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1 Introduction

First‐order categorical logic (FOCL for short) originated as a categorical foun‐
dation for model theory (in Makkai & Reyes [8]). As we can see in [7], some
classical model‐theoretic phenomena can be efficiently described in terms of
FOCL. However, most concepts in modern model theory remain to be under
categorical consideration. Our principal aim is to explore categorical aspects of
model theory.

This short note is intended to give an exposition for model theorists of the
author’s recent work on categorical characterization of bi‐interpretability [1].
From the viewpoint of FOCL, classical first‐order theories give rise to Boolean
pretoposes, i.e. categories equipped with logical operations and quotients of
equivalence relations. They are called classifying pretoposes of theories (see
the definition in Theorem2.12). As Harnik [3] pointed out, a construction of
classifying pretoposes can be given via Shelah’s eq‐construction. In fact, two
theories have equivalent classifying pretoposes precisely when they are bi‐
interpretable in the usual model‐theoretic sense. In this note, we will sketch a
proof of this theorem. To keep this article accessible to model theorists, we only
use elementary category theory and omit most of the details of definitions and
proofs. The reader is invited to consult [1] for details.

Our theorem suggests a potential of FOCL for application to model theory.
For example, we can defin \mathrm{e} ”model‐theoretic properties” of pretoposes (e.g.
completeness and stability) for those invariant under bi‐interpretability. An
expected application will be proposed at the end of this note.

Terminologies and notational conventions. Throughout this paper, we con‐
sider many‐sorted classical first‐order theories. For notations and terms, we
basically follow Johnstone [5, 6] (in particular, Chapter Dl in vol. 2) with sev‐
eral exceptions. In the followin \mathrm{g} list, \mathcal{L} is a fixed (many‐sorted first‐order)
language.

\bullet \mathcal{L}‐Sort (resp. \mathcal{L}‐Rel, \mathcal{L}‐Func) denotes the set of \mathcal{L}‐sorts (resp. relation
symbols, function symbols).
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\bullet If we mention finite strings of sorts or variables, the empty case is in
consideration.

\bullet A strin \mathrm{g} of sorts is referred to as a type, and a string of variables as a
context. The former is denoted by, say, \overline{A} while the latter is denoted in
bold face, say x . If x\equiv x_{1} , . .. , x_{n} where x_{i} is a variable of sort A_{i} , we say
that x is of type \overline{A}, and write x : \overline{A}.

\bullet We occasionally regard a  0‐ary function symbol as a constant symbol.
\bullet Let  $\varphi$(x) be an \mathcal{L}-\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{a}-\dot{\mathrm{m}}‐context. We often write T\models $\varphi$(x) to mean

T\models\forall x $\varphi$(x) .

\bullet We write  $\varphi$ \subseteq  $\psi$ for \mathcal{L}-\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{s}-\dot{\mathrm{m}}‐context  $\varphi$,  $\psi$ , if they are in the same
context (say  x : \overline{A}) and T\models( $\varphi$(x)\rightarrow $\psi$(x)) . Although T does not appear
in the notation, we will always make it clear what the ambient theory is.

\bullet  T‐Mod (\mathrm{S}\mathrm{e}\mathrm{t})_{e} denotes the category of T‐models and elementary embed‐
dings.

2 Preliminaries

2.1 Interpretation

First, we recall the notion of interpretation in model theory while we will not
pursue model‐theoretic aspects of interpretations (see Hodges [4, Chap. 5 §3
Throughout this subsection, we suppose that \mathcal{L}, \mathcal{L}' are languages, and that T

(resp. T' ) is an \mathcal{L}‐theory (resp. an \mathcal{L}' ‐theory).

Definition 2.1. Let \partial(x) be an \mathcal{L}-\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{a}-\dot{\mathrm{m}}‐context and \triangle(x, x') an \mathcal{L}‐formula‐

in‐context with \triangle\subseteq\partial(x)\wedge\partial(x') (where x, x' are assumed to be disjoint). We
say that \triangle is a partial  T‐equivalence relation (on \partial) if the following axioms are
valid in  T :

\forall x[\partial(x)\rightarrow\triangle(x, x)],

\forall xx'[\triangle(x, x')\rightarrow\triangle(x', x)],
\forall xx'x''[\triangle(x,x')\wedge\triangle(x',x \rightarrow\triangle(x, x

We say that an \mathcal{L}‐formula  $\varphi$ \subseteq \partial is closed under \triangle when  T \models \triangle(x, x') \rightarrow

[ $\varphi$(x)\leftrightarrow $\varphi$(x')]. \square 

To define interpretations, we need a predefinition:

Definition 2.2 ( \mathrm{P}\mathrm{r}\mathrm{e}-\dot{\mathrm{m}}terpretation). A pre‐interpretation I of T in T' consists
of the followin\mathrm{g} data:

