the resolvent, i.e., the relation

[(-\triangle-($\lambda$^{2}+i0))^{-1}-(-\triangle-($\lambda$^{2}-i0))^{-1}]f=c$\lambda$^{-1}\overline{$\sigma$_{ $\lambda$ \mathrm{S}^{d-1}}}*f.

Note that the right‐hand side is precisely of the form as it appears in
the T^{*}T formulation of the Stein‐Tomas theorem, and thus satisfies the
estimate (11). Kenig, Ruiz, Sogge [KenRuiSog] established the same bound
for the full resolvent R_{0}( $\lambda$) , viz.

(16) \Vert(-\triangle-($\lambda$^{2}+i0))^{-1}\Vert_{L^{p_{d}}(\mathbb{R}^{d})\rightarrow L^{p_{d}'}(\mathbb{R}^{d})} \leq C$\lambda$^{-\frac{2}{d+1}}
As before, the question is how to transfer this result to the perturbed resol‐
vent. To formulate the main result from [IonSch] to this effect we introduce
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the following operators and spaces:

M_{q}(f)(x) := [\displaystyle \int_{|y|\leq 1/2}|f(x+y)|^{q}dy]^{\frac{1}{q}}, q=\max(\frac{d}{2},1+)
(17)

\displaystyle \Vert V\Vert_{Y}:=\sum_{j=0}^{\infty}2^{j}\Vert V\Vert_{L^{\infty}(D_{j})} <\infty, M_{q}V\in L^{\frac{d+1}{2}}(\mathbb{R}^{d})
Here D_{j} are the usual dyadic shells for j \geq  1 and D_{0} is the unit ball at
the origin. The effect of the M_{q} operator is to distinguish between local
singularities and decay at infinity. The Agmon‐Kato‐Kuroda theory on
the basis of the Stein‐Thomas type theorem (16) takes the following form.

Theorem 2. Let V be real‐valued, and suppose that V = V_{1} +V_{2} with
constituents sati_{\mathcal{S}}fying either of the conditions in (17). Then the spectrum
is purely absolutely continuous, i. e., $\sigma$_{ac} = [0, \infty ), there is no singular
continuous spectrum, the pure point spectrum lies in (-\infty, 0], and is discrete
in (-\infty, 0) , the eigenfunctions decay rapidly, and the wave operators  W\pm
exist and are complete. Moreover, a suitable limiting absorption principle
holds based on the spaces in (17).

See the paper [IonSch] for a precise statement of the limiting absorp‐
tion principle. Magnetic potentials are also admissible for this theorem,
but we did not include them for the sake of simplicity. Note that the
condition  M_{\frac{d}{2}}V \in  L\displaystyle \frac{d+1}{2}(\mathbb{R}^{d}) is weaker in terms of decay at infinity than

V\in L^{\frac{d}{2}}(\mathbb{R}^{d}) and sharp for d\geq 3 . The latter follows from an example given
in [IonJer] of a potential V\in\ovalbox{\tt\small REJECT} (\mathbb{R}^{d}),p> \displaystyle \frac{d+1}{2} with embedded eigenvalues,
and anisotropic decay

|V(x)|\simeq(1+|x_{1}|+|x'|^{2})^{-1}
Earlier, [GolSch] had established the following limiting absorption principle
for L^{\frac{3}{2}} potentials in three dimensions:

Theorem 3. Let V\in\ovalbox{\tt\small REJECT} (\mathbb{R}^{3})\cap L^{\frac{3}{2}}(\mathbb{R}^{3}) , p> \displaystyle \frac{3}{2} be real‐valued. Then for every
$\lambda$_{0}>0 , one has

(18) \displaystyle \sup_{0< $\varepsilon$<1, $\lambda$\geq$\lambda$_{0}}\Vert(-\triangle+V-($\lambda$^{2}+i $\varepsilon$))^{-1}\Vert_{\frac{4}{3}\rightarrow 4}\leq C($\lambda$_{0}, V)$\lambda$^{-\frac{1}{2}}.
In particular, the spectrum of-\triangle+V is purely absolutely continuous on
(0, \infty) .

Crucial to both Theorem 2 and 3 is the absence of embedded eigenvalues.
As discussed above, in the classical weighted L^{2} context one uses Kato’s
theorem for that purpose which applies to short‐range potentials (4) (which
is sharp in terms of point‐wise decay by the famous Wigner, von Neumann
potential [FraSim]). The results of this section, however, require a result on
the absence of embedded eigenvalues that only assumes an integrability con‐
dition on V . One such result was obtained by Ionescu and Jersion [IonJer],
namely:
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Theorem 4. Let V \in  L^{\frac{3}{2}}(\mathbb{R}^{3}) . Suppose u \in  W_{1\mathrm{o}\mathrm{c}}^{1,2}(\mathbb{R}^{3}) satisfies (-\triangle+
V)u = $\lambda$^{2}u where  $\lambda$ \neq  0 in the sense of distributions. If, moreover, \Vert(1+
|x|)^{ $\delta$-\frac{1}{2}}u\Vert_{2}<\infty for some  $\delta$>0 , then u\equiv 0.

See also [FraSim]. The weighted L^{2}‐condition with  $\delta$ > 0 is natural in
view of the Fourier transform of the surface measure of \mathbb{S}^{2} , which is a gen‐
eralized eigenfunction of the free case and decays like (1+|x|)^{-1} . Koch and
Tataru [KocTat] improved on this result and established absence of embed‐
ded eigenvalues assuming only V\displaystyle \in L\frac{d+1}{2}(\mathbb{R}^{d}) as in (17), which is crucial for
the validity of Theorem 2.

In closing let us mention other applications of Fourier restriction theory to
the spectral theory of random operators. In [Boul] the almost sure existence
and asymptotic completeness of wave operators is shown for the random
lattice model

H_{ $\omega$}=-\displaystyle \triangle_{\mathbb{Z}^{2}}+\sum_{n\in \mathbb{Z}^{2}}$\beta$_{n}$\omega$_{n}$\delta$_{n}
where $\beta$_{n} is a decaying weight (1+|n|)^{-\frac{1}{2}- $\varepsilon$} and $\omega$_{n} are i.i. \mathrm{d} . random vari‐
ables such as Bernoulli. As usual, $\delta$_{n} are the Dirac measures. For technical
reasons, Bourgain excludes energies near 0 and near the band edges. Even
though his result is formulated in the plane, the method of proof extends
to all dimensions, albeit at the expense of possibly having to exclude more
energies due to more complicated and singular Fermi surfaces. The ran‐
domness therefore allows one to save half of a power of decay as compared
to the short range condition (4). Interestingly, this work does not invoke
the Stein‐Tomas theorem, but relies more on the trace lemma and entropy
bounds from the probabilistic theory of Banach spaces (dual Sudakov in‐
equality).

