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1. INTRODUCTION

This note is devoted to the study of (bounded, self‐adjoint) operators of the form

(1.1) W(a; $\alpha \Lambda$) :=$\chi$_{ $\alpha \Lambda$}Ta\mathcal{F}$\chi$_{ $\alpha \Lambda$},  $\alpha$>0,

on \mathrm{L}^{2}(\mathbb{R}^{d}) , d\geq 1 , where $\chi$_{ $\Lambda$} is the indicator function of a set  $\Lambda$\subset \mathbb{R}^{d} , and  $\alpha \Lambda$=\{ $\alpha$ \mathrm{x}:\mathrm{x}\in
 $\Lambda$\} . The notation \mathcal{F} stands for the unitary Fourier transform in \mathrm{L}^{2}(\mathbb{R}^{d}) . The real‐valued
function a , called symbol is assumed to be bounded and smooth. We call the operator
(1.1) \mathrm{a} (truncated) Wiener‐Hopf operator. We are interested in the asymptotics of the
trace of the following operator difference

(1.2) D(a,  $\alpha \Lambda$;f) :=$\chi$_{ $\alpha \Lambda$}f(W(a; $\alpha \Lambda$))$\chi$_{ $\alpha \Lambda$}-W(f\mathrm{o}a; $\alpha \Lambda$) ,

as  $\alpha$ \rightarrow \infty , with some suitably chosen functions  f . The second operator on the right‐
hand side of (1.2) can be viewed as a regularizing term: it makes the operator (1.2) trace
class even if f(0) \neq 0 and  $\Lambda$ is unbounded, under some extra mild conditions on  $\Lambda$ and
 f . On the othcr hand, if f(0)=0,  $\Lambda$ is bounded and the symbol  a decays fast at infinity,
then both operators on the right‐hand side of (1.2) are casily shown to be trace class.

Asymptotic propertics of D(a,  $\alpha \Lambda$;f) depend strongly on the smoothness of the symbol
a . For the full asymptotic expansion of tr D(a,  $\alpha \Lambda$;f) in powers of $\alpha$^{-1} with smooth
symbols a , smooth functions f and smooth bounded domains  $\Lambda$ , we refer to A. Budylin‐
V. Buslaev [1] and H. Widom [15]. The leading term of this expansion is of order  $\alpha$^{d-1}.

For symbols a with jump discontinuities we only mention the papers by H. Landau‐
H. Widom [3], H. Widom [13] (for d = 1 ) and by A.V. Sobolev [8], [9] (for arbitrary
 d\geq  1) . Compared to the smooth case, the leading asymptotic term acquires an extra
\log‐factor. For example, for the symbol  a=$\chi$_{ $\Omega$} with a bounded piece‐wise smooth region
 $\Omega$ , the trace tr  D($\chi$_{ $\Omega$},  $\alpha \Lambda$;f) is of order $\alpha$^{d-1}\log $\alpha$.

The mentioned asymptotic results find their applications in the study of large‐scale
behaviour of the spatially bipartite entanglement entropy of free fermions in thermal
equilibrium, see [2], [4], [5]. For this application the symbol is taken to be the Fermi
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symbol

(1.3) a_{T}( $\xi$)=a_{T, $\mu$}( $\xi$) :=\displaystyle \frac{1}{1+\exp\frac{h( $\xi$)- $\mu$}{T}},  $\xi$\in \mathbb{R}^{d},
where T>0 is the temperature, and  $\mu$\in \mathbb{R} is the (fixed) chemical potential. The real‐
valucd free Hamiltonian h\in \mathrm{C}^{\infty} is assumed to satisfy h( $\xi$) \geq c| $\xi$|^{ $\beta$},  $\beta$>0 , as | $\xi$| \rightarrow\infty,

and is such that the level set \{ $\xi$\in \mathbb{R}^{d} : h( $\xi$)= $\mu$\} is a smooth surface with finitely many
conncctcd components. Thus the Fermi sea

(1.4)  $\Omega$=\{ $\xi$\in \mathbb{R}^{d}:h( $\xi$)< $\mu$\}
is a smooth bounded region. It is natural to define this symbol for T=0 as thc point‐
wise limit a_{0}( $\xi$)=$\chi$_{ $\Omega$}( $\xi$)=\displaystyle \lim_{T\rightarrow 0}a_{T}( $\xi$) . Since the symbol a_{0} is discontinuous, it is not
surprising that the nature of large‐scale entropy asymptotics is different for T=0 and
T>0 , see [4], [5].