\bullet For each sort  A in \mathcal{L}, we have a pair ( \partial_{A}^{I}(u), \triangle_{A}^{I}(u, u where \partial_{A}^{I} is an
\mathcal{L}'‐formula and \triangle_{A}^{I} is a partial T'‐equivalence relation on \partial_{A}^{I}.
For each finite string of sorts \overline{A}=A_{1}\cdots A_{n} , we put

\displaystyle \partial\frac{I}{A}(u)\equiv\bigwedge_{i=1}^{n}\partial_{A_{i}}^{I}(u_{i}) , \displaystyle \triangle_{\overline{A}}^{I}(u, u')\equiv\bigwedge_{i=1}^{n}\triangle_{A_{i}}^{I}(u_{i}, u_{i}
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where all the contexts u_{i} and uí are supposed to be disjoint.
\bullet For each relation symbol  R \rightarrow \overline{A} in \mathcal{L}, we have an \mathcal{L}'‐formula R^{I}(u)

\subseteq\partial_{\overline{A}}^{I}(u) which is closed under \triangle_{\overline{A}}^{I}.
\bullet For each function symbol  f:\overline{A}\rightarrow B in \mathcal{L}, we have an \mathcal{L}'‐formula $\Gamma$_{f}^{I}(u, v)

\subseteq \partial_{\overline{A}B}^{I}(u, v) such that $\Gamma$_{f}^{I}(u, v) is closed under \triangle_{\overline{A}B}^{I} and the following
formulas are valid in T' :

\triangle_{\overline{A}}^{I}(u, u')\rightarrow\exists v[$\Gamma$_{f}^{I}(u, v)\wedge$\Gamma$_{f}^{I}(u', v)],
\exists u[$\Gamma$_{f}^{I}(u, v)\wedge$\Gamma$_{f}^{I}(u, v \rightarrow\triangle_{B}^{I}(v, v

\square 

By induction on the construction of \mathcal{L}‐formulas, we can associate each \mathcal{L}-

formula  $\varphi$ of type \overline{A} with an \mathcal{L}' ‐formula $\varphi$^{I}\subseteq\partial_{\overline{A}}^{I} which is closed under \triangle.

Definition 2.3 (Interpretation). A pre‐interpretation I of T in T' is said to be
an interpretation if $\varphi$^{I} is valid in T' for any \mathcal{L}‐sentence  $\varphi$\in T . When I is an
interpretation, we denote it by I:T\rightarrow T'. \square 

Let I be a pre‐interpretation of T in T' and let \mathcal{N} a T'‐model. Then we can
define a canonical \mathcal{L}‐structure \mathcal{M} by using appropriate quotients \partial^{I}(\mathcal{N})/\triangle^{I}(\mathcal{N}) .
For each relation symbol R\rightarrow\overline{A}, R^{\mathcal{M}} is defined to be the subset R^{I}(\mathcal{N})/\triangle_{\overline{A}}^{I}(\mathcal{N})
of \partial_{\overline{A}}^{I}(\mathcal{N})/\triangle_{\overline{A}}^{I}(\mathcal{N})=\overline{A}^{\mathcal{M}_{1}} . Function symbols are interpreted similarly. We will
denote \mathcal{M} by \mathcal{N}|_{I} . The next theorem is basic:

Theorem 2.4 (Reduction theorem, see Hodges [4, Theorem 5.3.2]). In the above
notations, for any \mathcal{L}‐formula  $\varphi$(x) and for any tuple (al, .. . , a_{n} ) \in\partial_{\overline{A}}^{I}(\mathcal{N}) ,

\mathcal{N}\models$\varphi$^{I} (al, . .. , a_{n} ) \Leftrightarrow \mathcal{N}|_{I}\models $\varphi$ ( [a_{1}], \ldots , [an])

where each [a_{i}] is the equivalence class of a_{i} in \partial_{A_{i}}^{I}(\mathcal{N})/\triangle_{A_{i}}^{I}(\mathcal{N}) . \square 

Corollary 2.5. With the same assumptions as in the Theorem, the following are
equivalent:

(i) I is an interpretation.

(ii) For any T'-\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{e}1\mathcal{N}, \mathcal{N}|_{I} is a T‐model.