In the follow up paper [Bou2], the Stein‐Tomas theorem is used explicitly
to replace the point‐wise decay by an \ell^{p} decay condition on the potential. He
also makes an interesting reference to invoking the sharp two‐dimensional
restriction theory (i.e., the restriction conjecture in the plane, known as
Carleson‐Sjölin or Zygmund theorem) in order to carry out a rigorous renor‐
malization procedure. To the best of the author’s knowledge this has not
been carried out yet. It remains to be seen if the modern and much more
advanced Fourier restriction theory alluded to in the previous section can be
applied to spectral theory, especially in the context of the Anderson model.

4. YAJIMA’S Ư THEORY FOR THE INTERTWINING OPERATOR

In the 1990\mathrm{s} Kenji Yajima initiated a far‐reaching investigation of the Ư
boundedness properties of the wave operators (1). His starting point was
the stationary representation of the wave operators due to Kato [Katl]. We
cannot give a complete account here of the results [\mathrm{Y}\mathrm{a}\mathrm{j}\mathrm{l}]-[\mathrm{Y}\mathrm{a}\mathrm{j}4] , [ArtYaj],
[Wed] but instead state some representative theorem: one has the bounded‐
ness W_{\pm} :Ư (\mathbb{R}^{3})\rightarrow\ovalbox{\tt\small REJECT} (\mathbb{R}^{3}) , for all  1\leq p\leq\infty , provided |V(x)| \leq\langle x\rangle^{-5- $\varepsilon$}

106



W. SCHLAG

and provided there is no zero energy eigenvalue or resonance. The latter
assumption is essential as we will see in the next paragraph. In fact, if zero
energy is singular, then the wave operators are Ư (\mathbb{R}^{3}) bounded only in the
smaller range 3/2<p<3 , and provided one has the decay |V(x)| \leq\langle x\rangle^{-6- $\epsilon$ \mathrm{i}}.

Similar results hold in higher dimensions, but not only is more decay
required, but some regularity on the potential is needed as well. Low di‐
mensions behave differently, and boundedness at p=1, \infty is lost for the line
and the plane. This has to do with the appearance of a Hilbert transform
in the kernel representation of the wave operators.

Apart from its intrinsic interest in terms of shedding more light on the
nature of the wave operators, Yajima’s theory provides a very quick way of
obtaining dispersive estimates for operators with a potential from the free
case. To be more specific, consider the evolution  e^{it $\Phi$(H)}P_{c}(H) where  $\Phi$ is a
polynomial, say or some other function taking  H to the self‐adjoint operator
 $\Phi$(H) , and P_{c}(H) is the projection onto the absolutely continuous spectrum
(we have asymptotic completeness of H). As usual,  H_{0}=-\triangle . Then

 e^{it $\Phi$(H)}P_{c}(H)=We^{it $\Phi$(H_{0})}W^{*}
allows one to transfer Ư or Strichartz estimates from H_{0} to H provided
0 energy is regular, simply by bounding W and W^{*} by their Ư operator
norms. The importance of the 0 energy condition is implied by this, too.
For example, in three dimensions one has

(19) \Vert e^{itH}f\Vert_{\infty}\leq \Vert W\Vert_{\infty\rightarrow\infty}\Vert W\Vert_{1\rightarrow 1}Ct^{-\frac{3}{2}}\Vert f\Vert_{1},  f\perp bound states

This is known to fail in the presence of a  0 energy obstruction. In fact, \mathrm{a}

whole power of t is lost from the decay in that case, cf. [JenKat], [Rau],
[Murl, Mur2], [JouSofSog].

In some applications it might not be possibly to invoke the Ư theory of
W_{\pm} to two reasons: (i) the assumptions on potential are too strong (ii) in
some nonlinear applications 0 energy singularities do arise.

Both of these issues occur for example in Krieger’s work with the au‐
thor [KriSch]. This work deals with the conditional (in the spirit of a center‐
stable manifold) asymptotic stability analysis of an unstable soliton for the
energy critical radial nonlinear wave equation

u_{tt}-\triangle u-u^{5}=0

in \mathbb{R}_{t,x}^{1+3} The unique radial stationary \dot{H}^{1}(\mathbb{R}^{3}) solution to this equation is

the Aubin‐Talenti solution W(x)=(1+|x|^{2}/3)^{-\frac{1}{2}} and its rescalings W_{ $\lambda$}(x)=
$\lambda$^{\frac{1}{2}}W( $\lambda$ x) . The linearization about W leads to the operator

H=-\triangle-5W^{4}(x)

which has the 0 energy resonance given by  $\psi$(x)=\partial_{ $\lambda$}|_{ $\lambda$=1}W_{ $\lambda$}(x) . Note that

 H $\psi$ = 0 and  $\psi$(x) \sim |x|^{-1} as x \rightarrow \infty . So  $\psi$ is indeed not a  0 energy
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eigenfunction, but rather a resonance. In addition, H has a unique negative
eigenvalue.

It is shown in [KriSch] that the wave evolution \displaystyle \frac{\sin(\sqrt{H}t)}{\sqrt{H}}P_{c}(H) does not
decay at the free rate t^{-1} ; rather, along the resonance it does not decay
at all. However, after subtracting the rank 1 operator  $\psi$\otimes $\psi$ , the free rate
of  t^{-1} is regained. Such results currently fall outside of the scope of the
wave operator results, and require a direct approach based on the Laurent
expansion of the resolvent near 0 . On the other hand, energies bounded
away from 0 are not so much the issue here, and can be dealt with in a more
general fashion.

4.1. Yajima’s proof, expansion of the wave operators. In the remain‐
der of this section we present some of the essential steps in Yajima’s analysis
of  W\pm in three dimensions. Relying on the time‐dependent representation
of the wave operators as in (2), we iterate the Duhamel formula to obtain
the expansion, formally at first,

 Wf=f+W_{1}f+\ldots+W_{n}f+\ldots,

W_{1}f=i\displaystyle \int_{t>0}e^{-it\triangle}Ve^{it $\Delta$} fdt, . . .

 W_{n}f=i^{n}\displaystyle \int t>s_{1}>\ldots>s_{n-1}>0^{e^{-i(t-s)\triangle}Ve^{-i(s1-s2}V}1) $\Delta$\ldots
 e^{-is_{n-1} $\Delta$}Ve^{it\triangle} fdt dsl. . . ds_{n-1}

for all f\in L^{2} . There are a number of ways in which one might justify this
series expansion rigorously (which is nothing other than the Dyson series).
One elegant, and essentially optimal way in terms of the conditions on V,
would be to use the Keel‐Tao Strichartz endpoint (in \mathbb{R}^{3} ) which is of the
form

\Vert e^{itH_{0}}f\Vert_{L_{t}^{2}L_{x}^{6,2}} \sim< ||f\Vert_{L^{2}}

\displaystyle \Vert\int_{\mathbb{R}}e^{-isH_{0}}F(s)ds\Vert_{L_{x}^{2}} \leq \Vert F\Vert_{L_{t}^{2}L_{x}^{6/5,2}},
see [KeeTao]. The spaces Ư,q are the Lorentz spaces, see for example [BerLöf| .
The operator acting by multiplication by the potential V satisfies

V:L_{x}^{6,2}(\mathbb{R}^{3})\rightarrow L_{x}^{6/5,2}(\mathbb{R}^{3})

provided V\in L^{\frac{3}{2},\infty}(\mathbb{R}^{3}) (the weak L^{\frac{3}{2}}(\mathbb{R}^{3}) space). We thus conclude that
the Dyson series converges in L^{2}(\mathbb{R}^{3}) if the potential is small \Vert V\Vert_{3/2,\infty} \ll 1.