Partly motivated by the above example, in this note we concentrate on the transition
from smooth to discontinuous symbols. The precise statements, proofs and detailed
discussions arc found in the paper [11]. In this note we illustrate the results of [11] by
considering just one example of such a “transitional” symbol, the Fermi symbol (1.3).
The parameter  $\mu$ is kept fixed, but the temperature  T is allowed to vary simultaneously
with the scaling parameter  $\alpha$.

Acknowledgements. The author is grateful to the organizers for giving him an
opportunity to present his results at the Kato Centennial Conference, Scptember 2017.

2. THE RESULTS

2.1. Main results. For a function f : \mathbb{R}\rightarrow \mathbb{C} and any s_{1}, s_{2}\in \mathbb{R} define the integral

(2.1) U(s_{1}, s_{2};f)=\displaystyle \int_{0}^{1}\frac{f((1-t)s_{1}+ts_{2})-[(1-t)f(s_{1})+tf(s_{2})]}{t(1-t)}dt.
It is clear that U(S_{1}, \mathcal{S}_{2;1)}=U(s_{1}, s_{2};t)=0 , for all s_{1}, s_{2}\in \mathbb{R} . This integral is finite for
any Hölder function f . For a smooth symbol a=a( $\xi$) ,  $\xi$\in \mathbb{R} , define

(2.2) \displaystyle \mathcal{B}(a;f) :=\frac{1}{8$\pi$^{2}}\lim_{ $\varepsilon$\rightarrow 0}\iint_{|$\xi$_{1}-$\xi$_{2}|> $\varepsilon$}\frac{U(a($\xi$_{1}),a($\xi$_{2});f)}{|$\xi$_{1}-$\xi$_{2}|^{2}}d$\xi$_{1}d$\xi$_{2}.
If f is smooth, then this definition coincides with the standard double integral. The
principal value definition becomes necessary for functions f featuring in the theorems
below, see [10] for details.

As shown in [14], in the case d = 1 , for smooth f and a we have tr D(a, \mathbb{R}_{+};f) =

\mathcal{B}(a;f) . For the multi‐dimensional case the asymptotic coefficient is defined as follows.
For a unit vector \mathrm{e}\in \mathbb{R}^{d}, d\geq 2 , introduce the hyperplane

$\Pi$_{\mathrm{e}}:=\{ $\xi$\in \mathbb{R}^{d}:\mathrm{e}\cdot $\xi$=0\}.
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Introduce the orthogonal coordinates  $\xi$= (\mathring{ $\xi$}, t) such that \mathring{ $\xi$} \in $\Pi$_{\mathrm{e}} and t \in \mathbb{R} . Then we
set

(2.3) \displaystyle \mathcal{B}_{d}(a;\partial $\Lambda$, f):=\frac{1}{(2 $\pi$)^{d-1}}\int_{\partial $\Lambda$}A_{d}(a, \mathrm{n}_{\mathrm{x}};f)dS_{\mathrm{x}}, A_{d}(a, \displaystyle \mathrm{e};f):=\int_{$\Pi$_{\mathrm{e}}}\mathcal{B}(a (\mathring{ $\xi$}, \cdot); f)d\mathring{ $\xi$}.
As illustrated in Theorem 2.2 below, this coefficient describes the large‐scale behaviour
for smooth symbols. Here and henceforth we assume that

\{
 $\Lambda$ is a region with finitely many connected components

(2.4) such that the boundary \partial $\Lambda$ is a union
of bounded piece‐wise smooth surfaces.

Thus the integral (2.3) is well‐defined.
For discontinuous symbols we need a different asymptotic coefficient. Define the quan‐

tity

(2.5) \displaystyle \mathfrak{V}(\partial $\Lambda$, \partial $\Omega$)=\frac{1}{(2 $\pi$)^{d+1}}\int_{\partial $\Lambda$}\int_{\partial $\Omega$}|\mathrm{n}_{ $\xi$}\cdot \mathrm{n}_{\mathrm{x}}|dS_{ $\xi$}dS_{\mathrm{x}},
where \mathrm{n}_{\mathrm{x}}, \mathrm{n}_{ $\xi$} are the exterior unit normals to the surfaces \partial $\Lambda$ and \partial $\Omega$ at the points \mathrm{x}

and  $\xi$ respectively. Now we can describe the asymptotics of tr  D(a_{T},  $\alpha \Lambda$;f) .
In the following theorems  $\Omega$ is the Fermi sea defined in (1.4).

