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Abstract

These are the lectures notes of the minicourse of three sessions presented by the
author in the RIMS 2017 Set Theory Workshop on Iterated Forcing and Cardinal In‐
variants. We focus on the ideas about how to use forcing techniques on FS iteration
to produce models where several cardinal invariants are pairwise different. These
techniques will converge at the end in a sketch of the proof of the consistency of a
constellation of Cichoń’s diagram with 10 different values (the maximum possible)
modulo three strongly compact cardinals.

1 Introduction

This text is the lecture notes of the minicourse delivered in the RIMS 2017 Set Theory
Workshop on Iterated Forcing and Cardinal Invariants. In this minicourse, we reviewed
some forcing techniques in the context of FS (finite support) iterations with applications
on combinatorics of the real line. We focused in techniques of matrix iterations and
coherent systems from [BS89, \mathrm{B} $\Gamma$ 11 , Mej13, \mathrm{F} $\Gamma$ \mathrm{M}\mathrm{M}18 , Mej], and of FS iteration with
ultrafilters from [SheOO, GMS16, BCM]. These are useful techniques to force that several
cardinal invariants of the continuum are pairwise different.

The order of this lecture notes is similar to the order of the lectures. In Section 2 we

review a general way to define cardinal invariants through relational systems. Section 3
introduces the technique of coherent systems of FS iterations and offers general tools to
force many different values for cardinal invariants of the continuum. In the last section,
we present the technique of FS iterations with ultrafilters and its applications, concretely,
we sketch very roughly Kellner, Goldstern and Shelah’s [GKS] argument to construct a
ccc poset, using four strongly compact cardinals, to force that Cichoń’s diagram can be
divided into 10 different values (the maximum possible). By combining the techniques of
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2\mathrm{D} coherent systems with ultrafilters along iterations, we refine this result and show that
three strongly compact cardinals are enough.

Throughout this text we do not intend to give particular details on the proofs of the
results, we focus instead on the general ideas to carry out the arguments.

We fix some notation. If b is a function with domain  $\omega$ , denote by \displaystyle \prod b:=\prod_{i< $\omega$}b(i)
and, when h :  $\omega$ \rightarrow  $\omega$ denote \mathcal{S}(b, h) := \displaystyle \prod_{i< $\omega$}[b(i)]^{\leq h(i)} . Depending on the context, an
ordinal  $\eta$ may represent the constant sequence  $\eta$ of length  $\omega$ . For any set  A, \mathrm{i}\mathrm{d}_{A} denotes
the identity function on A.

Concerning forcing notions, \mathbb{C}_{A} denotes the poset of finite partial function from  A\times $\omega$

into  $\omega$ ordered by \supseteq , i.e., it is the poset that adds a family of Cohen reals indexed by
 A . Cohen forcing is denoted by \mathbb{C} :=\mathbb{C}_{1} . Hechler’s poset that adds a dominating real
is denoted by D. The standard a‐centered poset that adds an eventually different real is
defined as \mathrm{E} :=$\omega$^{< $\omega$}\displaystyle \times\bigcup_{m< $\omega$}S( $\omega$, m) (in \mathcal{S}( $\omega$,m) both  $\omega$ and  m denote constant functions
of length  $\omega$ ) ordered by (t,  $\psi$) \leq (s,  $\varphi$) iff s \subseteq t, \forall i < $\omega$( $\varphi$(i) \subseteq $\psi$(i)) and t(i) \not\in $\varphi$(i) for
any i\in|t|\backslash |s|.

2 Cardinal invariants of the continuum

In many cases, cardinal invariants of the continuum are defined through relational systems.

Definition 2.1. A relational system is a triplet \mathrm{A} = \langle X, Y, \sqsubset\rangle where \subset is a relation
contained in  X \times Y . For x \in  X and y \in  Y, x \sqsubset  y is often read y \subset ‐dominates  x. \mathrm{A}

family F\subseteq X is \mathrm{A} ‐unbounded if there is no real in Y that \sqsubset‐dominates every member of
 F . Dually, D \subseteq Y is an \mathrm{A} ‐dominating family if every member of X is \sqsubset‐dominated by
some member of  D . The cardinal \mathrm{b}(\mathrm{A}) denotes the least size of an \mathrm{A}‐unbounded family
and \mathfrak{d}(\mathrm{A}) is the least size of an \mathrm{A}‐dominating family.

The relational system \mathrm{A}^{\perp}:= \langle Y, X, \mathrm{Z} } is referred to as the dual of A. Note that
\mathfrak{b}(\mathrm{A}^{\perp})=0(\mathrm{A}) and \mathfrak{d}(\mathrm{A}^{\perp})=\mathrm{b}(\mathrm{A}) .

The cardinal invariants \mathfrak{b}(\mathrm{A}) and 0(\mathrm{A}) may not always exist. Concretely, \mathrm{b}(\mathrm{A}) does
not exist iff \mathfrak{d}(\mathrm{A})=1 . Dually, 0(\mathrm{A}) does not exists iff \mathfrak{b}(\mathrm{A})=1.

Inequalities between cardinal invariants are often proved using the Tukey order be‐
tween relational systems. If \mathrm{A}= \langle X, Y, \subset\rangle and \mathrm{A}'= \langle X', Y', \sqsubset'\rangle are relational systems,
\mathrm{A} \preceq_{\mathrm{T}} \mathrm{A}' means that there are two maps  $\varphi$ :  X \rightarrow  X' and  $\psi$ :  Y' \rightarrow  Y such that,
for any x \in  X and y' \in  Y',  $\varphi$(x) \sqsubset' y' implies x \sqsubset  $\psi$(y') . In this case, the  $\psi$‐image
of any \mathrm{A}'‐dominating set is \mathrm{A}‐dominating, and the  $\varphi$‐image of any \mathrm{A}‐unbounded set is
\mathrm{A}'‐unbounded, thus \mathfrak{b}(\mathrm{A}') \leq \mathfrak{b}(\mathrm{A}) and \mathfrak{d}(\mathrm{A}) \leq  $\vartheta$(\mathrm{A}') . Say that A and \mathrm{A}' are Tukey
equivalent, denoted by \mathrm{A}\cong_{\mathrm{T}}\mathrm{A}' , if \mathrm{A}\preceq_{\mathrm{T}}\mathrm{A} ’ and \mathrm{A}'\preceq_{\mathrm{T}} A.

Example 2.2. (1) Consider $\omega$^{ $\omega$} = \langle$\omega$^{ $\omega$}, $\omega$^{ $\omega$}, \leq^{*}\rangle where  x \leq^{*} y iff x(i) \leq  y(i) for all but
finitely many  i< $\omega$ . Define \mathfrak{b} :=\mathfrak{b}($\omega$^{ $\omega$}) and 0 :=\mathfrak{d}($\omega$^{ $\omega$}) .

(2) Let X be a set and \mathcal{I} a family of subsets of X such that

(i) if B\in \mathcal{I} and A\subseteq B then A\in \mathcal{I},

(ii) [X]<\aleph_{0} \subseteq \mathcal{I} , and

(iii) X\not\in \mathcal{I}.
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\aleph_{1}

Figure 1: Cichoń’s diagram. The arrows represent \leq . The dashed arrows mean add(M) =

\displaystyle \min\{\mathrm{b}, \mathrm{c}\mathrm{o}\mathrm{v}(\mathcal{M})\} and \displaystyle \mathrm{c}\mathrm{o}\mathrm{f}(\mathcal{M})=\max{  0 , cov(M)}.