We remark that the L^{\frac{3}{2}}(\mathbb{R}^{3}) condition on V enjoys a special significance.
It is precisely the scaling invariant space associated with the Schrödinger
operator, which has the underlying scaling V \rightarrow $\lambda$^{2}V( $\lambda$ x) . This is valid

in all dimensions, and the invariant norm under this symmetry is L^{\frac{d}{2}}(\mathbb{R}^{d}) .
In terms of power law decay, the critical (scaling invariant) fall off rate
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is |x|^{-2} . The importance of this threshold is well‐known, see for exam‐
ple [BurPlaStaTahl, BurPlaStaTah2] in the context of linear dispersive es‐
timates. It is important to note the difference between the |x|^{-1} threshold
in the short range condition (4) and the aforementioned |x|^{-2} decay which
is critical relative to scaling. Loosely speaking, the former is the natural
decay rate for the scattering theory which hinges on the resolvent for large
or at least positive energies, whereas the latter is the cutoff for the disper‐
sive theory for which the 0 energy behavior of the resolvent is the deciding
factor.

If V is not small, then the infinite series is much more delicate. One
option is to truncate, i.e.,

(20) Wf=f+W_{1}f+\ldots+W_{n-1}f+\tilde{W}_{n}f

where

\displaystyle \tilde{W}_{n}f=i^{n}\int_{t>s_{1}>\ldots>s_{n-1}>0^{e^{i(t-s1)(-\triangle+V)}Ve^{-i(s-s)\triangle}V}}12\ldots
 e^{-is_{n-1}\triangle}Ve^{it\triangle}fdt dsl. . . ds_{n-1}

In other words, the perturbed evolution remains in the Duhamel formula
(but it need not appear in the first position, and can be moved to the right).
This is the approach chosen in [Yajl]. It leads to losses in terms of the
decay of V . In the following section we will present Wiener’s theorem in
convolution algebras as a summation method for this infinite series.

4.2. Representations of the summands W_{n} . Following Yajima, we now
exhibit the structure of the individual terms W_{n} in (20) in order to show
how Ư boundedness arises. First we introduce convergence factors e^{- $\epsilon$ t} in
the Duhamel expansion, i.e., we introduce the regularized operators

(21)  W_{n+}^{ $\epsilon$}f:=i^{n}\displaystyle \int_{0\leq t_{1}\leq\ldots\leq t_{n}}e^{i(t_{n}-t_{n-1})H_{0}- $\varepsilon$(t_{n}-t_{n-1})}V\ldots
 e^{i(t_{2}-t_{1})H_{0}-\in(t_{2}-t_{1})}Ve^{it_{1}H_{0}- $\varepsilon$ t_{1}}Ve^{-it_{n}H_{0}}fdt_{1} . . . dt_{n},

together with

(22) W_{+}^{ $\epsilon$} =I+i\displaystyle \int_{0}^{\infty}e^{itH- $\epsilon$ t}Ve^{-itH_{0}}dt.
for  $\varepsilon$>0 . Taking Fourier transforms then yields, for V, f, g Schwartz func‐
tions:

\langle W_{n}^{ $\varepsilon$}f, g\rangle=

(23)

\displaystyle \frac{(-1)^{n}}{(2 $\pi$)^{3}}\int_{\mathbb{R}^{3(n+}}\frac{\prod_{l=1}^{n}\hat{V}($\xi$_{\ell}-$\xi$_{\ell-1})d$\xi$_{1}\ldots d$\xi$_{n-1}}{1)\prod_{\ell=1}^{n}(| $\eta$+$\xi$_{\ell}|^{2}-| $\eta$|^{2}+i $\epsilon$)}\hat{f}( $\eta$)\overline{\hat{g}}( $\eta$+$\xi$_{n})d $\eta$ d$\xi$_{n}
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as well as

\displaystyle \langle W_{1+}^{ $\varepsilon$}f, g\rangle=-\frac{1}{(2 $\pi$)^{3}}\int_{\mathbb{R}^{6}}\frac{\hat{V}( $\xi$)}{| $\eta$+ $\xi$|^{2}-| $\eta$|^{2}+i $\varepsilon$}\hat{f}( $\eta$)\overline{\hat{g}}( $\eta$+ $\xi$)d $\eta$ d $\xi$(24)

=\displaystyle \int_{\mathbb{R}^{6}}K_{1}^{ $\epsilon$}(x, x-y)f(y)dy\overline{g}(x)dx
The reason for writing K(x, x-y) rather than K(x, y) in the previous line
lies with the fact that we obtain a cleaner expression for this kernel. In fact,
one has

K_{1}^{ $\epsilon$}(x, z)=c|z|^{-2}\displaystyle \int_{0}^{\infty}e^{-is\hat{z}\cdot(x-z/2)}\hat{V}(-s\hat{z})e^{- $\varepsilon$\frac{|z|}{2s}} sds, \hat{z}=z/|z|

K_{1}(x, z)=c|z|^{-2}L(|z|-2x\displaystyle \cdot\hat{z}, z L(r,  $\omega$)=\int_{0}^{\infty}\hat{V}(-s\hat{z})e^{i\frac{rs}{2}} sds

where we passed to the limit  $\varepsilon$ \rightarrow  0 in the last line. The details of these
computations can be found in [BecSchl].

4.3. The structure of W_{1} in \mathbb{R}^{3} . Denote by S_{ $\omega$}x :=  x-2( $\omega$\cdot x) $\omega$ the
reflection about the plane  $\omega$^{\perp} . In view of the preceding,

(W_{1}f)(x)=\displaystyle \int_{0}^{\infty}\int_{\mathrm{S}^{2}}L(r-2 $\omega$\cdot x,  $\omega$)f (x — rw )  drd $\omega$

=\displaystyle \int_{\mathrm{S}^{2}}\int_{\mathbb{R}}1_{[r>-2 $\omega$\cdot x]}L(r, $\omega$)f(S_{ $\omega$}x-r $\omega$)drd $\omega$
=\displaystyle \int_{\mathrm{S}^{2}}\int_{\mathbb{R}^{3}}g_{1}(x, dy,  $\omega$)f(S_{ $\omega$}x-y)d $\omega$

Therefore, with \mathcal{H}_{\ell_{ $\omega$}}^{1} the Hausdorff measure on the line along  $\omega$,

g_{1}(x, dy,  $\omega$):=\mathrm{I}_{[(y+2x)\cdot $\omega$>0]}L(y\cdot $\omega$,  $\omega$)\mathcal{H}_{\ell_{ $\omega$}}^{1} (dy )

(25) \displaystyle \int_{\mathrm{S}^{2}}\Vert g_{1}(x, dy,  $\omega$)\Vert_{\mathcal{M}_{y}L_{x}^{\infty}}d $\omega$\leq\int_{\mathrm{S}^{2}}\int_{\mathbb{R}}|L(r,  $\omega$)|drdu= : \Vert L||

\Vert W_{1}f\Vert_{p}\leq \Vert L\Vert\Vert f\Vert_{p}

This shows that (i) W_{1} acts as a weighted average of translations and reflec‐
tions (ii) W_{1} is therefore Ư bounded uniformly in p provided L has finite
norm as above.