Proof. (i) \Leftrightarrow  T'\models$\varphi$^{I} holds for any  $\varphi$\in T,

\Leftrightarrow Every  T'-\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{e}1\mathcal{N} satisfies $\varphi$^{I} for any  $\varphi$\in T,

\Leftrightarrow \mathcal{N}|_{I}\models $\varphi$ holds for any  T'-\mathrm{m}\mathrm{o}\mathrm{d}\mathrm{e}1\mathcal{N} and for any  $\varphi$\in T,

\Leftrightarrow (ii).
\blacksquare

In fact, the above correspondence \mathcal{N}\mapsto \mathcal{N}|_{I} constitutes a itnctor

(-)|_{I}:T'-\mathrm{M}\mathrm{o}\mathrm{d}(\mathrm{S}\mathrm{e}\mathrm{t})_{e}\rightarrow T-\mathrm{M}\mathrm{o}\mathrm{d}(\mathrm{S}\mathrm{e}\mathrm{t})_{e} . (2.1)

We will see that this functor can be obtamined by composition with a coherent
functor (see (2.2)).

We now recall Shelah’s eq‐construction:

1Recall that R^{I}(\mathcal{N}) is closedisclosedunder \triangle_{\overline{A}}^{I}(\mathcal{N}) , and hence this definition makes sense.
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Definition 2.6. We construct a language \mathcal{L}^{\mathrm{e}\mathrm{q}} and an \mathcal{L}^{\mathrm{e}\mathrm{q}} ‐theory T^{\mathrm{e}\mathrm{q}} as follows:
For each (total) T‐equivalence relation ( \triangle on A䇽 say), we add to \mathcal{L} a new sort
Q_{\triangle} and a new function symbol $\epsilon$_{\triangle}:\overline{A}\rightarrow Q_{\triangle} , obtainin \mathrm{g}\mathcal{L}^{\mathrm{e}\mathrm{q}}‐Sort and \mathcal{L}^{\mathrm{e}\mathrm{q}} ‐Func.
The relation symbols of \mathcal{L}^{\mathrm{e}\mathrm{q}} are the same as \mathcal{L} . We then have defined \mathcal{L}^{\mathrm{e}\mathrm{q}} . The
\mathcal{L}^{\mathrm{e}\mathrm{q}}‐theory T^{\mathrm{e}\mathrm{q}} consists of the axioms of T together with those of the forms

\forall y\exists x($\varepsilon$_{\triangle}(x)=y) and \forall x\forall x'[\triangle(x, x')\leftrightarrow$\varepsilon$_{\triangle}(x)=$\varepsilon$_{\triangle}(x')].

\square 

For each partial T‐equivalence relation \triangle, we associate a total  T‐equivalence
relation

\triangle(x, x')\sim\equiv(\partial(x)\wedge\partial(x')\rightarrow\triangle(x, x \wedge(\neg(\partial(x)\wedge\partial(x'))\rightarrow x=x

Returning to our settings, for each \mathcal{L}‐formula  $\varphi$(x) , we have an \mathcal{L}^{;\mathrm{e}\mathrm{q}}‐formula

($\varphi$^{I}/\triangle_{\overline{A}}^{I})(v)\equiv\exists u[$\varepsilon$_{\triangle_{\overline{A}}^{I}}^{\sim}(u)=v\wedge$\varphi$^{I}(u)]
where v is a variable of sort Q_{\triangle_{\overline{A}}^{I}}- . As a result, the interpretation I gives rise

to a map  $\varphi$(x) \mapsto ($\varphi$^{I}/\triangle_{\overline{A}}^{I}) (v) from the set of all \mathcal{L}‐formulas to that of all
\mathcal{L}^{\prime \mathrm{e}\mathrm{q}} ‐formulas.

2.2 Syntactic Category and Classifying Pretopos

Definition 2.7(Syntactic category). For any \mathcal{L}‐theory T, we construct a category
C_{T} (called the syntactic category of T) as follows:

\bullet The objects are  $\alpha$‐equivalence classes of \mathcal{L}-\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{s}-\dot{\mathrm{m}}‐context. The  $\alpha$-

equivalence class of  $\varphi$(x) is denoted by \{x. $\varphi$\}.

\bullet Assuming that the contexts  x, y are disjoint, the morphisms from \{x. $\varphi$\}
to \{y. $\psi$\} are T‐provably‐equivalence classes of T‐provably functional
formulas. A T‐provably functional formula is an \mathcal{L}-\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{a}-\dot{\mathrm{m}}‐context
 $\chi$(x, y) such that the formulas

 $\chi$\rightarrow $\varphi$\wedge $\psi$,  $\varphi$\rightarrow\exists y $\chi$ , and  $\chi$\wedge $\chi$[z/y]\rightarrow y=z

are provable in T. [ $\chi$] denotes the T‐provably‐equivalence class of  $\chi$.

\bullet If [ $\chi$] : \{x. $\varphi$\}\rightarrow\{y. $\psi$\} and [ $\theta$] : \{y. $\psi$\}\rightarrow\{z. $\xi$\} are morphisms in C_{T} , the
composite [ $\theta$]\circ[ $\chi$] : \{x. $\varphi$\}\rightarrow\{z. $\xi$\} is defined to be [\exists y( $\chi$\wedge $\theta$ \square 

We will follow the notational conventions below:

\bullet We frequently write  $\varphi$(x) (or more simply  $\varphi$ ) for an object \{x. $\varphi$\}.