Consider the relational systems \mathcal{I}=\{\mathcal{I}, \mathcal{I}, \subseteq\rangle and \mathrm{C}\mathrm{v}(\mathcal{I}) := \{X, \mathcal{I}, \in\rangle (). Note that
\mathrm{b}(\mathcal{I}) = \mathrm{a}\mathrm{d}\mathrm{d}(\mathcal{I}) , \mathfrak{d}(\mathcal{I}) = \mathrm{c}\mathrm{o}\mathrm{f}(\mathcal{I}) , \mathrm{b}(\mathrm{C}\mathrm{v}(\mathcal{I})) = \mathrm{n}\mathrm{o}\mathrm{n}(\mathcal{I}) and 0(\mathrm{C}\mathrm{v}(\mathcal{I})) = \mathrm{c}\mathrm{o}\mathrm{v}(\mathcal{I}) . We
refer to these four cardinals as the cardinal invariants associated with \mathcal{I} . Of utter

importance in combinatorics of the real line are the cardinal invariants associated
with \mathcal{M} , the ideal of meager subsets of the reals, and those associated with \mathcal{N} , the
ideal of Lebesgue measure zero subsets of the reals.

(3) For two functions x and  $\varphi$ with domain  $\omega$ , define  x \in^{*}  $\varphi$ by \forall^{\infty}i< $\omega$(x(i) \in  $\varphi$(i)) ,
which is read  $\varphi$ localizes  x.

Let b be a function with domain  $\omega$ such that  b(i) \neq \emptyset for all  i <  $\omega$ , and let  h \in

$\omega$^{ $\omega$} . Consider the relational system \mathrm{L}\mathrm{c}(b, h) := \displaystyle \{\prod b, \mathcal{S}(b, h) , \in^{*}\rangle and put \mathrm{b}_{b,h}^{\mathrm{L}\mathrm{c}} :=

\mathfrak{b}(\mathrm{L}\mathrm{c}(b, h)) and \mathfrak{d}_{b,h}^{\mathrm{L}\mathrm{c}} :=0(\mathrm{L}\mathrm{c}(b, h which are often referred to as localization cardinals.

(4) For two functions x and  $\varphi$ with domain  $\omega$ , define  x \in^{\infty} $\varphi$ by \exists^{\infty}i< $\omega$(x(i) \in $\varphi$(i)) .
Denote its negation by  $\varphi$\yen^{*}x , which is read  $\varphi$ anti‐localizes  x.

Let b and h be as in the previous item. Consider the relational system i\mathrm{L}\mathrm{c}(b, h) :=

\langle S(b, h) , \displaystyle \prod b, \not\simeq^{*}\rangle .Define \mathrm{b}_{b,h}^{\mathrm{a}\mathrm{L}\mathrm{c}} := \mathrm{b}(\mathrm{a}\mathrm{L}\mathrm{c}(b, h)) and 0_{b,h}^{\mathrm{a}\mathrm{L}\mathrm{c}} :=\mathfrak{d}(\mathrm{a}\mathrm{L}\mathrm{c}(b, h which are re‐
ferred to as anti‐localization cardinals. Note that \mathrm{a}\mathrm{L}\mathrm{c}(b, h)^{\perp}= \displaystyle \langle\prod b, S(b, h) , \in^{\infty}\rangle.

(5) For two functions x and y with domain  $\omega$ , define  x \neq^{*} y by \forall^{\infty}i <  $\omega$(x(i) \neq y(i)) ,
which is read x and y are eventually different.

For b as in the previous item, consider the relational system \mathrm{E}\mathrm{d}(b) :=\displaystyle \langle\prod b, \displaystyle \prod b, \neq^{*}\rangle.
It is easy to see that \mathrm{E}\mathrm{d}(b)\cong_{\mathrm{T}}\mathrm{a}\mathrm{L}\mathrm{c}(b, 1) , so \mathrm{b}(\mathrm{E}\mathrm{d}(b))=\mathrm{b}_{b,1}^{\mathrm{a}\mathrm{L}\mathrm{c}} and \mathfrak{d}(\mathrm{E}\mathrm{d}(b))=0_{b,1}^{\mathrm{a}\mathrm{L}\mathrm{c}}.

The cardinals presented in (1) and (2) form part of the very well‐known Cichoń’s
diagram, which is illustrated in Figure 1. It is well‐known that this diagram is complete
in the sense that no other inequality can be proved between two cardinal invariants in
there. See e.g. [BJ95] for details and original references.

The interesting cases of the localization and anti‐localization cardinals are when each
b(i) is at most countable and h(i) < |b(i)| for all but finitely many i<w . When h does
not go to infinity, \mathrm{b}_{b,h}^{\mathrm{L}\mathrm{c}} is a natural number (that depends on h) and 0_{b,h}^{\mathrm{L}\mathrm{c}}=\mathrm{c} (see [GS93,
Lemma 1.11]). A similar result holds for the anti‐localization cardinals when \displaystyle \frac{h(i)}{|b(i)|} does
not converge to 0 (see [CM, Sect. 3

lHere, X=\cup \mathcal{I}, so we can say that \mathrm{C}\mathrm{v}(\mathcal{I}) only depends on \mathcal{I}.
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Some cardinal invariants associated with \mathcal{N} and \mathcal{M} can be characterized by \mathrm{b}, \mathfrak{d} and
the localization and anti‐localization cardinals. For this, consider the following cardinal
invariants:

minLc := \displaystyle \min\{\mathfrak{b}_{b\mathrm{i}\mathrm{d}_{ $\omega$}}^{\mathrm{L}\mathrm{c}} : b\in$\omega$^{ $\omega$}\} , supLc := \displaystyle \sup\{\mathfrak{d}_{b,\mathrm{i}\mathrm{d}_{ $\omega$}}^{\mathrm{L}\mathrm{c}} : b\in$\omega$^{ $\omega$}\},
supaLc := \displaystyle \sup\{\mathrm{b}_{b,1}^{\mathrm{a}}\mathrm{L}_{\mathrm{c}}:b\in$\omega$^{ $\omega$}\} , minaLc := \displaystyle \min\{\mathfrak{d}_{b,1}^{\mathrm{a}\mathrm{L}\mathrm{c}}:b\in$\omega$^{ $\omega$}\}.

In the definition of minLc and supLc, if \mathrm{i}\mathrm{d}_{ $\omega$} is replaced by any h\in$\omega$^{ $\omega$} that goes to infinity,
then the cardinal does not change. Likewise for supaLc and minaLc when 1 is replaced
by any h\geq^{*}1 in $\omega$^{ $\omega$} (see [CM, Sect. 3

Theorem 2.3. Let h\in$\omega$^{ $\omega$}.

(a) (Bartoszyński [BJ95, Thm. 2.3.9]) If h goes to infinity then add(A’) = \mathrm{b}_{ $\omega$,h}^{\mathrm{L}\mathrm{c}} and
\mathrm{c}\mathrm{o}\mathrm{f}(\mathcal{N})=0_{ $\omega$,h}^{\mathrm{L}\mathrm{c}}.

(b) (Bartoszyński [BJ95, Lemmas 2.4.2 and 2.4.8]) If h \geq^{*} 1 then \mathfrak{b}_{ $\omega$,h}^{\mathrm{a}\mathrm{L}\mathrm{c}}= non(M) and
\mathfrak{d}_{ $\omega$,h}^{\mathrm{a}\mathrm{L}\mathrm{c}}=\mathrm{c}\mathrm{o}\mathrm{v}(\mathcal{M}) .

(c) [CM, Sect. 3] add (\displaystyle \mathcal{N})=\min { \mathrm{b} , minLc} and \displaystyle \mathrm{c}\mathrm{o}\mathrm{f}(\mathcal{N})=\max { \mathrm{D} , supLc}.