4.4. Bounding L . We now address the boundedness of the function L,
cf. (25). Define

\displaystyle \Vert f\Vert_{B^{ $\beta$}} := \Vert \mathrm{I}_{[|x|\leq 1]}f\Vert_{2}+\sum_{j=0}^{\infty}2^{j $\beta$}\Vert jj+1
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Then \dot{B}^{\frac{1}{2}}\rightarrow L^{\frac{3}{2},1}(\mathbb{R}^{3}) , \dot{B}^{1}\hookrightarrow L^{\frac{6}{5},1}(\mathbb{R}^{3}) , and

\Vert L(r,  $\omega$)\Vert_{L_{r, $\omega$}^{2}} \leq \Vert V\Vert_{L^{2}}

\Vert L(r,  $\omega$)\Vert_{L_{r, $\omega$}^{1}} \displaystyle \leq\sum_{k\in \mathbb{Z}}2^{k/2}\Vert \mathrm{I}_{[2^{k},2^{k+1}]}(|r|)L(r,  $\omega$)\Vert_{L_{r, $\omega$}^{2}} \leq \Vert V\Vert_{\dot{B}^{1}}2 \sim< \Vert V\Vert_{B^{1}} $\Sigma$

Hence,  U boundedness of W_{1} holds under the scaling invariant condition

||V\Vert_{\dot{B}2}1 < \infty (in particular, it is enough if \Vert V\Vert_{L^{3}(\mathbb{R}^{3})}2^{1} < \infty ). As far as the
higher terms  W_{2} etc. are concerned, Yajima showed that for small potentials
in the sense \Vert V\Vert_{B^{1+ $\varepsilon$}} \ll  1 one has

\Vert W_{n}f\Vert_{p}\leq C^{n}|V||_{B^{1+\in}}^{n}\Vert f\Vert_{p}

Note that this is off the scaling critical value by \displaystyle \frac{1}{2}+ $\epsilon$ . The Dyson series
(20) can thus be summed in the Ư operator norm leading to the full re‐
sult for small potentials in  B^{1+ $\epsilon$}(\mathbb{R}^{3}) . For large potentials losses appear by
terminating the expansion as in (20), which is why one ends up with the
stronger decay requirement |V(x)| \leq \langle x\rangle^{-6- $\epsilon$} . This is due to the presence
of the perturbed evolution e^{itH} in the final term \tilde{W}_{n} . For large enough n,

the many free evolutions appearing in that term have a regularizing effect.

5. STRUCTURE THEOREMS

In this section we discuss the following two results from [BecSchl, \mathrm{B}\mathrm{e}\mathrm{c}\mathrm{S}\mathrm{c}\mathrm{h}2 ].
They establish that the full wave operator retains a structure similar to that
of W_{1} above for large potentials, albeit under a stronger condition on V than
we needed for W_{1}.

Theorem 5 (Beceanu‐S. 16). Let V \in  B^{1+} real‐valued, and assume that
zero energy is regular for H = -\triangle+V (i.e. , no eigenvalue or re\mathcal{S} onance
at 0) . There exists g(x, dy,  $\omega$)\in L_{ $\omega$}^{1}\mathcal{M}{}_{y}L_{x}^{\infty} with

\displaystyle \int_{\mathrm{S}^{2}}\Vert g(x, dy,  $\omega$)\Vert_{\mathcal{M}_{y}L_{x}}\infty d $\omega$<\infty
(W_{+}f)(x)=f(x)+\displaystyle \int_{\mathrm{S}^{2}}\int_{\mathbb{R}^{3}}g(x, dy,  $\omega$)f(S_{ $\omega$}x-y)d $\omega$.

Suppose X is a Banach space of measurable functions on \mathbb{R}^{3} , which is in‐
variant under translations and reflections, and so that Schwartz functions
are den\mathcal{S}e (or dense in Y with X=Y^{*}). Assume \Vert 1_{H}f\Vert_{X} \leq A\Vert f\Vert_{X} for all
half spaces H\subset \mathbb{R}^{3} and f\in X with some uniform constant A. Then

\Vert W_{+}f\Vert_{X}\leq AC(V)\Vert f\Vert_{X} \forall f\in X

where C(V) is a constant depending on V alone.

In particular, one has Ư (\mathbb{R}^{3}) boundedness uniformly in 1 \leq  p \leq \infty.

This theorem is sharp in several ways. On the one hand, it cannot hold in
dimension d=1 since Ư boundedness fails at p=1 and  p=\infty by [Wed]. It
presumable also fails in the plane. On the other hand, the assumption that  0
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energy is regular is essential, too. Otherwise we might deduce dispersive
decay for e^{itH}P_{c} which is known to fail, see the discussion around (19). \mathrm{A}

quantitative version of the previous theorem is also available.

Theorem 6 (Beceanu‐S. 17). Let V\in B^{1+2 $\gamma$},  0< $\gamma$ , with the same  0 energy
hypothesis as above. Then

\displaystyle \int_{\mathrm{S}^{2}}\Vert g(x, dy,  $\omega$)\Vert_{\mathcal{M}_{y}L_{x}^{\infty}} dcu \leq C_{0}(1+\Vert V\Vert_{B^{\mathrm{i}+2 $\gamma$}})^{38+\frac{105}{ $\gamma$}}(1+M_{0})^{4+\frac{3}{ $\gamma$}}
(26)

sup \mathrm{s}\mathrm{u}\mathrm{p}\Vert(I+R_{0}(| $\eta$|^{2}\pm i\in)V)^{-1}\Vert_{\infty\rightarrow\infty}=:M_{0}<\infty
 $\eta$\in \mathbb{R}^{3} $\epsilon$ \mathrm{i}>0

where C_{0} absolute constant.

We make the following remarks:
\bullet  0 energy regular means exactly that

M_{00}:=\Vert(I+(-\triangle)^{-1}V)^{-1}\Vert_{\infty\rightarrow\infty}<\infty.
It is shown in [BecSchl] that this is equivalent to the definition

by [JenKat]. Moreover, it is established in loc. cit. that under this
assumption M_{0} < oo. This relies on the results of Section 3, in
particular on Theorem 2 and thus depends on Stein‐Tomas type
Fourier restriction bounds.

