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要旨

The generation of internal gravity waves by a vertically oscillating cylinder that

is tilted to the honizontal in a stratified Boussinesq fluid of constant buoyancy
frequency N , is investigated. Simple kinematic considerations reveal that for

a cylinder inclined by a given angle \emptyset to the horizontal, there is a cut‐off

frequency, Nsin  $\phi$ , below which there is no longer a radiated wave field. This

result is confirmed by supportin\mathrm{g} laboratory experiments.

1. 緒言

The ‘St. Andrew’s Cross’ experiment performed by Mowbray & Rarity (1967) is one of the

most celebrated studies of intemal gravity waves. For this experiment, a cylinder aligned

honizontally with a plane of constant gravitational potential is oscillated vertically with small

amplitude in a density stratification of constant buoyancy frequency (which corresponds to top

figure 1 with \emptyset\rightarrow 0 ( $\chi$\rightarrow $\theta$ The wave disturbance generated by the oscillating cylinder,

instead of circular wave crests, features four wave beams that emanate from the cylinder (top

figure lb with  $\chi$\rightarrow $\theta$ ), forming a cross pattem whose openin \mathrm{g} is determined by the dispersion

relation.

Here, we step away from the canomical St. Andrew’s Cross to consider a more genenic settin \mathrm{g}

that has not been previously explored, and in so‐doing we find results that are profoundly

different and potentially of broad interest. Specifically, we study intemal wave generation by a

vertically oscillating cylinder that is tilted with respect to the horizontal (figure 1) (Kataoka et al.

2017). This forcing arrangement leads to a variant of the classical St. Andrew’s Cross that has

features with no counterpart in the coniespondmg horizontal cylinder problem. For example, for

a given tilt of the cylinder there is a cut‐off frequency below which there is no longer a radiated

wave field. Furthennore, three‐dimensional effects due to the fmite length of the cylinder,

which are minor in the horizontal configuration, here become a significant factor and eventually
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Fig. 1 Geometry of wave beams induced by infinitely long lin\mathrm{e} forcin \mathrm{g} tilted to the horizontal
by  $\phi$ and oscillatming with frequency  $\omega$=\sin $\theta$ : (a) three‐dimensional view; four
beams propagate in the directions \pmê

\pm

and form an oblique cross; (b) intersection of
the beams with the vertical yz‐plane. Cases of three tilt angles ( $\varphi$\approx 0 ,  $\varphi$\approx $\theta$/2,

 $\varphi$\approx $\theta$) are shown.
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dominate the wave field as the cut‐off frequency is approached. These results follow from

elementary linear wave theory and are also confirmed by supporting laboratory experiments.

2。無限に長い傾斜棒からのピーム

We discuss the geometry of the steady‐state intemal wave pattem induced by tme‐hamonic

line forcing, modelling an oscillating long thin cylinder, in an unbounded, \mathrm{n}\mathrm{o}\mathrm{n}-\mathrm{r}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{t}\dot{\mathrm{m}}\mathrm{g},

uniformly stratified Boussminesq fluid. Here, the forcin\mathrm{g} is taken to be infinitely long. Our

analysis makes use of the well‐known dispersion relation of intemal gravity waves,

 $\omega$=\sin $\theta$ , (1)

where  $\omega$ is the dimensionless wave frequency (scaled with the constant background buoyancy

frequency  N) and  $\theta$ is the inchnation angle of the wavevector to the vertical (y) axis pointing

upwards. As illustrated in figure  1(a), the wave source stretches along the  $\xi$ ‐direction in the

 xy‐plane and is tilted to the horizontal (x) axis by an angle 0< $\phi$< $\pi$/2 , with z beming the

transverse horizontal direction. Similar to the classical St. Andrew’s Cross due to horizontal

forcing ( $\phi$=0) , the dispersion relation (1) being independent of the wavevector magnitude is

key to the kinematic argument used below for deducing the wave pattem due to a tilted line
source.

From elementary linear wave theory, the steady‐state response to a time‐harmonic source

compnises plane waves at the driving frequency. The location of corresponding beams relative

to the source is determined by the group velocity  c_{g}=\nabla_{k} $\omega$ , which is at right angles to  k and

must pomint away from the source, in keeping with the radiation condition. Specifically, as shown

in figure 1 (a), two beams are found above the line source and propagate towards  y\rightarrow\infty along

the corresponding group‐velocity directions

ê\pm= (cos  $\theta$\cos $\psi$, sin  $\theta$, \pm\cos $\theta$\sin $\psi$ ), (2)

where

 $\psi$=\cos^{-1}(\cot $\theta$\tan $\phi$) ; (3)

the other two beams are located below the line source and propagate towards  y\rightarrow\rightarrow in the

opposite directions.