\bullet We often identify the object \{x.x = x\} with the type \overline{A} of x . We also
identify the object \{x.\mathrm{T}\} with the type \overline{A} of x.

When we mention a subobject in a syntactic category, thanks to [6, Lemma
D1.4.4(iv)], we may assume that it is represented by a formula in the same
context.
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Proposition 2.8. For any theory T, the syntactic category C_{T} is a Boolean
coherent category, i.e., roughly speaking,

. Any subobject poset Sub (\{x. $\varphi$\}) is a Boolean algebra.

\bullet Each morphism has an image factorization.

\bullet These categorical structures are stable under pullbacks. \square 

A coherent functor is a functor between(Boolean) coherent categories which
preserves coherent structures.

Theorem 2.9 ([6, Theorem D1.4.7]). Each T‐model \mathcal{M} gives a coherent functor
F:C_{T}\rightarrow \mathrm{S}\mathrm{e}\mathrm{t} which sends \{x. $\varphi$\} to the definable set  $\varphi$(\mathcal{M}) .

Moreover, this correspondence yields (a half part of) an equivalence of
categories

T‐Mod (\mathrm{S}\mathrm{e}\mathrm{t})_{e}\simeq \mathfrak{C}0\mathfrak{h} (C_{T} , Set)

where \mathfrak{C}0\mathfrak{h} (C_{T} , Set) is the category of coherent functors from C_{T} to Set and
natural transformations. \square 

As we saw at the end of §2.1, an interpretation I gives rise to a map  $\varphi$(x)\mapsto
($\varphi$^{I}/\triangle_{\overline{A}}^{I}) (v) from the set of all \mathcal{L}‐formulas to that of all \mathcal{L}^{\prime \mathrm{e}\mathrm{q}} ‐formulas. Now we
can associate I with a coherent functor:

Proposition 2.10. An interpretation I : T \rightarrow  T' induces a coherent functor
F_{I} : C_{T}\rightarrow C_{T^{;\mathrm{e}\mathrm{q}}} sendin \mathrm{g} a morphism [ $\chi$] : \{x. $\varphi$\}\rightarrow\{y. $\psi$\} in C_{T} to the following
morphism in C_{T^{l\mathrm{e}\mathrm{q}}} :

[\exists u\exists v(\wedge\in\sim\triangle_{\overline{A}}^{I}\triangle_{\overline{B}}^{I} : \{u'.$\varphi$^{I}/\triangle_{\overline{A}}^{I}\}\rightarrow\{v'.$\psi$^{I}/\triangle_{\overline{B}}^{I}\}.

\square 

We can make up F_{I}:C_{T}\rightarrow C_{T^{;\mathrm{e}\mathrm{q}}} into another coherent functor \mathcal{P}_{I}:C_{T^{\mathrm{e}\mathrm{q}}}\rightarrow
 C_{T^{J\mathrm{e}\mathrm{q}}} . The category C_{T^{\mathrm{e}\mathrm{q}}} will play a special role in our theory.

Definition 2.11 (Proper theory). A classical theory T is said to be proper if
there exists a sort D such that T\models\exists xx'(x\neq x') with x, x' : D. \square 

In what follows, all theories are assumed to be proper. The following
observation was made by Harnik [3].

Theorem 2.12. Let T be a theory. Then C_{T^{\mathrm{e}\mathrm{q}}} is a Boolean pretopos, i.e. a Boolean
coherent category having the following properties:

\bullet Any ”equivalence relation” has a quotient.

\bullet Fimte coproducts exist and are disjoint.

Moreover, the canonical functor  $\gamma$:C_{T}\rightarrow C_{T^{\mathrm{e}\mathrm{q}}} gives a pretopos completion
of C_{T} : for any (Boolean) pretopos \mathcal{P} and for any coherent functor F:C_{T}\rightarrow \mathcal{P},
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there exists a unique coherent functor G:C_{T^{\mathrm{e}\mathrm{q}}}\rightarrow \mathcal{P} (up to natural isomorphism)
such that  F\simeq G $\gamma$ :

 $\gamma$ ”

 C :\mathrm{q}

G

In fact, the following equivalences hold:

T‐Mod (\mathrm{S}\mathrm{e}\mathrm{t})_{e}\simeq \mathfrak{C}0\mathfrak{h}(C_{T}, \mathrm{S}\mathrm{e}\mathrm{t})\simeq \mathfrak{C}0\mathfrak{h}(C_{T^{\mathrm{e}\mathrm{q}}}, \mathrm{S}\mathrm{e}\mathrm{t})\simeq T^{\mathrm{e}\mathrm{q}}-\mathrm{M}\mathrm{o}\mathrm{d}(\mathrm{S}\mathrm{e}\mathrm{t})_{e}.