\bullet It would be desirable to bound  M_{0} through M_{00} and the size of V

in some sense. The control of M_{0} is not effective, see the discus‐
sion above about the limiting absorption principle, and the effective
estimates of [RodTao].

\bullet These results fall short by more than \displaystyle \frac{1}{2} from the scaling invariant
class \dot{B}^{\frac{1}{2}} . It is not clear how to avoid this loss within the frame‐

work of [BecSchl]. It is conceivable that the methods are optimal
assuming only decay of V , and thus a scaling invariant condition on
V leading to a structure result as above would need to involve spaces
which measure more than decay in L^{2} along dyadic shells. At the
end of this note we state the result from [BecSch2] which builds such
a space, but only for small V.

\bullet It is likely that Theorem 5 remains valid in  B^{1} , but no quantitative
analogue of it as in Theorem 6 would then hold (within the confines
of the methods of [BecSchl, \mathrm{B}\mathrm{e}\mathrm{c}\mathrm{S}\mathrm{c}\mathrm{h}2

\bullet A version of Theorem 5 should hold in higher dimensions.
For the remainder of this paper we give some indications of the meth‐

ods involved in proving these theorems, in particular, the Wiener inversion
technique.

5.1. Wiener algebra and inversion. We cannot sum the Dyson series (20).
Instead we use Beceanu’s operator‐valued Wiener formalism, cf. [Bec, BecGol].
First recall the classical Wiener theorem for the convolution algebra on the
line.
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Proposition 7. Let  f\in L^{1}(\mathbb{R}^{d}) . There exists g\in L^{1}(\mathbb{R}^{d}) with

(27) (1+\hat{f})(1+\hat{g})=1 on \mathbb{R}^{d}

iff 1+\hat{f}\neq 0 everywhere. Equivalently, there exists g\in L^{1}(\mathbb{R}^{d}) so that

(28) ($\delta$_{0}+f)*($\delta$_{0}+g)=$\delta$_{0}

iff 1+\hat{f}\neq 0 everywhere on \mathbb{R}^{d} . The function g is unique.

There are two critical features in the classical proof (which is presented
in [BecSchl]):

\bullet each  f\in L^{1}(\mathbb{R}) exhibits a uniform L^{1} ‐modulus of continuity under
translation.

\bullet one has vanishing at \infty in the  L^{1} sense (no mass at infinity
There is a well‐known alternative proof via Gelfand‐Naimark theory, which
depends on identifying the maximal ideal space. We do not follow that
approach here since it appears to work only in the Abelian setting. In our
spectral theory setting, however, the algebras are noncommutative. We now
present such an algebra.

5.2. An operator‐valued version. Let X be a Banach space, and denote
by \mathcal{W}_{X} the algebra of bounded linear maps T : X \rightarrow  L^{1}(\mathbb{R};X) with the
convolution

 S*T( $\rho$)f=\displaystyle \int_{\mathbb{R}}S( $\rho$- $\sigma$)T( $\sigma$)fd $\sigma$
As usual, one adjoins unit  $\delta$ , and we denote this larger algebra by \tilde{\mathcal{W}}_{X}.

The Fourier transform exists and satisfies

\displaystyle \sup_{ $\lambda$}\Vert\hat{T}( $\lambda$)\Vert_{\mathcal{B}(X)} \leq \Vert T\Vert_{\mathcal{W}_{X}}
In this setting one has the following exact analogue of the scalar Wiener

theorem. Note how the two conditions below capture the continuity relative
to translations, and the vanishing at \infty.

Theorem 8 ([Bec],[BecGol]). Suppose T\in \mathcal{W}_{X} satisfies
(1) \displaystyle \lim_{ $\delta$\rightarrow 0}\Vert T( $\rho$)-T( $\rho$- $\delta$)\Vert_{\mathcal{W}_{X}} =0.

(2) \displaystyle \lim_{R\rightarrow\infty}\Vert T$\chi$_{| $\rho$|\geq R}\Vert_{\mathcal{W}_{X}} =0.

If I+\hat{T}( $\lambda$) is invertible in \mathcal{B}(X) for all  $\lambda$ , then  1+T possesses. an inverse
in \tilde{\mathcal{W}}_{X} of the form 1+S.

5.3. Application to dispersive estimates. We now apply Theorem 8 to
derive decay of the Schrödinger evolution in \mathbb{R}^{3}.

Set

R_{0}^{-}($\lambda$^{2})(x)=(4 $\pi$|x|)^{-1}e^{-i $\lambda$|x|}, \hat{T^{-}}( $\lambda$)=VR_{0}^{-}($\lambda$^{2}) .

Then

(29) T^{-}( $\rho$)f(x)=(4 $\pi \rho$)^{-1}V(x)\displaystyle \int_{|x-y|= $\rho$}f(y)dy
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and thus

\displaystyle \int_{\mathbb{R}^{3}}\int_{\mathbb{R}}|T^{-}( $\rho$)f(x)|dxd $\rho$\leq\frac{1}{4 $\pi$}\int_{\mathbb{R}^{3}}\int_{\mathbb{R}^{3}}\frac{|V(x)|}{|x-y|}|f(y)|dydx
\displaystyle \leq\frac{1}{4 $\pi$}\Vert V\Vert_{\mathcal{K}}\Vert f\Vert_{1}.

where \Vert V\Vert_{\mathcal{K}}= \Vert|x|^{-1}*|V|\Vert_{\infty} . Hence our underlying algebra is \mathcal{W}_{L^{1}} . The
crucial pointwise invertibility condition needed in Wiener’s theorem takes
the following form:

(I+VR_{0}^{-}($\lambda$^{2}))^{-1}\in \mathcal{B}(L^{1})
which is precisely the invertibility of the Birman‐Schwinger operator relative
to L^{1} By spectral and scattering theory this is guaranteed for positive
energies, and for zero energy it becomes an assumption. The invertibility
of I+T^{-}( $\rho$) therefore holds in \tilde{\mathcal{W}}_{L^{1}} . This is used in [BecGol] to prove
dispersive estimates for Schrödinger in \mathbb{R}^{3} for ||V||_{\mathcal{K}}<\infty.

To place this into context, my earlier [RodSch] had shown that if

(30) \displaystyle \sup_{x\in \mathbb{R}^{3}}\int_{\mathbb{R}^{3}}\frac{|V(y)|}{|x-y|}dy<4 $\pi$
then for  V real valued one has dispersive estimate

(31) \Vert e^{itH}f\Vert_{\infty}\leq C|t|^{-\frac{3}{2}}\Vert f\Vert_{1}, H=-\triangle+V
The strategy was to write the evolution via the functional calculus, invoke
that the density of the spectral measure is the imaginary part of the resol‐
vent, and to expand the resolvent into an infinite Born series. Each term
in this series is then handled by certain oscillatory integral estimates. The
series converges because of the smallness condition (30).