Overall, the generated wave pa廿em is in ffie form of a cross that leans in the direction of ffie
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forcin \mathrm{g} . This ‘oblique’ cross undergoes dramatic transformation as the source tilt angle \emptyset is

varied in the range  0\leq\emptyset\leq $\theta$ . As indicated in figure  1(a) , a measure of the cross opemng is the

angle  $\psi$ in (3), which decreases monotomically with \emptyset , from  $\psi$= $\pi$/2 for \emptyset=0 to  $\psi$=0

for  $\phi$= $\theta$ . As a result, the classical St. Andrew’s Cross for horizontal forcing ( $\phi$=0) gradually

closes as \emptyset is increased and ultimately degenerates to a single standing beam along the forcing

(  $\xi$ ) direction in the limit  $\phi$\rightarrow $\theta$.

A convemient way to visualize this transformation is by considering the intersection of the

oblique‐cross wave pattem with the (vertical) yz‐plane. Seen in this plane, the four cross arms

are inclined at

 $\chi$=\tan^{-1}\sqrt{\tan^{2} $\theta$-\tan^{2} $\phi$} (4)

to the (honzontal) z‐axis, and forn a symmetric configuration centred at the onigin (figure 1 b).

The angle  $\chi$ attains the maximum  $\chi$= $\theta$ for the classical St. Andrew’s Cross ( $\phi$=0) which

lies in the yz‐plane. As \emptyset is increased and the cross leans towards the forcin \mathrm{g},  $\chi$

monotomically decreases and eventually  $\chi$\rightarrow 0 as \emptyset\rightarrow $\theta$.

3. 棒が有限長さであることの影響

We now tum to the effects of fmite length of the line source. These end effects become

progressively more significant with increasin \mathrm{g} source tilt angle \emptyset , and understanding their role

is crucial in interpreting the experimental observations in Section 4.

As in the case of infinitely long forcin \mathrm{g}, the steady‐state response to a time‐harmonic lin \mathrm{e}

source of finite length L is again made ofplane waves with wavevectors inclined to the vertical

by a fixed angle  $\theta$ , determined by the driving frequency  $\omega$=\sin $\theta$ . Thus, treating the forcin\mathrm{g}

ends as point sources, the plane waves emitted there propagate along vertical cones of angle  $\theta$

from the horizontal, and contaminate the four wave beams that emanate from the interior of the

forcing. Specifically, for tilted forcin\mathrm{g} as sketched in figure 2(a) , the dominant end effects are

expected to come from the upper cone due to the left end and the lower cone due to the night

end, as these cones are closest to the main body of the forcing, where the wave beams are

generated. To illustrate our approach, we now discuss how end effects modify the wave beam

pattem in the vertical yz‐plane across the middle of the forcing (x=0) . As argued above, the

combined response (see figure 2b) consists of the four beams (solid lines) found earlier (figure
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Fig. 2 Kinematics of intemal waves generated by line forcing of fmite length  L , tilted at an
angle  $\varphi$ to the horizontal and oscillating with angular frequency  $\omega$=\mathrm{s}\dot{\mathrm{m}} $\theta$ : (a) the
dominant end effects arise due to plane waves that propagate along the two vertical
cones shown; (b) intersection of the wave pattem with the vertical yz‐plane across the
middle of the forcin\mathrm{g}(x=0) ; (c) intersection of the wave pattem with the vertical
yz‐plane across the lower end of the forcing (x=-(Ll2)\cos $\varphi$) . Here the dashed lines
represent the end effects due to the two cones shown in (a), and the solid lines depict
the four beams shown in figure 1(b) , which emanate from the main body ofthe forcin \mathrm{g}.
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1 b) and the two hyperbolae (dashed lines) formed by the intersection of the yz‐plane with the

end cones shown in figure 2(a) . From geometric considerations, it tums out that the four beam

directions become tangent to these hyperbolae, and the wave beams remain distinct from the

distu  $\Gamma$bances emanating from the ends, within a rectangle centred at the origin and of width

 D=L\cos $\varphi$\sqrt{\frac{\tan^{2} $\theta$}{\tan^{2} $\varphi$}-1} (5)

and height D tan  $\chi$ (figure  2b).

It should be noted that  D\rightarrow\infty when \emptyset\rightarrow 0 (honizontal forcing); in this instance, the wave

beams coincide with the asymptotes ofthe two hyperbolae so the classical St. Andrew’s Cross is

hardly affected by the ends. As the tilt angle  $\phi$ is increased and  D is reduced according to

(5), however, end effects are felt progressively more seriously. Finally, D\rightarrow 0 as the cut‐off

condition is approached ( $\phi$\rightarrow $\theta$) ; in this limit, the forcin \mathrm{g} is tangent to the end cones in figure

2(a) so end disturbances totally interfere with the beams from the main body of the forcin \mathrm{g}.