The classifying pretopos \mathcal{P}_{T} of T is defined to be C_{T^{\mathrm{e}\mathrm{q}}}. \square 

Corollary 2.13. \mathrm{C}\mathrm{o}\mathrm{m}\mathrm{b}\dot{\mathrm{u}}\dot{\mathrm{m}}\mathrm{g} Proposition 2.10 and Theorem 2.12, we can obtain
from an interpretation I:T\rightarrow T' another coherent functor \mathcal{P}_{I}:\mathcal{P}_{T}\rightarrow \mathcal{P}_{T'}. \square 

Observe that the restriction functor (-)|_{I}:T'‐Mod (\mathrm{S}\mathrm{e}\mathrm{t})_{e}\rightarrow T‐Mod (\mathrm{S}\mathrm{e}\mathrm{t})_{e}
which appeared in (2.1) can be described as the composite of the functors below:

\circ \mathcal{P}_{I}
\mathfrak{C}0\mathfrak{h} (C_{T'} , Set) \rightarrow^{\sim}\mathfrak{C}0\mathfrak{h}(\mathcal{P}_{T'}, \mathrm{S}\mathrm{e}\mathrm{t})\rightarrow \mathfrak{C}0\mathfrak{h}(\mathcal{P}_{T}, \mathrm{S}\mathrm{e}\mathrm{t})\rightarrow^{\sim}\mathfrak{C}0\mathfrak{h} (C_{T} , Set)

\downarrow 2 \downarrow ?
(-)|_{I}

T'-\mathrm{M}\mathrm{o}\mathrm{d}(\mathrm{S}\mathrm{e}\mathrm{t})_{e}\ovalbox{\tt\small REJECT} T-\mathrm{M}\mathrm{o}\mathrm{d}(\mathrm{S}\mathrm{e}\mathrm{t})_{e}

(2.2)

3 Bi‐interpretability

Let I and J be interpretations of T in T'.

Definition 3.1 (Homotopy between interpretations). A homotopy h:I\Rightarrow J is
a family \{h_{A}\}_{A} of \mathcal{L}' ‐formulas with h_{A}\subseteq\partial_{A}^{I}\wedge\partial_{A}^{J} such that

\bullet Each  h_{A} is an \mathcal{L}'‐formula closed under \triangle_{A}^{I}\wedge\triangle_{A}^{J}.

. Each h_{A} induces an isomorphism h_{A}^{\sim}:\partial_{A}^{I}/\triangle_{A}^{I}\rightarrow\sim\partial_{A}^{J}/\triangle_{A}^{J} in \mathcal{P}_{T'} similarly
to the definition of F_{I}([ $\chi$]) in Proposition 2.10.

\bullet For any atomic \mathcal{L}‐formula  $\varphi$(x) , these isomorphisms induce an isomor‐
phism $\varphi$^{I}/\displaystyle \triangle_{\overline{A}}^{I}\rightarrow\sim$\varphi$^{J}/\triangle\frac{J}{A}.

If we have two homotopies h, k : I\Rightarrow J and moreover if their components h_{A}

and k_{A} are T'‐equivalent for any A, then they will be identified.
We say that I and J are homotopic when there exists a homotopy from I to

J . This is an equivalence relation on interpretations of T in T'. \square 

Proposition 3.2. A homotopy h:I\Rightarrow J induces a natural isomorphism \mathcal{P}_{h} : \mathcal{P}_{I}\Rightarrow\sim
\mathcal{P}_{J}.

T'

J \mathcal{P}_{J}
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\square 

Definition3.3 (Composition of interpretations). Let I:T\rightarrow T' and J:T'\rightarrow T''

be interpretations. Define an interpretation JI:T\rightarrow T'' as follows:

\bullet For each sort  A in \mathcal{L}, we put \partial_{A}^{JI}\equiv(\partial_{A}^{I})^{J} and \triangle_{A}^{JI}\equiv(\triangle_{A}^{I})^{J}.

. For each relation symbol R in \mathcal{L}, we put R^{JI}\equiv(R^{I})^{J}.

\bullet For each function symbol  f in \mathcal{L}, we put $\Gamma$_{f}^{JI}\equiv($\Gamma$_{f}^{I})^{J}.

These data indeed satisfy the conditions to be an interpretation. \square 

Definition 3.4 (Bi‐interpretability of theories). We say that two theories T and
T' are bi‐interpretable when there exist two interpretations I:T \rightarrow  T' and
J:T'\rightarrow T such that

\bullet  JI is homotopic to I_{T}:T\rightarrow T (the identity interpretation),

\bullet  IJ is homotopic to I_{T'} : T'\rightarrow T'. \square 

We now describe our main result on \mathrm{b}\mathrm{i}-\dot{\mathrm{m}}terpretabihty.