It remained an open problem to obtain the analogue of (31) (on the
orthogonal complement of the bound states) for large V . This problem was
solved in [BecGol] assuming zero energy is regular (which is a necessary
condition) by means of this Wiener algebra.

5.4. Algebra for intertwining operators. The formalism underlying The‐
orems 5 and 6 is much heavier than the one in Section 5.2. The formulas

for W_{n} suggest using three‐variable kernels. To begin with, we introduce an
algebra which will be far too weak to control the Dyson series (20). But it
is indispensable as an ambient space which will contain the key algebra Y,
see below. Define the following space as a subset of tempered distributions

Z :=\{T(x_{0}, x_{1}, y)\in S'(\mathbb{R}^{9})| \mathcal{F}_{y}T(x_{0}, x_{1},  $\eta$)\in L_{ $\eta$}^{\infty}L_{x1}^{\infty}L_{x0}^{1}\}

\displaystyle \Vert T\Vert_{Z}:=\sup_{ $\eta$\in \mathbb{R}^{3}}\Vert \mathcal{F}_{y}T(x_{0}, x_{1},  $\eta$)||_{L_{x_{1}}L_{x_{0}}^{1}}\infty
The convolution operation Oon  T_{1}, T_{2}\in Z is

(T_{1}\displaystyle \mathrm{O}T_{2})(x_{0}, x_{2}, y)=\mathcal{F}_{ $\eta$}^{-1}[\int_{\mathbb{R}^{3}}\mathcal{F}_{y}T_{1}(x_{0}, x_{1},  $\eta$)\mathcal{F}_{y}T_{2}(x_{1}, x_{2},  $\eta$)dx_{1}](y)
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where the Fourier transform is understood in the sense of tempered distri‐
butions. Furthermore, introduce the seminormed space V^{-1}B defined as

V^{-1}B= {f measurable |V(x)f(x)\in B^{ $\sigma$} }

with the seminorm \Vert f\Vert_{V^{-1}B} := \Vert Vf \Vert_{B^{ $\sigma$}} . Finally, set X_{x,y} := L_{y}^{1}V^{-1}B_{x}.
Then L_{y}^{1}L_{x}^{\infty} dense in X_{x,y}.

Now introduce the following key space Y of three‐variable kernels

Y := \{T(x_{0}, x_{1}, y)\in Z| \forall f\in L^{\infty}
(fT)(x_{1}, y) :=\displaystyle \int_{\mathbb{R}^{3}}f(x_{0})T(x_{0}, x_{1}, y)dx_{0}\in X_{x1,y}\},

with norm

\Vert T\Vert_{Y}:= \Vert T\Vert z+\Vert T\Vert_{B(B_{x_{0}},X_{x_{1},y})}V-1
For \mathfrak{X}\in L_{y}^{1}L_{x}^{\infty} , define the operation of contraction of T\in Y by \mathfrak{X} to be

(\displaystyle \mathfrak{X}T)(x, y) :=\int_{\mathbb{R}^{6}}\mathfrak{X}(x_{0}, y_{0})T(x_{0}, x, y-y_{0})dx_{0}dy_{0}.
Then \mathfrak{X}T\in X_{x,y} , and \Vert \mathfrak{X}T\Vert_{X} \leq \Vert T\Vert_{Y}|\mathfrak{X}\Vert_{X} . This property turns Y into an
algebra under \mathrm{O}.

To understand the reason behind these structures, we return to the ex‐
plicit formulas (23), (24) obtained above for W_{n} . In order to relate them to
the operation of convolution \mathrm{O} , we define

\mathcal{F}_{y}T_{1+}^{ $\varepsilon$}(x_{0}, x_{1},  $\eta$)=e^{-ix_{1} $\eta$}R_{0}(| $\eta$|^{2}-i $\epsilon$)(x_{0}, x_{1})V(x_{0})e^{ix0 $\eta$}
(32)

T_{2+}^{ $\varepsilon$}=T_{1+}^{ $\varepsilon$}\circ T_{1+}^{ $\epsilon$}, T_{3+}^{ $\epsilon$} =T_{2+}^{ $\epsilon$}\mathrm{O}T_{1+}^{\in} etc.

Then

\displaystyle \langle W_{n+}^{ $\varepsilon$}f, g\rangle=\frac{(-1)^{n}}{(2 $\pi$)^{3}}\int_{\mathbb{R}^{6}}\mathcal{F}_{x_{0}}^{-1}\mathcal{F}_{x_{n},y}T_{n+}^{ $\varepsilon$}(0, $\xi$_{n},  $\eta$)\hat{f}( $\eta$)\overline{\hat{g}}( $\eta$+$\xi$_{n})d $\eta$ d$\xi$_{n}
(33)

=(-1)^{n}\displaystyle \int_{\mathbb{R}^{9}}\mathcal{F}_{x_{0}}^{-1}T_{n+}^{ $\varepsilon$}(0, x, y)f(x-y)\overline{g}(x)dydx.
Replacing the free resolvent in (32) with the perturbed one yields T_{\pm}^{ $\epsilon$} which
is given by the distributional Fourier transform

(34) \mathcal{F}_{y}T_{\pm}^{\in}(x_{0}, x_{1},  $\eta$) :=e^{ix0 $\eta$}(R_{V}(| $\eta$|^{2}\mp i $\varepsilon$)V)(x_{0}, x_{1})e^{-ix_{1} $\eta$} ;

where we assume that 0 energy is regular for H=-\triangle+V . In view of (22)
we conclude in analogy with (33) that

\langle W_{+}^{ $\varepsilon$}f, g\rangle

=\displaystyle \langle f, g\rangle-\frac{1}{(2 $\pi$)^{3}}\int_{\mathbb{R}^{6}}\mathcal{F}_{x0}^{-1}\mathcal{F}_{x_{1},y}T_{+}^{ $\epsilon$}(0, $\xi$_{1},  $\eta$)\hat{f}( $\eta$)\overline{\hat{g}}( $\eta$+$\xi$_{1})d $\eta$ d$\xi$_{n}
=\displaystyle \langle f, g\rangle-\int_{\mathbb{R}^{9}}\mathcal{F}_{x_{0}}^{-1}T_{+}^{ $\varepsilon$}(0, x, y)f(x-y)\overline{g}(x)dydx.
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Note the similarity of the right‐hand sides of (32) and (34) with the Birman‐
Schwinger operator R_{0}V which plays a prominent role in scattering theory
and the Beceanu‐Goldberg result of Section 5.3. The difference here is that
the operators appearing in (32) and (34) are of this type, but conjugated by
the modulation operator (M_{ $\eta$}f)(x) =e^{i $\eta$ x}f(x) . In contrast to the algebras
in Section 5.3 the energy parameter in this context is truly three dimensional
precisely because of these modulations, whereas inside the resolvent it only
appears through its length | $\eta$| . This is also the reason why our algebras are
considerably more complicated as compared to the previous section.