(d) (Miller [Mi181]) add(M) =\displaystyle \min { \mathrm{b} , minaLc} and \displaystyle \mathrm{c}\mathrm{o}\mathrm{f}(\mathcal{M})=\max{ \mathfrak{d} , supaLc}

In relation with the cardinal invariants of Cichoń’s diagram, for b, c: $\omega$\rightarrow( $\omega$+1)\backslash \{0\},
g, h \in $\omega$^{ $\omega$} such that g <^{*} b, g diverges to infinity, h \geq^{*} 1 and \displaystyle \frac{h(i)}{c(i)} converges to 0 , the

cardinals \mathrm{b}_{b,g}^{\mathrm{L}\mathrm{c}}, \mathfrak{b}_{c,h}^{\mathrm{a}\mathrm{L}\mathrm{c}} , minLc and supaLc lie between add( \mathcal{N}) and non(M) (left side of the
diagram), and 0_{b,g}^{\mathrm{L}\mathrm{c}}, 0_{c,h}^{\mathrm{a}\mathrm{L}\mathrm{c}} , supLc and minaLc lie between cov(M) and cof(.IV) (right side of
the diagram). This is because:

(1) If |b(i)| \leq |b'(i)| for all but finitely many i <  $\omega$ , and  h' \leq^{*} h , then Lc (b, h) \preceq_{\mathrm{T}}
Lc (b', h') and \mathrm{a}\mathrm{J}_{d}\mathrm{c}(b', h')\preceq_{\mathrm{T}}\mathrm{a}\mathrm{J}_{\lrcorner}\mathrm{c}(b, h) .

(2) If b\in$\omega$^{ $\omega$} then \mathrm{L}\mathrm{c}(b, b-1)\cong_{\mathrm{T}}\mathrm{a}\mathrm{L}\mathrm{c}(b, 1) .

In addition, if \displaystyle \sum_{i< $\omega$}\frac{h(i)}{c(i)} < \infty then \mathrm{C}\mathrm{v}(\mathcal{N}) \preceq_{\mathrm{T}} \mathrm{a}\mathrm{L}\mathrm{c}^{\perp}(c, h) , so \mathrm{c}\mathrm{o}\mathrm{v}(N) \leq \mathrm{b}^{\mathrm{a}\mathrm{L}\mathrm{c}}(c, h) and

\mathfrak{d}^{\mathrm{a}\mathrm{L}\mathrm{c}}(c, h) \leq \mathrm{n}\mathrm{o}\mathrm{n}(\mathcal{N}) . On the other hand, if \displaystyle \sum_{i< $\omega$}\frac{h(i)}{\mathrm{c}(i)}=\infty then Cv ( \mathcal{N}) \preceq_{\mathrm{T}}\mathrm{a}\mathrm{L}\mathrm{c}(d, 1) \preceq_{\mathrm{T}}

i\mathrm{L}\mathrm{c}(c, h) where d(i) := \displaystyle \lceil\frac{c(i)}{h(i)}\rceil , so \mathrm{c}\mathrm{o}\mathrm{v}(\mathcal{N}) \leq \mathfrak{d}(c, h) and \mathfrak{b}(c, h) \leq non ( \mathcal{N}) .
Kellner and Shelah [KS12] constructed an $\omega$^{ $\omega$}‐bounding proper poset that forces con‐

tinuum many pairwise different cardinals of the form \mathrm{b}_{c,h}^{\mathrm{a}\mathrm{J}_{\lrcorner}\mathrm{c}} and continuum many of the
form \mathrm{b}_{b,g}^{\mathrm{L}\mathrm{c}} ; Kamo and Osuga [KO14] constructed a ccc poset using a  $\Gamma$ \mathrm{S} iteration to force
infinitely many pairwise different cardinals of the form \mathfrak{b}_{\mathrm{c},1}^{\mathrm{a}\mathrm{L}\mathrm{c}} , moreover, by using a weakly
inaccessible cardinal, such a poset can be constructed to force continuum many values of
those cardinals. With other methods, Brendle and the author [BM14] constructed a ccc
poset using  $\Gamma$ \mathrm{S} iterations to force infinitely many values of cardinals of the form \mathfrak{b}_{b,g}^{\mathrm{L}\mathrm{c}} , and
continuum many modulo a weakly inaccessible from the ground model.

Question 2.4. Is it consistent with ZFC (without using inaccessible cardinals) that there
are continuum many pairwise different cardinals of the form \mathrm{b}_{\mathrm{c},1}^{\mathrm{a}\mathrm{L}\mathrm{c}} ? can we get a similar
consistency result for cardinals of the form \mathfrak{b}_{b,g}^{\mathrm{L}\mathrm{c}} ?

10



Question 2.5. Is it consistent with ZFC that there are continuum many pairwise diffcrent
cardinals of the form 0_{c,h}^{\mathrm{a}\mathrm{L}\mathrm{c}} (even just infinitely many)?

Very recently, Cardona and the author [CM] merged the techniques from [KO14] and
[BM14] to construct a FS iteration of ccc posets that forces infinitely many pairwise
different cardinals of both types \mathrm{b}_{b,g}^{\mathrm{L}\mathrm{c}} and \mathfrak{b}_{\mathrm{c},1}^{\mathrm{a}\mathrm{L}\mathrm{c}} , even continuum many of the latter type
modulo a weakly inaccessible from the ground model. However, this poset puts the
cardinals of the form \mathfrak{b}_{b,g}^{\mathrm{L}\mathrm{c}} below those of the form \mathrm{b}_{c,1}^{\mathrm{a}\mathrm{L}\mathrm{c}}.

Question 2.6. Is it consistent with ZFC that there are infinitely many pairwise different
cardinals of the form \mathfrak{b}_{b,g}^{\mathrm{L}\mathrm{c}} and \mathrm{b}_{c,1}^{\mathrm{a}\mathrm{J}_{\lrcorner}\mathrm{c}} such that they appear in some alternate order?

Details and more facts about localization and anti‐localization cardinals can be found

in [GS93, KS12, KO14, CM].

3 Coherent systems of FS iterations

There are several number of simple and sophisticated techniques to construct ccc iterations
with finite support, which are useful when dealing with three or more cardinal invariants
at the same time2. For instance, Blass and Shelah [BS89] discovered a way to construct
a  $\Gamma$ \mathrm{S} iteration through a two‐dimensional arrangement of posets (and generic extensions,
see Figure 2), technique that was used and improved in [BFII, Mej13, FFMM18, Mej]
to force several different values to cardinal invariants of the continuum. In particular,
in [FFMM18] appears the first practical example of a  $\Gamma$ \mathrm{S} iteration through a three‐
dimensional arrangement of ccc posets (see Figure 3), and the formalization of such type
of constructions, now known as coherent systems of FS iterations.

This section is dedicated to introduce the general notion of coherent systems of FS
iterations and to show how to construct such systems in order to have some desired
effect on cardinal invariants of the continuum. In the applications, we do not use three‐
dimensional constructions, in its place we use a stronger coherent system from [Mej] that
can be seen as a two‐dimensional coherent system that allows vertical support restrictions.

Definition 3.1. Let M be a transitive model of ZFC. When \mathbb{P} \in M and \mathbb{Q} are posets,
say that \mathbb{P} is a complete subposet of \mathbb{Q} with respect to M , abbreviated \mathbb{P}<_{M}\mathbb{Q} , if \mathbb{P} is
a subposet of \mathbb{Q} and any maximal antichain of \mathbb{P} that belongs to M is still a maximal
antichain in \mathbb{Q}.

If in addition N is another transitive model of ZFC, M \subseteq  N and \mathbb{Q} \in  N , then
\mathbb{P}<M\mathbb{Q} implies that, whenever G is \mathbb{Q}‐generic over N, G\cap \mathbb{P} is \mathbb{P}‐generic over M and
M[G\cap \mathbb{P}| \subseteq N[G] (see Figure 4).

Example 3.2. Let M \subseteq  N be transitive models of ZFC. When \mathbb{P} \in  M it is clear that
1<_{M}\mathbb{P} and \mathbb{P}\ll_{M}\mathbb{P} . Also, if \mathrm{S} is a Suslin ccc poset then \mathrm{S}^{M}<{}_{M}\mathrm{S}^{N}.

Definition 3.3 ([ $\Gamma \Gamma$ \mathrm{M}\mathrm{M}18, \mathrm{D}\mathrm{e}\mathrm{f}. 3.2]) . A coherent system (of FS iterations) \mathrm{s} is composed
by the following objects:

'Countable support iterations of proper forcing are not useful in this case because they either are
restricted to force \mathfrak{c}\leq\aleph_{2} or they collapse $\omega$_{2} after $\omega$_{2}+$\omega$_{1} many steps.
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V_{ $\gamma$ 0}
V_{ $\gamma \xi$} \mathbb{Q}_{ $\gamma \xi$} V_{ $\gamma \xi$+1}..