Theorem 3.5 (Categorical characterization of bi‐interpretability). T and T' are

\mathrm{b}\mathrm{i}-\dot{\mathrm{m}}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{p}\mathrm{r}\mathrm{e}\mathcal{P}_{T}\simeq \mathcal{P}_{T},. table precisely when their classifying pretoposes are equivalent, \mathrm{i}.\mathrm{e}\square 
Two proofs of this theorem are provided in [1]. One uses two‐dimensional

category theory, and we do not present its method here. The other involves
the notions of Morita extension and Morita span, which are recently introduced
by Barrett & Halvorson [2]. They introduced these to give a plausible defmi‐
tion of theoretical equivalence which generalizes definitional equivalence. The
equivalence is defined by existence of a Morita span (see §3.1).

Our proof shows that these three conditions, i.e. bi‐interpretability, equiva‐
lence of classifying pretoposes and existence of a Morita span, are all equivalent.
In §3.2, we will briefly describe the latter proof.

3.1 Morita Extension

Let \mathcal{L} and \mathcal{L}^{+} be languages with \mathcal{L}\subseteq \mathcal{L}^{+} . We put for convenience

(\mathcal{L}^{+}\backslash \mathcal{L})- Sort =\mathcal{L}^{+}- Sort \backslash \mathcal{L}‐Sort, (\mathcal{L}^{+}\backslash \mathcal{L})-\mathrm{R}\mathrm{e}1=\mathcal{L}^{+}-\mathrm{R}\mathrm{e}1\backslash \mathcal{L}‐Rel,

(\mathcal{L}^{+}\backslash \mathcal{L})- $\Gamma$ \mathrm{u}\mathrm{n}\mathrm{c}=\mathcal{L}^{+}- Func \backslash \mathcal{L}‐Func.

Definition 3.6 (Exphcit definitions).

(1) Suppose that R : \overline{A}\in(\mathcal{L}^{+}\backslash \mathcal{L}) ‐Rel. An explicit definition of R in terms
of \mathcal{L} is an \mathcal{L}^{+} ‐sentence of the form

\forall x(R(x)\leftrightarrow $\varphi$(x)) ,

where  $\varphi$(x) is an \mathcal{L}‐formula in the same canonical context as R.
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(2) Suppose that f : \overline{A}\rightarrow B\in (\mathcal{L}^{+}\backslash \mathcal{L}) ‐Func. An explicit definition of f in
terms of \mathcal{L} is an \mathcal{L}^{+} ‐sentence of the form

\forall x\forall y(f(x)=y\leftrightarrow $\varphi$(x, y

where  $\varphi$(x, y) is an \mathcal{L}‐formula in the same canonical context as f . For

an arbitrary explicit definition of a function symbol, we refer to the \mathcal{L}-

sentence

\forall x\exists!y $\varphi$(x, y)

as the admissibility condition for the explicit definition. If f is actually a
constant symbol, i.e. of arity zero, the above formulas have the following
forms:

\forall y(y=c\leftrightarrow $\varphi$(y)) ,

\exists!y $\varphi$(y) .

\square 

Definition 3.7 (Sort definitions). Suppose that  S\in (\mathcal{L}^{+}\backslash \mathcal{L}) ‐Sort, A\in \mathcal{L}‐Sort
and \overline{A} is a type in \mathcal{L} . In the following, s (resp. x, x) is a variable (or a context)
of the sort S (resp. A, A

(1) A sort definition of S as a product sort in terms of \mathcal{L} is an \mathcal{L}^{+} ‐sentence of
the form

\displaystyle \forall x\exists!s\bigwedge_{i}$\pi$_{i}(s)=x_{i},
where all $\pi$_{i}:S\rightarrow A_{i} are in (\mathcal{L}^{+}\backslash \mathcal{L})- $\Gamma$ \mathrm{u}\mathrm{n}\mathrm{c}.

(2) A sort definition of S as a coproduct sort in terms of \mathcal{L} is an \mathcal{L}^{+} ‐sentence
of the form

\displaystyle \forall s[\bigvee_{i}\exists!x_{i}($\rho$_{i}(x_{i})=s)] \wedge\bigwedge_{i\neq j}\forall x_{i}\forall x_{j}($\rho$_{i}(x_{i})\neq$\rho$_{j}(x_{j})) ,

where all $\rho$_{i}:A_{i}\rightarrow S are in (\mathcal{L}^{+}\backslash \mathcal{L}) ‐Func.