Theorem 2.1. [See [11]] Let  d \geq  2 . Suppose that  $\Lambda$ satisfies (2.4), and let  X =

\{z_{1}, z_{2}, . . . , z_{N}\} \subset \mathbb{R}, N < \infty , be a collection of points on the real line. Suppose that
 f\in \mathrm{C}^{2}(\mathbb{R}\backslash X) is a function such that in a neighbourhood of each point z\in X it satisfies
the bound

(2.6) |f^{(k)}(t)| \leq C_{k}|t-z|^{ $\gamma$-k}, k=0, 1, 2 ,
with some  $\gamma$>0.

Let a_{T} be as defined in (1.3), 0<T\leq T_{0;} with a fixed T_{0}>0 . Then

(2.7) \displaystyle \lim_{$\alpha$^{T}\vec{T\geq}^{0}1} \displaystyle \frac{1}{$\alpha$^{d-1}\log\frac{1}{T}} tr D(a_{T},  $\alpha \Lambda$;f)=U(0,1;f)\mathfrak{V}(\partial $\Lambda$, \partial $\Omega$) ,

and

(2.8)  $\alpha$\displaystyle \vec{T}\leq 1\lim_{ $\alpha$\infty} \displaystyle \frac{1}{$\alpha$^{d-1}\log $\alpha$} tr D(a_{T},  $\alpha \Lambda$;f)=U(0,1;f)\mathfrak{B}(\partial $\Lambda$, \partial $\Omega$) .

Note that both fomulas (2.7) and (2.8) require that T\rightarrow 0 . The next theorem treats
the case T=const,  $\alpha$\rightarrow\infty.

Theorem 2.2. [See [7]] Suppose that the region  $\Lambda$ and function  f are as in Theorem
2.1. Then

(2.9) \displaystyle \lim_{ $\alpha$\rightarrow\infty}$\alpha$^{1-d} tr D(a_{T}, \mathrm{a} $\Lambda$;f)=\mathcal{B}_{d}(a_{T}, \partial $\Lambda$;f) ,
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for each T>0.

The formula (2.9) is proved in [7] for much more general smooth symbols. At this
point one should recall that this formula was established first by H. Widom in [12] even
in the matrix case, but for smooth domains  $\Lambda$ and smooth functions  f . We emphasize
that the result of [7] (just as that of [11]) holds for non‐smooth functions f and piece‐wise
smooth  $\Lambda$.

As we see from the next theorem, the asymptotic formulas in Theorems 2.1 and 2.2 are
in agreement with each other. We show this by comparing the asymptotic coefficients in
(2.7) and (2.8) with the one in (2.9).

Theorem 2.3. [See [11]] Suppose that the region  $\Lambda$ and function  f. are as in Theorem
2.1. Then

(2.10) \displaystyle \lim_{T\rightarrow 0} \frac{1}{\log\frac{1}{T}}\mathcal{B}_{d}(a_{T};\partial $\Lambda$, f)=U(0,1;f)\mathfrak{V}(\partial $\Lambda$, \partial $\Omega$) .

Thcrcfore thc formula (2.7) can be rewritten in the form (2.9), and can be viewed as
an extension of (2.9) to thc asymptotics in two parameters,  $\alpha$ and  T , as  $\alpha$ \rightarrow \infty and
 $\alpha$ T\geq 1 . Note that (2.8) cannot bc rewritten in the same way.