5.5. Key invertibility problem. In classical scattering theory, the per‐
turbed resolvent R_{V}(z) is controlled from the resolvent identity (8) and the
inversion of the Birman‐Schwinger operator I+R_{0}(z)V (in (9) we chose a
symmetric form for convenience only, since we then can invert in L^{2} rather
than in weighted L^{2} ). There is a completely analogous inversion problem
in the algebra Y that we face here. To begin with, due to the fact that the
aforementioned modulations M_{ $\eta$} cancel each other under operator composi‐
tion, we note that analogue of the resolvent identity for the operators T_{1+}^{ $\epsilon$}
and T_{+}^{ $\varepsilon$}\in Z reads as follows:

(35) (I+T_{1+}^{\in})\mathrm{O}(I-T_{+}^{ $\varepsilon$})=(I-T_{+}^{ $\varepsilon$})\mathrm{O}*(I+T_{1+}^{ $\epsilon$})=I

This identity is valid in the ambient algebra Z . The key invertibility problem
that we face in establishing the structure formulas for  W\pm is to show that
we may solve (35) for  T_{+}^{ $\epsilon$} in the much smaller algebra Y . To phrase this
differently: If I+T_{1+}^{ $\varepsilon$} is invertible in Y , hence in Z , its inver\mathcal{S}e is I-T_{+}^{ $\epsilon$}
both in Z and in Y , hence we obtain that T_{+}^{ $\varepsilon$}\in Y uniformly in  $\varepsilon$>0.

As a first step, one needs to address that T_{1+}^{ $\epsilon$} belongs to Y . This is done
in Lemma 6.2 and Corollary 7.4 in [BecSchl]. To summarize what is done
there, define Y with  $\sigma$\geq \displaystyle \frac{1}{2} fixed. Then

\displaystyle \sup_{ $\varepsilon$>0}\Vert T_{1+}^{ $\varepsilon$}\Vert_{Y}\leq \Vert V\Vert_{B^{1}}\mathrm{z}+ $\sigma$ whence by induction

(36)
\displaystyle \sup_{ $\varepsilon$>0}\Vert T_{n+}^{ $\epsilon$}\Vert_{Y}\leq C^{n}\Vert V\Vert_{B2^{+ $\sigma$}}^{n_{1}} for all n\geq 1

Note that due to  $\sigma$\displaystyle \geq\frac{1}{2} one loses \displaystyle \frac{1}{2} of a power of decay which is reflected in
Theorem 5. It is not clear how to avoid this loss in this exact framework,
and possibly (36) is optimal.

5.6. Recursive definition of the structure functions for W_{n} . To illus‐

trate the usefulness of this algebra formalism, we now very easily obtain a
structure formula for W_{n} in analogy to the one derived for W_{1} in Section 4.3.
In fact, we claim that

(37) (W_{n+}f)(x)=\displaystyle \int_{\mathrm{S}^{2}}\int_{\mathbb{R}^{3}}g_{n}^{ $\epsilon$:}(x, dy,  $\omega$)f(S_{ $\omega$}x-y)d $\omega$

116



W. SCHLAG

where for fixed  x \in \mathbb{R}^{3},  $\omega$ \in \mathbb{S}^{2} the expression g_{n}^{ $\varepsilon$}(x, \cdot,  $\omega$) is a measure
satisfying

\displaystyle \sup_{ $\varepsilon$>0}\int_{\mathrm{S}^{2}}\Vert g_{n}^{ $\varepsilon$}(x, dy,  $\omega$)\Vert_{\mathcal{M}_{y}L_{x}^{\infty}}d $\omega$\leq C^{n}\Vert V\Vert_{B\mathrm{z}^{+ $\sigma$}}^{n_{1}}
Identifying the operator W_{n+}^{ $\varepsilon$} with its kernel one has

W_{n+}^{ $\varepsilon$}=(-1)^{n}\mathrm{I}_{\mathbb{R}}{}_{3}T_{n+}^{ $\varepsilon$}=(-1)^{n}\mathrm{I}_{\mathbb{R}^{3}}(T_{(n-1)+}^{ $\varepsilon$}\mathrm{O}T_{1+}^{ $\varepsilon$})
=-((-1)^{n-1}\mathrm{I}_{\mathbb{R}}{}_{3}T_{(n-1)+}^{ $\varepsilon$})T_{1+}^{ $\varepsilon$}=-W_{(n-1)+}^{ $\varepsilon$}T_{1+}^{ $\varepsilon$}

In the second line we are contracting a kernel in Y by an element of X.

Thus

(38) \displaystyle \sup_{ $\epsilon$>0}\Vert W_{n+}^{ $\varepsilon$}\Vert_{X}\leq \Vert 1_{\mathbb{R}^{3}}\Vert_{V^{-1}B}\sup_{ $\epsilon$>0}\Vert T_{n+1}^{ $\varepsilon$}\Vert_{Y}\leq C^{n}\Vert V\Vert_{B2^{+ $\sigma$}}^{n+1}
and with f_{y}^{ $\epsilon$},(x')=W_{(n-1)+}^{ $\epsilon$}(x', y') we have

(39) g_{n}^{ $\epsilon$}(x, dy,  $\omega$) :=\displaystyle \int_{\mathbb{R}^{3}}g_{1,f_{y}^{ $\varepsilon$}}^{ $\varepsilon$}, (x, d (y-y  $\omega$)dy'
where g_{1,f_{y}^{ $\epsilon$}}^{ $\varepsilon$} , is the structure function for W_{1} associated with the poten‐
tial f_{y}^{ $\epsilon$},V . See Proposition 7.6 in [BecSchl] for more details.

5.7. Wiener theorem in Y . For small potentials we can sum the structure
formulas (37) and obtain the structure formula for W\pm \mathrm{a}s in Theorem 5. For
large potentials we need to resort again to a Wiener formalism in order to
solve equation (35) above. The precise formulation of the Wiener theorem
for the algebra Y which was used in [BecSchl] reads as follows. The space
\mathcal{F}Y refers to the Fourier transform of Y relative to the y variable.

Theorem 9. Suppose  V\in  B^{ $\sigma$} with \displaystyle \frac{1}{2} \leq  $\sigma$ < 1 , and define the algebra \mathrm{Y}

with this value of  $\sigma$ , and choice of V. Assume  S \in  Y satisfies, for some
N\geq 1

\displaystyle \lim_{ $\varepsilon$\rightarrow 0}\Vert$\varepsilon$^{-3} $\chi$(\cdot/ $\varepsilon$)*S^{N}-S^{N}\Vert_{Y}=0
\displaystyle \lim_{L\rightarrow\infty}\Vert(1-\hat{ $\chi$}(y/L))S(y)\Vert_{Y}=0

Assume that I+\hat{S}( $\eta$) has an inverse in \mathcal{B}(L^{\infty}) of the form (I+\hat{S}( $\eta$))^{-1} =

I+U( $\eta$) , with U( $\eta$)\in \mathcal{F}Y for all  $\eta$\in \mathbb{R}^{3} uniformly, i. e.,

\displaystyle \sup\Vert U( $\eta$)\Vert_{\mathcal{F}Y}<\infty
 $\eta$\in \mathbb{R}^{3}

Furthermore, let  $\eta$\mapsto\hat{S}( $\eta$) be uniformly continuous as a map \mathbb{R}^{3}\rightarrow \mathcal{B}(L^{\infty}) .
Then the operator I+S is invertible in the convolution algebra Y.