(3) A sort definition of S as a subsort in terms of \mathcal{L} is an \mathcal{L}^{+} ‐sentence of the
form

\forall x[ $\varphi$(x)\leftrightarrow\exists s($\iota$_{ $\varphi$}(s)=x)]\wedge\forall s\forall s'[$\iota$_{ $\varphi$}(s)=$\iota$_{ $\varphi$}(\mathcal{S}')\rightarrow s=s'],

where  $\varphi$(x) is an \mathcal{L}-\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{a}-\dot{\mathrm{m}}‐context and $\iota$_{ $\varphi$} : S\rightarrow A is in (\mathcal{L}^{+}\backslash \mathcal{L}) ‐Func.

(4) A sort definition of S as a quotient sort in terms of \mathcal{L} is an \mathcal{L}^{+} ‐sentence
of the form

\forall x\forall x'[$\epsilon$_{\triangle}(x)=$\varepsilon$_{\triangle}(x')\leftrightarrow\triangle(x, x \wedge\forall s\exists x[$\varepsilon$_{\triangle}(x)=s],

where \triangle(x, x') is an \mathcal{L}-\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{a}-\dot{\mathrm{m}}‐context and  $\epsilon$ j\triangle :  A \rightarrow  S is in (\mathcal{L}^{+}\backslash 
\mathcal{L}) ‐Func. The admissibility condition for the definition is the \mathcal{L}‐sentence
which expresses that \triangle is an equivalence relation on the sort A. \square 
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Definition 3.8 (Morita extensions, see Barrett & Halvorson [2]). Let T be an
\mathcal{L}‐theory and T^{+} an \mathcal{L}^{+} ‐theory with T \subseteq  T^{+} . We say that T^{+} is a Morita
extension of T if the following conditions hold:

\bullet Every  S \in (\mathcal{L}^{+}\backslash \mathcal{L}) ‐Sort is defined as either a product sort \displaystyle \prod_{j}A_{j}, \mathrm{a}

coproduct sort \coprod_{j}A_{j} , a subsort A_{ $\varphi$} or a quotient sort  A/\triangle in terms of
\mathcal{L} . This means that (\mathcal{L}^{+}\backslash \mathcal{L})- $\Gamma$ \mathrm{u}\mathrm{n}\mathrm{c} contains the involved function symbols
$\pi$_{i}, $\rho$_{i}, $\iota$_{ $\varphi$}, $\epsilon$_{\triangle} , that T^{+} contains the involved sort definitions and that the

involved admissibility conditions for quotient sorts are valid in T.

\bullet Every  f \in (\mathcal{L}^{+}\backslash \mathcal{L}) ‐Func other than the above $\pi$_{i}, $\rho$_{i}, $\iota$_{ $\varphi$}, $\epsilon$_{\triangle} is explicitly
defined in terms of \mathcal{L} . This means that T^{+} contains the involved explicit
definitions and that the involved admissibility conditions are valid in T.

. Every  R\in (\mathcal{L}^{+}\backslash \mathcal{L}) ‐Rel is explicitly defined in terms of \mathcal{L} . This means
that T^{+} contains the involved explicit definitions.

\bullet  T^{+}\backslash T contain \mathrm{s} no axioms other than those mentioned above. \square 

Morita extension is a generalized notion of definitional extension which
admits sort definitions. In contrast to eq‐construction, here we are allowed to
define a new sort by usin \mathrm{g} only sorts (not types). On the other hand, Morita
extension has some similar properties with eq‐construction (e.g. it is conserva‐
tive).

Morita span. We say that an \mathcal{L}'‐theory T' is a copy of an \mathcal{L}‐theory T if \mathcal{L}' is
obtained from \mathcal{L} by renaming some (possibly no) symbols in \mathcal{L} to symbols not
contained in \mathcal{L} and T' is obtained by replacing these symbols appearing in the
axioms in T with the correspondin \mathrm{g} symbols in \mathcal{L}'.

Definition 3.9 (Morita span). Let T (resp. T' ) be an \mathcal{L}‐theory (resp. an \mathcal{L}'-

theory). A Morita span from T to T' is a family of finitely many theories
T_{0} , . . ., T_{n} , TÓ, . .., T_{m}' (possibly n, m = 0) which satisfy the following condi‐
tions:

\bullet  T_{i} is an \mathcal{L}_{i} ‐theory for each i=0 , . . . , n, and T_{j}' is an \mathcal{L}_{j}' ‐theory for each
j=0 , . . . , m.

\bullet  T_{i+1} is a Morita extension of T_{i} for each i =0 , . .., n-1 , and T_{j+1}' is a
Morita extension of T_{j}' for each j=0 , . . . , m-1.

\bullet  T_{0} is acopy of T, and TÓ is acopy of T'.

\bullet \mathcal{L}_{n} and \mathcal{L}_{m}' are identical and T_{n} and T_{m}' are logically equivalent, i.e. they
make the same sentences valid.
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logically
equivalent

T_{n} =T_{m}'
\mathrm{C}_{/} \backslash \circ

. .