2.2. Entropy: large‐scale behaviour. The regions  $\Lambda$ and  $\Omega$ are the same as before.
In order to study the entropy we use Theorems 2.1 and 2.2 with the  $\gamma$ ‐Rényi entropy

function  $\eta$_{ $\gamma$} : \mathbb{R}\mapsto[0, \infty ), defined for all  $\gamma$>0 as follows. If  $\gamma$\neq 1 , then

(2.11) $\eta$_{ $\gamma$}(t) :=\left\{\begin{array}{ll}
\frac{1}{1- $\gamma$}\log[t^{ $\gamma$}+(1-t)^{ $\gamma$}] & \mathrm{f}\mathrm{o}\mathrm{r} t\in(0,1) ,\\
0 & \mathrm{f}\mathrm{o}\mathrm{r} t\not\in(0,1) ,
\end{array}\right.
and for  $\gamma$=1 (the von Neumann case) it is defined as the limit

(2.12) $\eta$_{1}(t) :=\displaystyle \lim_{ $\gamma$\rightarrow 1}$\eta$_{ $\gamma$}(t)= \left\{\begin{array}{ll}
-t\log(t)-(1-t)\log(1-t) & \mathrm{f}\mathrm{o}\mathrm{r} t\in (0,1) ,\\
0 & \mathrm{f}\mathrm{o}\mathrm{r} t\not\in(0,1) .
\end{array}\right.
For  $\gamma$\neq 1 the function $\eta$_{ $\gamma$} satisfies condition (2.6) with  $\gamma$ replaced with  x=\displaystyle \min\{ $\gamma$ , 1 \},
and with X = \{0 , 1 \} . The function $\eta$_{1} satisfies (2.6) with an arbitrary  $\gamma$ \in (0,1) , and
the same sct X.

Various cntropies were studied in [4], [5] and [6]. For the sake of illustration we
discuss only the  $\gamma$ ‐Rényi entanglement entropy (EE) with respect to the bipartition
\mathbb{R}^{d}= $\Lambda$\cup(\mathbb{R}^{d}\backslash  $\Lambda$) , as defined in [6, Section 10]:

(2.13) \mathrm{H}_{ $\gamma$}(T,  $\mu$; $\alpha \Lambda$) :=\mathrm{t}\mathrm{r}D(a_{T, $\mu$},  $\alpha \Lambda$;$\eta$_{ $\gamma$})+\mathrm{t}\mathrm{r}D(a_{T, $\mu$}, \mathbb{R}^{d}\backslash  $\alpha \Lambda$;$\eta$_{ $\gamma$}) .

We are interested in the behaviour of this quantity when T\rightarrow 0 and  $\alpha$\rightarrow\infty.

Theorem 2.4. Let d\geq 2 . The EE satisfies

(2.14)  $\tau$ 0_{1}\displaystyle \lim_{ $\alpha$\vec{T\geq}} \frac{1}{$\alpha$^{d-1}\log\frac{1}{T}}\mathrm{H}_{ $\gamma$}(T,  $\mu$; $\alpha \Lambda$)=$\pi$^{2}\frac{1+ $\gamma$}{3 $\gamma$}\mathfrak{V}(\partial $\Lambda$, \partial $\Omega$) ,
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and

(2.15)  $\alpha$\displaystyle \vec{T}\leq 1\lim_{ $\alpha$\infty} \frac{1}{$\alpha$^{d-1}\log $\alpha$}\mathrm{H}_{ $\gamma$}(T,  $\mu$; $\alpha \Lambda$)=$\pi$^{2}\frac{1+ $\gamma$}{3 $\gamma$}\mathfrak{V}(\partial $\Lambda$, \partial $\Omega$) .

If T>0 is fixedf then

(2.16) \displaystyle \lim_{ $\alpha$\rightarrow\infty}$\alpha$^{1-d}\mathrm{H}_{ $\gamma$}(T,  $\mu$; $\alpha \Lambda$)=2\mathcal{B}_{d}(a_{T, $\mu$}, \partial $\Lambda$;$\eta$_{ $\gamma$}) .

Proof. Formulas (2.14) and (2.15) follow from (2.7) and (2.8) respectively upon observing
(cf. [4]) that

U(0,1;$\eta$_{ $\gamma$})=\displaystyle \int_{0}^{1}\frac{$\eta$_{ $\gamma$}(t)}{t(1-t)}dt=$\pi$^{2}\frac{1+ $\gamma$}{6 $\gamma$}.
The formula (2.16) is a direct consequence of (2.9). \square 

For d=1 and  $\alpha$ T\geq 1 Theorem 2.4 was proved in [6]. We also stress that the formula
(2.15) agrees with the large‐scale asymptotics of the cntropy \mathrm{H}_{ $\gamma$} for the zero temperature
case, which were found in [4].
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