Lemmas 8.2 and 9.1 in [BecSchl] verify that the assumptions of this in‐
vertibility theorem hold. Interestingly, Fourier restriction bounds on the
resolvent enter crucially at that stage. The invertibility pointwise in  $\eta$ is
precisely the one appearing in the second line of (26). The structure the‐
orems of this section thus depend in an essential way on the newer version
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of the Agmon‐Kato‐Kuroda theory based on Fourier restriction (and there‐
fore depend on the non‐vanishing curvature of the constant energy surfaces)
delineated in Section 3.

To apply the Wiener theorem above, we return to the key inversion prob‐
lem (35) an conclude that

(40) (I+T_{1+}^{ $\varepsilon$})^{-1}=I-T_{+}^{ $\varepsilon$}, \displaystyle \sup_{ $\varepsilon$>0}\Vert T_{+}^{ $\epsilon$}\Vert_{\mathrm{Y}}<\infty
whence

 T_{+}^{ $\epsilon$}=I-(I+T_{1+}^{ $\varepsilon$})^{-1}=(I+T_{1+}^{ $\varepsilon$})^{-1}\mathrm{O}T_{1+}^{ $\epsilon$}=(I-T_{+}^{ $\varepsilon$})\mathrm{O}T_{1+}^{ $\varepsilon$}
(41)

=T_{1+}^{ $\varepsilon$}\mathrm{O}(I-T_{+}^{ $\varepsilon$})

One has the representation formula

(W_{+}^{ $\epsilon$}f)(x)=f(x)-\displaystyle \int_{\mathbb{R}^{3}}(1_{\mathbb{R}}{}_{3}T_{+}^{ $\epsilon$})(x, y)f(x-y)dy,
where \mathfrak{X}_{+}^{ $\varepsilon$}(x, y) := -\mathrm{I}_{\mathbb{R}}{}_{3}T_{+}^{ $\varepsilon$} means the contraction as previously defined.
The preceding machinery allows us to conclude that

\mathfrak{X}_{+}^{ $\varepsilon$}(x, y)\in X=L_{y}^{1}V^{-1}B_{x}
from which the structure formula follows. Indeed, in analogy with the ex‐
pression (39) the main term in the definition of the structure function in
Theorem 5 is

h^{ $\epsilon$}(x, dy,  $\omega$)=\displaystyle \int_{\mathbb{R}^{3}}g_{1,f_{y}^{ $\Xi$}}^{ $\varepsilon$}, (x, d (y-y  $\omega$)dy'
where f_{y}^{ $\varepsilon$},(x') :=\mathfrak{X}_{+}^{ $\xi$ j}(x', y') and g_{1,f_{y}^{ $\varepsilon$}}^{ $\varepsilon$}, refers to the explicit structure function
from (25), but with the “twisted”’ potential f_{y}^{ $\varepsilon$},(x')V(x') . The structure
function g in Theorems 5 and 6 is the the sum of h^{ $\varepsilon$} and g_{1}^{ $\epsilon$} (for the potential
V itself), followed by taking the limit  $\varepsilon$\rightarrow 0 . Note how the Wiener theorem
reduces the problem of summing the divergent series of the terms (39) to
the inversion problem (40) leading to the representation (41).

5.8. A scaling invariant condition. As we already mentioned before,
the structure theorems lose a little more than \displaystyle \frac{1}{2} of a power in terms of
decay of V . Ideally, one would wish for a scaling invariant theory. It is
perhaps unlikely that this can be achieved in the framework of the spaces
\dot{B}^{\frac{1}{2}} alone. In [BecSch2] a more complicated scaling invariant condition on V

was introduced, and a structure theorem for small potentials was obtained
in this class. Currently, no analogous version exists for large potentials.

To briefly describe these results, take a Schwartz potential V , and set
\Vert|V\Vert| := \Vert L_{V}\Vert_{L_{t, $\omega$}^{1}} Recall

 L_{V}(t,  $\omega$)=\displaystyle \int_{0}^{\infty}\hat{V}(- $\tau \omega$)e^{\frac{i}{2}t $\tau$} $\tau$ d $\tau$
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For any Schwartz function  v in \mathbb{R}^{3} define

(42) \displaystyle \Vert v\Vert_{B}:=\sup_{ $\Pi$}\int_{-\infty}^{\infty}\Vert|$\delta$_{ $\Pi$(t)}v(x)\Vert|dt
where  $\Pi$ is a 2‐dimensional plane through the origin, with all parallel planes
 $\Pi$(t) = $\Pi$+t\vec{N}, \vec{N} being the unit norm to  $\Pi$ . Then with  $\psi$ being the usual
Littlewood‐Paley localizer, one has

\displaystyle \Vert v\Vert_{B}\leq\sup_{ $\omega$\in \mathbb{S}^{2}}\int_{-\infty}^{\infty} $\psi$(2^{-k}x')v(x'+\mathcal{S} $\omega$)\Vert_{\dot{H}\mathrm{z}($\omega$^{\perp})}ds
The point here is that the right‐hand side is formulated in a more accessible
way than the implicit norm on the left‐hand side. In particular, the right‐
hand side is fimite on Schwartz functions.

The scaling invariant small potential theorem is the following one:

Theorem 10 ([\mathrm{B}\mathrm{e}\mathrm{c}\mathrm{S}\mathrm{c}\mathrm{h}2]) . There exists c_{0} > 0 so that for any real‐valued
V with \Vert V\Vert_{B}+\Vert V\Vert_{\dot{B}^{1}}2 \leq c_{0} , there exists g(x, y,  $\omega$)\in L_{ $\omega$}^{1}\mathcal{M}_{y}L_{x}^{\infty} with

\displaystyle \int_{\mathrm{S}^{2}}\Vert g(x, dy,  $\omega$)\Vert_{\mathcal{M}_{y}L_{x}^{\infty}}d $\omega$\leq c_{0}
such that for any f\in L^{2} one has the representation formula

(W_{+}f)(x)=f(x)+\displaystyle \int_{\mathrm{S}^{2}}\int_{\mathbb{R}^{3}}g(x, dy,  $\omega$)f(S_{ $\omega$}x-y)d $\omega$.
In order to prove a large potential analogue, one would need to redo all

the spectral theory and the Wiener theorem within the framework of the
somewhat exotic B‐norm from (42).
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