V_{a+10}V_{a0}\mathrm{i} V_{\mathrm{o}+1\neq}V_{\mathrm{o} $\xi$} \mathrm{Q}_{ $\sigma$+1 $\xi$}\mathrm{Q}_{a} $\epsilon$  V_{a+}V_{ $\alpha \xi$\star 1}!^{ $\xi$.+.\cdot 1}\prime.\cdot\cdot  V_{ $\sigma$+1 $\pi$}V_{a $\pi$}\sim.

V_{00}V_{10_{\mathrm{i}}} \prime V_{0 $\xi$}V_{1 $\xi$} \mathrm{Q}_{0 $\xi$}\mathrm{Q}_{1 $\xi$}  V_{0t+1}V_{1, $\xi$+1}\cdots \prime VV_{0 $\pi$}!^{ $\pi$}
Figure 2: 2\mathrm{D} coherent system.
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11
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1
1 0^{\cdot}, $\xi$+1^{\cdot}\displaystyle \prime.\prime\frac{1}{}V_{0,0, $\pi$}1

1

1 \prime
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1

|/

 V_{0, $\delta$,0}\bullet\cdots

Figure 3:  3\mathrm{D} coherent system.
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N\cdot N[G]\overline{\mathbb{Q}}

M\bullet M[G\cap \mathrm{I}\mathrm{P}]\overline{\mathbb{P}}

Figure 4: Generic extensions of pairs of posets ordered like \mathbb{P}<M\mathbb{Q}.

 $\iota$_{1$\iota$_{\mathrm{I}}} $\iota$
\prime $\iota$_{1 $\iota$} $\iota \iota$_{1}

$\iota$_{1 $\iota$}

r^{l}lll\`{I}'1

Figure 5: Coherent system of FS iterations. The figures in dashed hnes represent the
‘shape’ of the partial order \langle I, \leq\rangle.

(1) a partially ordered set I^{\mathrm{s}} , an ordinal $\pi$^{\mathrm{s}} , and

(2) for each i\in I^{\mathrm{s}} , a FS iteration \mathbb{P}_{i,$\pi$^{\mathrm{s}}}^{\mathrm{s}}= \{\mathbb{P}_{i, $\xi$}^{\mathrm{s}},\dot{\mathbb{Q}}_{i, $\xi$}^{\mathrm{s}} :  $\xi$<$\pi$^{\mathrm{s}}\rangle such that, for any  i\leq j in
I and  $\xi$<$\pi$^{\mathrm{s}} , if \mathbb{P}_{i, $\xi$}^{\mathrm{s}}\ll \mathbb{P}_{j, $\xi$}^{\mathrm{s}} then \mathbb{P}_{j, $\xi$}^{\mathrm{s}} forces \dot{\mathbb{Q}}_{i, $\xi$}^{\mathrm{s}}<_{V^{\mathrm{P}_{i, $\xi$}^{\mathrm{s}}}}\dot{\mathbb{Q}}_{ji}^{\mathrm{s}}.

According to this notation, \mathbb{P}_{i,0}^{\mathrm{s}} is the trivial poset and \mathbb{P}_{i,1}^{\mathrm{s}} = \dot{\mathbb{Q}}_{i,0}^{\mathrm{s}} . We often refer to

\langle \mathbb{P}_{i,1}^{\mathrm{s}} :  i\in I^{\mathrm{S}}\rangle as the base of the coherent system \mathrm{s} . Condition (2) implies that \mathbb{P}_{i, $\xi$}^{\mathrm{s}}<\mathbb{P}_{j, $\xi$}^{\mathrm{s}}
whenever i\leq j in I^{\mathrm{s}} and  $\xi$\leq$\pi$^{\mathrm{s}}.

For j\in I^{\mathrm{s}} and  $\eta$\leq$\pi$^{\mathrm{s}} we write V_{j, $\eta$}^{\mathrm{s}} for the \mathbb{P}_{j, $\eta$}^{\mathrm{s}} ‐generic extensions. Concretely, when
G is \mathbb{P}_{j, $\eta$}^{\mathrm{s}}‐generic over V, V_{j, $\eta$}^{\mathrm{s}} :=V[G] and V_{i, $\xi$}^{\mathrm{s}} :=V[\mathbb{P}_{i, $\xi$}^{\mathrm{s}}\cap G] for all i\leq j in I^{\mathrm{s}} and  $\xi$\leq $\eta$.
Note that V_{i, $\xi$}^{\mathrm{s}}\subseteq V_{j, $\eta$}^{\mathrm{s}} and V_{i,0}^{\mathrm{s}}=V (see Figure 5).

We say that the coherent system \mathrm{s} has the ccc if, additionally, \mathbb{P}_{i, $\xi$}^{\mathrm{s}} forces that \dot{\mathbb{Q}}_{i, $\xi$}^{\mathrm{s}} has
the ccc for each i\in I^{\mathrm{s}} and  $\xi$<$\pi$^{\mathrm{s}} . This implies that \mathbb{P}_{i, $\xi$}^{\mathrm{s}} has the ccc for all i\in I^{\mathrm{s}} and
 $\xi$\leq$\pi$^{\mathrm{s}}.

We consider the following particular cases.

(i) When I^{\mathrm{s}} is a well‐ordered set, we say that \mathrm{s} is a 2D‐coherent system (of FS iterations)
(see Figure 2).
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(ii) If I^{\mathrm{s}} = $\gamma$^{\mathrm{s}} \times $\delta$^{\mathrm{s}} where $\gamma$^{\mathrm{s}} and $\delta$^{\mathrm{s}} are ordinals and the order of I^{\mathrm{s}} is defined as
( $\alpha$,  $\beta$) \leq($\alpha$', $\beta$') iff  $\alpha$\leq$\alpha$' and  $\beta$\leq$\beta$' , we say that \mathrm{s} is a 3D‐coherent system (of FS

iterations) (see Figure 3).

For a coherent system \mathrm{s} and a set J \subseteq  I^{\mathrm{s}}, \mathrm{s}|J denotes the coherent system with
I^{\mathrm{s}|J}=J, $\pi$^{\mathrm{s}|J}=$\pi$^{\mathrm{S}} and with its FS iterations defined aồ for \mathrm{s} ; if  $\eta$\leq$\pi$^{\mathrm{s}}, \mathrm{s}\mathrm{r} $\eta$ denotes the
coherent system with  I^{\mathrm{s}| $\eta$}=I^{\mathrm{s}},  $\pi$^{\mathrm{s}\mathrm{r} $\eta$}= $\eta$ and with the iterations defined up to  $\eta$ as for \mathrm{s}.

Note that, if i_{0}\in I^{\mathrm{s}} , then \mathrm{s}|\{i_{0}\} is just the FS iteration \mathbb{P}_{i,$\pi$^{\mathrm{s}}}^{\mathrm{s}}=\{\mathbb{P}_{i, $\xi$}^{\mathrm{s}},\dot{\mathbb{Q}}_{i, $\xi$}^{\mathrm{s}} :  $\xi$<$\pi$^{\mathrm{s}}\rangle.
The upper indices \mathrm{s} are omitted when there is no risk of ambiguity.

It is very common to work with coherent systems where I has a maximum i^{*} , this to
ensure that there is an actual final generic extension of the construction. Note that this
final model V_{i^{*}, $\pi$} is obtained by the FS iteration \langle \mathbb{P}_{i^{*}, $\xi$}, \dot{\mathbb{Q}}_{i^{*}, $\xi$} :  $\xi$ <  $\pi$ ) on the top. The
iterations constructed below the iteration at  i^{*} help to deal with its combinatorics.