These kinematic results are confirmed by laboratory experiments in Section 4.

4. 実験結果

Our experimental study of the oblique‐cross geometry focused on measuring the angle  $\chi$

that the four cross arms make to the horizontal in the yz‐plane (figure  2b). As discussed in

Section 3, the response to tilted line forcing is always affected by the finite length of the source,

and these end effects are amplified as the cut‐off condition  $\theta$= $\phi$ is approached. Specifically,

in the yz‐plane across the middle of the forcing (figure  2b), where the wave pattem is symmetric

in y, the four wave beams due to the main body of the forcing remain intact within a rectangular

region of width D given by (5), which shrinks to zero as  $\theta$\rightarrow\emptyset . As a result, it becomes

increasingly difficult to measure the angle  $\chi$ when the drivin\mathrm{g} frequency  $\omega$=\mathrm{s}\dot{\mathrm{m}} $\theta$ of the

cylinder approaches  $\omega$=\sin $\phi$.

To tackle this issue, experimental data for  $\chi$ was obtained in yz‐planes closest to the

cameras so as to observe the wave field near the lower end (x=-(Ll2)\cos $\varphi$) of the cylinder.

In this setup, as sketched in figure 2(c) , the wave pattem is no longer symmetric as the wave

beams emanating from the interior of the forcing appear only below the cylinder

( y< ‐(L12)sin@), in keeping with the beam propagation directions −ê
\pm

relative to the
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forcing (see figure 1  a). Moreover, the disturbance above the cylinder (y>-(Ll2)\sin $\varphi$) is

entirely an end effect, from the mintersection of the yz‐plane with the end cone at the lower end of

the cylinder (figure 2a), and tums out to be rather weak. As demonstrated below, this wave‐field

geometry makes it possible to accurately measure the beam angle  $\chi$ even quite close to

cut‐off, by focusing on the wedge formed by the two beams just below the lower end of the

cylinder.

Figure 3 shows snapshots of wave fields for \emptyset=44^{\circ} and  $\theta$=49.5^{\circ} obtained in the

yz‐planes across the lower end of the cylinder ( L=36\mathrm{c}\mathrm{m} , diameter 2. 5\mathrm{c}\mathrm{m}); top figure plotted

the phase field of the vertical velocity component, which was chosen to maximize the clarity of

the wave field structure. Consistent with the geometry in figure 2(c) , the desired beam angle  $\chi$
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Fig. 3 (a) Phase field plot across the lower‐end vertical plane of cylinder for  $\varphi$=44^{\circ} and
 $\theta$=49.5^{0} ( $\chi$_{\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{o}\mathrm{r}\mathrm{y}}=33.6^{\circ} and $\chi$_{\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{m}\mathrm{e}\mathrm{d}}=35.2^{\mathrm{O}}\pm 1.1^{\mathrm{O}} ). (b) Velocity amplitude plot (with
superposed arrows) corresponding to phase results in (a) . In each image, the black ellipse marks
the location and area of the cylinder.
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can be readily determined in the lower half of the field of view. The velocity amplitude plot

(bottom figure 3) also shows good agreement with the kinematics presented in figure 2(c) .

Experiments were run across a wide range of driving frequencies  $\omega$=\sin $\theta$ for the three tilt

angles \emptyset=0^{\mathrm{Q}} , 27^{\circ} and 44^{\circ}, and the resulting data for  $\chi$ as a function of  $\theta$=\sin^{-1} $\omega$ is

presented in figure 4, in which the error bars presented represent the standard deviation of the

mean. There is generally excellent agreement between expeniment and the theoretical

predictions obtained from (4). Most notably, for fixed driving frequency  $\omega$ , the beam projected

angle  $\chi$ is reduced as the cylinder tilt angle \emptyset increases, and for non‐zero  $\phi$ there is a

lower cut‐off driving frequency corresponding to  $\theta$= $\phi$ at which  $\chi$ goes to zero; as expected,

no radiated wave beams were observed below cut‐off ( $\theta$< $\varphi$) .
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Fig. 4 Experimental data for the beam angle  $\chi$ as a function of  $\theta$ set by the driving

frequency  $\omega$=\sin $\theta$ , for tilt angle  $\varphi$=0^{\circ} (circle),  $\varphi$=27^{\circ} (triangle) and  $\varphi$=44^{\circ} (square);
the coiresponding theoretical curves, obtained by (5), are included as solid, dashed and dotted
lines, respectively. The error bars are the standard deviation of the mean.
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