 G_{/}^{\cdot} \backslash \circ
 T_{1} Tí
\cup| \cup|

T\leftrightarrow T_{0} T_{0}' \leftrightarrow T'
copy copy

\square 

A proof for existence of a Morita span to define an equivalence relation on
theories is postponed to Corollary 3.11.

3.2 Sketch of Proof

Notice two trivial facts:

. Any copy of T is bi‐interpretable with T.

. Two bi‐interpretable theories have equivalent classifying pretoposes, for
Proposition 3.2 ensures that a bi‐interpretation gives an equivalence be‐
tween the classifying pretoposes.

We now sketch a proof of Theorem 3.5. The proof proceeds by showing the
followin \mathrm{g} implications:

Bi‐interpretability \Rightarrow Equivalence of classifying pretoposes
\Rightarrow Existence of a Morita span \Rightarrow Bi‐interpretability

The first implication was explained above. For the third implication, the general
case reduces to a Morita extension:

Theorem 3.10. Any two theories constituting a Morita extension are bi‐interpretable.
As a consequence, so are any two theories which can be connected by a Morita
span.

Proof. Let  T^{+} be a Morita extension of T . We have to get an interpretation
J:T^{+}\rightarrow T . For \displaystyle \prod_{i}A_{i}, A_{ $\varphi$}, A/\triangle\in(\mathcal{L}^{+}\backslash \mathcal{L})‐Sort, their interpretations under J

are defined as expected. For the coproduct case, using properness, we can also
take an \mathcal{L}^{\mathrm{e}\mathrm{q}} ‐formula defimng a desired coproduct in \mathcal{P}_{T} . Therefore, we have
obtained a pre‐interpretation J . This is indeed an interpretation and, together
with the canonical interpretation I:T \rightarrow  T^{+} , constitutes a bi‐interpretation.

\blacksquare

The second implication needs substantial works. To obtain a desired Morita
span from  T to T' , we construct sequences of Morita extensions

T\subseteq T_{1}\subseteq. . . \subseteq T_{5} and T'\subseteq T_{1}'\subseteq. . . \subseteq T_{5}',

where T_{i} (resp T_{j}' ) is an \mathcal{L}_{i} ‐theory (resp. an \mathcal{L}_{j}' ‐theory) and the following con‐
ditions hold:
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\bullet There is a bijection between \mathcal{L}_{5} and \mathcal{L}_{5}'.

. If we identify \mathcal{L}_{5} with \mathcal{L}_{5}' by using the bijection, T5 and T_{5}' are logically
equivalent.

The essential idea is as follows: if we have a categorical equivalence \mathcal{P}_{T}\simeq \mathcal{P}_{T'}

and skeletons S, \mathcal{S}' (i.e. complete systems of representatives of isomorphism
classes of objects) of \mathcal{P}_{T}, \mathcal{P}_{T'} respectively, then a bijection between S and S'

is induced. We add to T (resp. T' ) some product sorts, subsorts and quotient
sorts step by step such that, for each formula  $\psi$ in \mathcal{S} (resp. in \mathcal{S} there exists
a sort in \mathcal{L}_{3} (resp. in \mathcal{L}_{3}' ) representing  $\psi$ . Slightly modifying  T_{3}, T_{3}' , we obtain
T_{4}, T_{4}' with \mathcal{L}_{4}- Sort \rightarrow\sim \mathcal{L}_{4}'‐Sort. At last we add to T_{4}, T_{4}' explicit definitions of
relations and functions such that the above bijections extends to \mathcal{L}_{5}\rightarrow\sim \mathcal{L}_{5}'.

These constructions indeed give logically equivalent T5, T_{5}' while we sup‐
pressed lots of technical details. Once we have proved Theorem 3.5, we also
fulfill a promise made at the end of §3.1.

Corollary 3.11. Existence of a Morita span defines an equivalence relation on
theories. \square 

Since ( $\lambda$‐)stability is invariant under bi‐interpretability, we have the follow‐
ing somewhat new definition:

Definition 3.12 (Stability of pretoposes). A pretopos \mathcal{P} is ( $\lambda$‐)stable when it is
(equivalent to) the classifyin \mathrm{g} pretopos of some ( $\lambda$‐)stable theory. \square 

It is known that completeness of a theory can be described categorically
via the notion of two‐valued pretopos. On the other hmd, we do not know
how stability of a pretopos can be described in the language of pretoposes.
If we succeed in characterizing stability categorically, this will suggest more
extensive uses of category theory in modern model theory. For example, we
expect that 2‐categorical constructions for pretoposes will give new model‐
theoretic constructions for good theories. So we will pursue this direction.
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