Typically, a coherent system of  $\Gamma$ \mathrm{S} iterations \mathrm{s} is constructed by transfinite recursion.
Concretely, \mathrm{s}\mathrm{r} $\xi$ is constructed by recursion on  $\xi$ \leq  $\pi$ as follows. In the step  $\xi$= 0 , we
determine the partial order \langle I, \leq } that will support the base of the coherent system; in
the limit step it is just enough to take direct hmits; for the successor step, assuming that
\mathrm{s}\lceil $\xi$ has been constructed, the system \langle\dot{\mathbb{Q}}_{i\mathrm{g}} : i\in I} of names of posets ( \dot{\mathbb{Q}}_{i, $\xi$} is a \mathbb{P}_{i, $\xi$}‐name)
that will determine how it is forced in stage  $\xi$ is determined, and afterwards \mathrm{s}\mathrm{r}( $\xi$+1) is
defined so that it extends \mathrm{s}\lceil $\xi$ and \mathbb{P}_{i, $\xi$+1}=\mathbb{P}_{i, $\xi$}*\dot{\mathbb{Q}}_{i, $\xi$}. for each i\in I . To have that \mathrm{s}\mathrm{r}( $\xi$+1)
is indeed a coherent system, we require that 1\vdash_{\mathbb{P}_{j, $\xi$}} \mathbb{Q}_{i, $\xi$}<V_{i, $\xi$}\dot{\mathbb{Q}}_{j, $\xi$} whenever i\leq j in I.

In this text, we concentrate only on ccc coherent systems that use the following type of
iterands for any successor step  $\xi$\rightarrow $\xi$+1 with  $\xi$>0 . The first step of the iteration, that is,
the construction of \langle \mathbb{P}_{i,1} :  i\in I\rangle (recall that \mathbb{P}_{i,1}=\dot{\mathbb{Q}}_{ $\iota$,0} ) receives a special treatment and
it is used to add generic reals in the ‘vertical direction’. This will be discussed starting
from Remark 3.7.

(I) Adding a full generic real. This means that, from step  $\xi$ to  $\xi$+1 , we add a real
that is generic (e.g. random, dominating) over V_{i, $\xi$} for any i\in I . For example, this
is done by using a Suslin ccc poset \mathrm{S}_{ $\xi$} that adds the desired type of real and force
with \dot{\mathbb{Q}}_{i, $\xi$}=\mathrm{S}_{ $\xi$}^{V_{i, $\xi$}} at stage  $\xi$ for all  i\in I.

(II) Adding a restricted generic (real) over a small set. Let  $\theta$ be a cardinal,
\triangle( $\xi$) \in I and let \dot{N}_{ $\xi$} be a \mathbb{P}_{ $\Delta$( $\xi$), $\xi$} ‐name of a transitive model of (some fimite fragment
of) ZFC of size <  $\theta$ . Here, we add a generic (real) over \dot{N}_{ $\xi$} , concretely, if \dot{\mathbb{Q}}_{ $\xi$} is a
\mathbb{P}_{ $\Delta$( $\xi$), $\xi$}‐name of a poset that belongs to \dot{N}_{ $\xi$} such that \mathbb{P}_{i, $\xi$} forces that \dot{\mathbb{Q}}_{ $\xi$} is ccc for
all i\geq\triangle( $\xi$) , the we put

\dot{\mathbb{Q}}_{i, $\xi$}:=\left\{\begin{array}{ll}
\dot{\mathbb{Q}}_{ $\xi$} & \mathrm{i}\mathrm{f} i\geq\triangle( $\xi$) ,\\
\mathrm{A} & \mathrm{o}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{w}\mathrm{i}\mathrm{s}\mathrm{e}.
\end{array}\right.
This is indeed a particular case of (III) below, but here the generic object is more
restricted. For example, if \dot{\mathbb{Q}}_{ $\xi$} is a \mathbb{P}_{ $\Delta$( $\xi$), $\xi$}‐name for \mathrm{D}^{N_{ $\xi$}} , the real it adds is domi‐
nating over \dot{N}_{ $\xi$} (not necessarily over V_{ $\Delta$( $\xi$), $\xi$} ). In applications, the cardinal  $\theta$ is small
with respect of some relevant information in the iteration (e.g., below the cofinality
of the length of the FS iterations).

14



(III) Adding a vertically restricted generic. From step  $\xi$ to  $\xi$+1 , we add a generic
over V_{ $\Delta$( $\xi$), $\xi$} for some chosen \triangle( $\xi$) \in  I . For instance, if \dot{\mathbb{Q}}_{ $\xi$} is a \mathbb{P}_{\triangle( $\xi$), $\xi$}‐name of a
poset that is forced to be ccc by \mathbb{P}_{i, $\xi$} for all i\geq\triangle( $\xi$) , \dot{\mathbb{Q}}_{i, $\xi$} is defined aồ in (II).

Now, we discuss the effect of such coherent systems on cardinal invariants of the form
\mathfrak{b}(\mathrm{A}) and \mathfrak{d}(\mathrm{A}) for some relational system A. In the context of FS iterations, these
cardinals are dealt with by using a strong type of unbounded and dominating families.

Definition 3.4. Let \mathrm{A}=\langle X, Y, \subset\rangle be a relational system and let  $\theta$ be a cardinal number.

(1) When  M is a set and x \in  X , say that x is \mathrm{A} ‐unbounded over M iff x \not\subset y for any
y \in Y\cap M.

(2) A subset F of X is a strongly  $\theta$-\mathrm{A} ‐unbounded family if |F| \geq  $\theta$ and, for any  y \in Y,

|\{x\in F:x\sqsubset y\}| < $\theta$.

(3) A subset D of Y is a strongly  $\theta$-\mathrm{A} ‐dominating family if there is \mathrm{a}< $\theta$‐directed partial
order \langle K, \underline{\triangleleft}\rangle such that  D=\{a_{k} : k\in K\} and, for any x\in X , there is some k_{0}\in K
such that x\subset a_{k} for all k\underline{\triangleright}k_{0} in L.

Lemma 3.5. (a) If F\subseteq X is strongly  $\theta$-\mathrm{A} ‐unbounded then \mathrm{b}(\mathrm{A}) \leq |F| and, when  $\theta$ is
regular, |F| \leq \mathfrak{d}(\mathrm{A}) .

(b) If D\subseteq Y is strongly  $\theta$-\mathrm{A} ‐dominating then  $\theta$\leq \mathfrak{b}(\mathrm{A}) and \mathfrak{d}(\mathrm{A}) \leq |D|.

Note that, when  $\theta$ is regular, any strongly  $\theta$-\mathrm{A}‐unbounded family is  $\theta$-\mathrm{A}^{\perp} ‐dominating.
Indeed, if F \subseteq  X is a strongly  $\theta$-\mathrm{A}‐unbounded family, then we can find a one‐to‐one
enumeration F := \{x_{ $\alpha$} :  $\alpha$ < $\gamma$\} for some ordinal  $\gamma$ that has cofinality  $\theta$ , so  $\gamma$ with the
usual order is < $\theta$‐directed and witnesses that  F is strongly  $\theta$-\mathrm{A}^{\perp} ‐dominating.

When forcing values of \mathrm{b}(\mathrm{A}) and 0(\mathrm{A}) with FS iterations of ccc posets, inequalities
as in Lemma 3.5(b) can be obtained in a simpler way than using a strong dominating
family. The need of using strong dominating families is present when applying the Boolean
ultrapower technique from [KTT, GKS]. This will be discussed in Section 4.

The following result is a tool to deal with (names of) reals within coherent systems.

Lemma 3.6 ([Mej, Lemma 2.4]). Let  $\theta$ be an uncountable regular cardinal. Assume that
\mathrm{s} is a coherent system that satisfies:

(i) I has a maximum i^{*} and I\backslash \{i^{*}\}  is< $\theta$ ‐directed,

(ii) each \mathbb{P}_{i, $\xi$} forces that \dot{\mathbb{Q}}_{i, $\xi$} is  $\theta$-cc , and

(iii) for any  $\xi$ <  $\pi$ , if \mathbb{P}_{i^{*}, $\xi$} is the direct limit of \langle \mathbb{P}_{i, $\xi$} : i < i^{*} } then \mathbb{P}_{$\iota$^{*}, $\xi$} forces that
\displaystyle \dot{\mathbb{Q}}_{i^{*}, $\xi$}=\bigcup_{i<i^{*}}\dot{\mathbb{Q}}_{i, $\xi$}.

Then, for any  $\xi$\leq $\pi$,

(a) \mathbb{P}_{i^{*}, $\xi$} is the direct limit of \langle \mathbb{P}_{i, $\xi$} : i<i^{*} } and

(b) if  $\gamma$< $\theta$ and \dot{f} is a \mathbb{P}_{i^{*}, $\xi$} ‐name of a function from  $\gamma$ into \displaystyle \bigcup_{i<i^{*}}V_{i, $\xi$} then \dot{f} is (forced to
be equal to) a\mathbb{P}_{i, $\xi$} ‐name for some i<i^{*} In particular, the reals in V_{i^{*}, $\xi$} are precisely
the reals in \displaystyle \bigcup_{i<i^{*}}V_{i, $\xi$}.
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Let  $\theta$\leq $\mu$ and  $\kappa$ be uncountable regular cardinals,  $\nu$ and  $\lambda$ cardinals such that  $\kappa$\leq \mathrm{c}\mathrm{f}( $\nu$)
and  $\mu$,  $\nu$ \leq  $\lambda$ = $\lambda$^{< $\theta$} , and let I be a partial order that has a maximum element i^{*} . Put
I^{-} :=I\backslash \{i^{*}\} . Assume that \mathrm{A}=\langle X, Y, \sqsubset ) is an analytic relational system (in the sense
that  X and Y are analytic subsets of some Polish spaces \mathbb{R}_{1} and \mathbb{R}_{2} , and \subset is analytic in
\mathbb{R}_{1}\times \mathbb{R}_{2}) . We show, in a general way, how to construct coherent systems that forces each
of \mathrm{b}(\mathrm{A}) and \mathfrak{d}(\mathrm{A}) take one of the values  $\theta$,  $\kappa$,  $\mu$,  $\nu$ and  $\lambda$ . Let  $\pi$= $\lambda$ \mathrm{v} $\mu$ (ordinal product).
The idea is to construct ccc coherent systems of FS iterations of length  $\pi$ on  I by using
the rules (\mathrm{I})-(\mathrm{I}\mathrm{I}\mathrm{I}) above. Note that \mathrm{c}\mathrm{f}( $\pi$)= $\mu$ , so  $\mu$ is the cofinality of the length of the
iterations. Also, if reals are added at each step of the iteration, it is forced that \mathfrak{c}= $\lambda$.

The tools (\mathrm{A})-(\mathrm{C}) below can be used simultaneously for different relational systems.

(A) Force 0(\mathrm{A}) \leq $\mu$\leq \mathrm{b}(\mathrm{A}) (and even equality) by adding full generic reals

At cofinally many steps  $\xi$ <  $\pi$ use ccc posets to add full generic \mathrm{A}‐dominating reals
(according to (I)). If D is the (name of the) family of those dominating reals, then \mathbb{P}_{i^{*}, $\pi$}
forces that \dot{D} is strongly  $\mu$-\mathrm{A}‐dominating, so \mathfrak{d}(\mathrm{A}) \leq |\dot{D}| and  $\mu$\leq \mathfrak{b}(\mathrm{A}) . In fact \mathrm{o}(\mathrm{A}) \leq $\mu$
because \dot{D} can be defined from a cofinal subset of  $\pi$ of size  $\mu$.

Recall that any FS iteration adds Cohen real al limit steps, so it is forced that
non(M) \leq  $\mu$ \leq \mathrm{c}\mathrm{o}\mathrm{v}(\mathcal{M}) . On the other hand, if \mathrm{C}\mathrm{v}(\mathcal{M}) \preceq_{\mathrm{T}} A can be proved in a
definable way, then \mathbb{P}_{i^{*}, $\pi$} forces that \mathrm{b}(\mathrm{A})=\mathfrak{d}(\mathrm{A})=\mathrm{n}\mathrm{o}\mathrm{n}(\mathcal{M})=\mathrm{c}\mathrm{o}\mathrm{v}(\mathcal{M})= $\mu$.

For example, random forcing can be used to add a full generic \mathrm{C}\mathrm{v}(N)^{\perp}‐dominating
real ( \mathrm{i}.\mathrm{e}. , a full random real), so it will be forced that non ( \mathcal{N}) \leq $\mu$\leq \mathrm{c}\mathrm{o}\mathrm{v}(\mathcal{N}) , even more,
equality holds since \mathrm{C}\mathrm{v}(\mathcal{M}) \preceq_{\mathrm{T}}\mathrm{C}\mathrm{v}(\mathcal{N})^{\perp} (by Rothberger, see [BJ95, Lemma 2.1.7]).

(B) Force  $\theta$\leq \mathfrak{b}(\mathrm{A}) and \mathfrak{d}(\mathrm{A}) \leq $\lambda$ by adding restricted generic reals over small
sets

Here we further assume that either  I = \{i^{*}\} or that I^{-} is non‐empty of size \leq  $\lambda$ and
<  $\theta$‐directed. We work in the second case. By Lemma 3.5, it is enough to force the
existence of a strongly  $\theta$-\mathrm{A}‐dominating family of size  $\lambda$ . At each interval of the form
[ $\lambda \rho$,  $\lambda$( $\rho$+1)) for  $\rho$<  $\nu \mu$ , we fix a subset  C_{ $\rho$} of size  $\lambda$ of that interval, which we use to

add restricted \mathrm{A}‐generic reals over sets of size <  $\theta$ (according to (II)). \cdot Fix a bijection
 g_{ $\rho$} = (g_{ $\rho$}^{0}, g_{ $\rho$}^{1}) : C_{ $\rho$} \rightarrow  I^{-} \times $\lambda$ . For each  i \in  I^{-} , construct a family \{N_{ $\rho$,i, $\zeta$} :  $\zeta$ <  $\rho$\} of
\mathbb{P}_{i, $\lambda \rho$}‐names of transitive models of ZFC of size < $\theta$ such that

(i) for any  B\displaystyle \subseteq\bigcup_{ $\varrho$< $\rho$}C_{ $\varrho$} of size < $\theta$ there is some upper bound  $\eta$\in C_{ $\rho$} of B such that
g_{ $\rho$}^{0}( $\eta$) is above \{g_{ $\varrho$}^{0}( $\xi$) :  $\xi$\in B\cap C_{ $\varrho$},  $\rho$< $\rho$\} and \mathbb{P}_{g_{ $\rho$}^{0}( $\eta$), $\lambda \rho$} forces that

\displaystyle \bigcup_{ $\varrho$< $\rho$}\bigcup_{ $\xi$\in B\cap C_{ $\varrho$}}\dot{N}_{ $\varrho$,g_{ $\varrho$}( $\xi$)}\subseteq\dot{N}_{ $\rho$,g_{ $\rho$}( $\xi$);}
(ii) for any \mathbb{P}_{i^{*}, $\lambda \rho$}‐name \dot{x} of a member of X there is some  $\xi$ \in  C_{ $\rho$} such that \dot{x} is a

\mathbb{P}_{g_{ $\rho$}^{0}( $\xi$), $\lambda \rho$}‐name and \mathbb{P}_{g_{ $\rho$}^{0}( $\xi$), $\lambda \rho$} forces that \dot{x}\in\dot{N}_{ $\rho$,g_{ $\rho$}( $\xi$)}.
Note that Lemma 3.6 should be used for this construction. For each  $\xi$\in C_{ $\rho$} use a \mathbb{P}_{g_{ $\rho$}^{0}( $\xi$), $\lambda \rho$^{-}}
name \dot{\mathbb{Q}}_{ $\xi$} of a poset in \dot{N}_{ $\rho$,g_{ $\rho$}( $\xi$)} that adds an \mathrm{A}‐dominating real y_{ $\rho$} over \dot{N}_{ $\rho$,g_{ $\rho$}( $\xi$)} and such
that \mathbb{P}_{i^{*}, $\xi$} forces that \dot{\mathbb{Q}}_{ $\xi$} is ccc. Put C :=\displaystyle \bigcup_{ $\rho$< $\nu \mu$}C_{ $\rho$} . If \dot{\mathbb{Q}}_{i, $\xi$} is defined as in (II) for any
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i\in I and  $\xi$\in C , then \mathbb{P}_{i^{*}, $\pi$} forces that È := \{y_{ $\xi$} :  $\xi$\in C\} is a strongly  $\theta$-\mathrm{A}‐dominating
family where C is ordered by  $\xi$\underline{\triangleleft} $\eta$ iff  $\xi$ \leq $\eta$, g_{ $\varrho$}^{0}( $\xi$) \leq g_{ $\rho$}^{0}( $\eta$) where  $\varrho$,  $\rho$ are the (unique)
ordinals such that  $\xi$\in  C_{ $\varrho$} and  $\eta$ \in  C_{ $\rho$} , and \mathbb{P}_{g_{ $\rho$}^{0}( $\eta$)} forces that \dot{N}_{ $\varrho$,g_{ $\varrho$}( $\xi$)} \subseteq \dot{N}_{ $\rho$,g_{ $\rho$}( $\eta$)} (by (i),
this order is <  $\theta$‐directed). Therefore, as  C has size  $\lambda$, \mathbb{P}_{i^{*}, $\pi$} forces that  $\theta$ \leq \mathrm{b}(\mathrm{A}) and
0(\mathrm{A})\leq $\lambda$.

Note that the inequality \mathfrak{d}(\mathrm{A}) \leq  $\lambda$ would follow trivially since  0(\mathrm{A}) \leq |Y| \leq \mathrm{c} and
\mathbb{P}_{i^{*}, $\pi$} forces \mathfrak{c}= $\lambda$ . On the other hand, the previous construction could be simplified just
to force  $\theta$\leq \mathrm{b}(\mathrm{A}) without using a strongly dominating family. So, why do we get into the
pain of constructing a strongly dominating family? Such family is useful when applying
Boolean ultrapowers to the constructed ccc forcing. A further explanation is presented in
Section 4.

How about the converse inequalities? A tool to deal with this is Judah and Shelah
[JS90] and Brendle [Bre91] preservation theory of strongly  $\kappa$-\mathrm{A}‐unbounded families along
finite support iterations. Though this topic was not dealt with in the minicourse, we
briefly mention the general idea of its application. This demands more conditions in \mathrm{A},
e.g., X is a Polish perfect space and \{x \in X : x \sqsubset y\} is meager in X for any y \in  Y,
which implies that \mathrm{A}\preceq \mathrm{T}\mathrm{C}\mathrm{v}(\mathcal{M}) (in a very definable way) and that Cohen reals (in X )
are \mathrm{A}‐unbounded over the ground model. Hence, for any uncountable regular cardinal
 $\kappa$ , any FS iteration of length  $\kappa$ of non‐trivial ccc posets forces that the Cohen reals
added at limit stages of the iteration form a strongly  $\kappa$-\mathrm{A}‐unbounded family of size  $\kappa$.

When considering iterations longer than  $\kappa$ , the preservation theory is used to guarantee
that the strongly unbounded family of Cohen reals added at step  $\kappa$ is preserved strongly
unbounded until the end of the iteration. To apply this theory to our present discussion,
it is required that the iterands \dot{\mathbb{Q}}_{i^{*}, $\xi$} , for any  $\xi$< $\pi$ , are forced to be  $\theta$-\mathrm{A} ‐good (the main
notion of the preservation theory). In this case, it follows that, for any uncountable regular
 $\kappa$ \in [ $\theta$,  $\pi$] , the strongly  $\kappa$-\mathrm{A}‐unbounded family added by \mathbb{P}_{i^{*}, $\kappa$} is preserved in the \mathbb{P}_{i^{*},$\pi$^{-}}
generic extension, so \mathbb{P}_{i^{*}, $\pi$} forces that \mathrm{b}(\mathrm{A}) \leq  $\kappa$ \leq \mathfrak{d}(\mathrm{A}) . As  $\kappa$ was arbitrary, \mathrm{b}(\mathrm{A}) \leq  $\theta$

and  $\lambda$ \leq  0(\mathrm{A}) (so equality is forced). Details on the preservation theory can be found,
e.g., in [CM, Sect. 4].

Case I=\{i^{*}\} . The construction can be easily modified to get a strongly dominating
family. The preservation theory also applies.

(C) Force \displaystyle \min\{ $\kappa$,  $\mu$\} \leq \mathrm{b}(\mathrm{A}) and \mathfrak{d}(\mathrm{A}) \displaystyle \leq\max\{ $\mu$,  $\nu$\} by adding vertically restricted
generic reals

Here we further assume that I^{-} is <  $\kappa$‐directed and has size \leq  $\nu$ . Fix a function  t :

 $\nu \mu$ \rightarrow  I^{-} such that, for any  $\rho$ <  $\nu \mu$ and  i \in  I^{-} there is some  $\rho$ \leq  $\rho$ <  $\nu \mu$ such that
 t( $\rho$) \geq  i (it can be constructed because |I| \leq  $\nu$ ). For each  $\rho$ <  $\nu \mu$ choose a poin \mathrm{t}

$\eta$_{ $\rho$}\in[ $\lambda \rho$,  $\lambda$( $\rho$+1)) and use a \mathbb{P}_{t( $\rho$),$\eta$_{ $\rho$}} ‐name \mathbb{Q}_{$\eta$_{ $\rho$}} . of a poset that adds a \mathrm{A}‐dominating real
z_{ $\rho$} over V_{t( $\rho$),$\eta$_{ $\rho$}} and such that \mathbb{P}_{i^{*},$\eta$_{ $\rho$}} forces that \mathbb{Q}_{$\eta$_{ $\rho$}} is ccc. If \dot{\mathbb{Q}}_{i,$\eta$_{ $\rho$}} is defined as in (III) then
\mathbb{P}_{i^{*}, $\pi$} forces that \dot{H} :=\{z_{ $\rho$} :  $\rho$<\mathrm{v} $\mu$\} is a strongly \displaystyle \min\{ $\kappa$,  $\mu$\}-\mathrm{A}‐dominating family where
 $\nu \mu$ is ordered by  $\rho$\underline{\triangleleft} $\rho$ iff  $\varrho$\leq $\rho$ and  t( $\rho$) \leq t( $\rho$) . Thus, \mathbb{P}_{i^{*}, $\pi$} forces \displaystyle \min\{ $\kappa$,  $\mu$\} \leq \mathfrak{b}(\mathrm{A}) and
0(\displaystyle \mathrm{A})\leq| $\nu \mu$|=\max\{ $\mu$,  $\nu$\}.

How about the converse inequalities? Assume that J \subseteq I^{-} is a strongly  $\kappa$-I^{-}-

unbounded set and that, for each j \in  J, \mathbb{P}_{j,1} adds a real x_{j} in X such that \mathbb{P}_{i^{*},1} forces
that x_{j} is \mathrm{A}‐unbounded over V_{i,1} for any i\in I with j\not\leq i , and \dot{x}_{j}\neq\dot{x}_{j'} whenever j\neq j'.
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Here, the preservation theory of unbounded reals from [BS89, BFII, Mej13] can be used
to preserve \dot{x}_{j} to be \mathrm{A}‐unbounded over V_{i, $\pi$} for any i \in I with j \not\leq  i . This ensures
that \dot{F} = \{\dot{x}_{j} : j \in J\} is a strongly  $\kappa$-\mathrm{A}‐unbounded family in the final extension, so
\mathrm{b}(\mathrm{A}) \leq |J| \leq  0(\mathrm{A}) . Hence, if I^{-} contains such a strongly unbounded subset of size  $\kappa$

then it is forced that \mathrm{b}(\mathrm{A}) \leq $\kappa$ ; if  I^{-} contains such a strongly unbounded subset of size
 $\nu$ then it is forced that \mathrm{v}\leq \mathfrak{d}(\mathrm{A}) .

The preservation of unbounded reals is guaranteed when, for each  0< $\xi$< $\pi$ where a
full generic real is added, a Suslin ccc poset \mathrm{S}_{ $\xi$} is used in that step and, for each i\in I^{-},
\mathbb{P}_{i\mathrm{g}} forces that \mathrm{S}^{V_{i, $\xi$}} is \mathrm{A}‐good (notion mentioned in (B)). Here we need that A is a Polish
relational system, so \mathrm{A}\preceq {}_{\mathrm{T}}\mathrm{C}\mathrm{v}(\mathcal{M}) and, as \mathbb{P}_{i^{*}, $\pi$} adds  $\mu$‐cofinally many Cohen reals that
form a strongly  $\mu$-\mathrm{A}‐unbounded family, it forces \mathrm{b}(\mathrm{A}) \leq $\mu$\leq \mathfrak{d}(\mathrm{A}) . Details can be found
in, e.g., [CM, Sect. 4].

There are some other ways to add full generic reals without using Suslin ccc posets,
for example, according to [BS89, BFII], if I is a well‐ordered set, by recursion on i \in I

it can be constructed a \mathbb{P}_{i, $\xi$} ‐name \dot{U}_{i, $\xi$} of a non‐principal ultrafilter on  $\omega$ such that, for
any  i\leq j in I, \mathbb{P}_{j, $\xi$} forces U_{i, $\xi$} \subseteq\dot{U}_{j, $\xi$} and, when j=i+1, \mathrm{I}\mathrm{M}(\dot{U}_{i, $\xi$})<V_{i, $\xi$}\mathrm{M}(\dot{U}_{i+1, $\xi$}) . Even
more, they can be constructed so that unbounded reals in $\omega$^{ $\omega$} can be preserved (in the
aforementioned way) and also to ensure preservation of certain type of mad families.

Remark 3.7. Note that (A) and (B) (as well as (I) and (II)) fit in the context of a
single  $\Gamma$ \mathrm{S} iteration. The importance of the partial order I and the base \langle \mathbb{P}_{i,1} :  i\in I\rangle of
a coherent system is related to (C), which allows to force additional values of cardinal
characteristics of the continuum. Ftirthermore, when equahties are obtained in (C), it is
necessary that \mathrm{c}\mathrm{f}( $\nu$) \geq $\kappa$ since \mathrm{c}\mathrm{f}(0(I^{-}))=\mathfrak{b}(I^{-}) , \mathfrak{b}(I^{-})= $\kappa$ and \mathfrak{d}(I^{-})= $\nu$.

The following example presents bases of coherent systems that are suitable for (C).

Example 3.8. (1) Let  $\nu$ be an uncountable regular cardinal and  I= $\nu$+1 with the usual
order. Put \mathbb{P}_{i,1} :=\mathbb{C}_{ $\lambda$+i} . With  $\kappa$=v,  I^{-}= $\nu$ is < $\nu$‐directed,  J=\{i+1 : i\in I^{-}\} is
strongly v‐ I^{}‐unbounded and each \mathbb{P}_{ $\iota$+1,1} adds a Cohen real c_{i} over V_{i,1} , which is also
\mathrm{A}‐unbounded over the same model for any Polish relational system A. It is clear that
the demands on (C) for I and \langle \mathbb{P}_{i,1}:i\in I\rangle are satisfied (even those for the converse
inequalities).

(2) Let  $\kappa$ be an uncountable regular cardinal and let  $\nu$ be a cardinal such that  $\nu$=\mathrm{v}^{< $\kappa$}.

Consider I= [\mathrm{v}]^{< $\kappa$}\cup\{ $\nu$\} ordered \mathrm{b}\mathrm{y}\subseteq . It is clear that  I^{-} = [ $\nu$]^{< $\kappa$} is <  $\kappa$‐directed,
 i^{*} := \displaystyle \max(I) =  $\nu$ and that |I| =  $\nu$ . For each  A \in I define \mathbb{P}_{A,1} := \mathbb{C}_{A} . Note that,
for any L\subseteq \mathrm{v} of size \geq $\kappa$ , the set  J_{L} :=\{\{ $\alpha$\} :  $\alpha$ \in L\} is strongly  $\kappa$-I^{-} ‐unbounded.
Moreover, if c_{ $\alpha$} denotes a Cohen real added by \mathbb{C}_{\{ $\alpha$\}} for any  $\alpha$\in \mathrm{v} , then it is forced
to be Cohen over V_{A,1} for any A\in I^{-} such that  $\alpha$\not\in A . In particular, J_{ $\kappa$} and J_{ $\nu$} are
as required to force the equalities in (C).

Now, we are ready to give some applications.

Theorem 3.9 ([BCM]). Let $\theta$_{0} \leq $\theta$_{1} \leq $\theta$_{2} \leq  $\mu$ \leq \mathrm{v} be uncountable regular cardinals
and let  $\lambda$ be a cardinal such that  $\nu$ \leq  $\lambda$ = $\lambda$^{<$\theta$_{2}} . Then there is a ccc poset that forces
add (\mathcal{N})=$\theta$_{0}, \mathrm{c}\mathrm{o}\mathrm{v}(\mathcal{N})=$\theta$_{1}, \mathfrak{b}=$\theta$_{2} , non(M) = $\mu$, \mathrm{c}\mathrm{o}\mathrm{v}(\mathcal{M})= $\nu$ and \mathfrak{d}=\mathrm{n}\mathrm{o}\mathrm{n}(\mathcal{N})=\mathfrak{c}= $\lambda$.

First part of the proof. Construct a coherent system on I =  $\nu$+1 of FS iterations of
length  $\pi$ :=  $\lambda \nu \mu$ such that \mathbb{P}_{i,1} = \mathbb{C}_{ $\lambda$+i} (as in Example 3.8(1) ) and the further iterands
are determined by (II) and (III) according to the following criteria:
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(i) add restricted amoeba reals over sets of size < $\theta$_{0} according to (II) and (B) for
 $\theta$=$\theta$_{0} ;

(ii) add restricted random reals over sets of size <$\theta$_{1} according to (II) and (B) for  $\theta$=$\theta$_{1} ;

(iii) add restricted Hechler dominating reals over sets of size <$\theta$_{2} according to (II) and
(B) for  $\theta$=$\theta$_{2} ;

(iv) add vertically restricted eventually different reals in $\omega$^{ $\omega$} (with E) according to (III)
and (C) for  $\kappa$= $\nu$.

By (C) it follows that \mathbb{P}_{ $\nu,\ \pi$} forces  $\mu$\leq \mathfrak{b}(\mathrm{E}\mathrm{d}( $\omega$))=\mathrm{n}\mathrm{o}\mathrm{n}(\mathrm{M}) and cov(M) =\mathfrak{d}(\mathrm{E}\mathrm{d}( $\omega$)) \leq
 $\nu$ . Actually, equality holds because the  $\mu$‐cofinally many Cohen reals added at the limit
steps in \mathbb{P}_{ $\nu,\ \pi$} form a strongly  $\mu$-\mathrm{C}\mathrm{v}(\mathcal{M}) ‐unbounded family (so non(M) \leq $\mu$), and because
no full generic reals are added along this iteration.

The methods of (B) indicate that \mathbb{P}_{ $\nu,\ \pi$} forces $\theta$_{0} \leq \mathrm{a}\mathrm{d}\mathrm{d}(\mathcal{N}) , $\theta$_{1} \leq \mathrm{c}\mathrm{o}\mathrm{v}(\mathcal{N}) , $\theta$_{2} \leq \mathfrak{b}

and 0 , non(.IV) \leq $\lambda$=\mathfrak{c} . With the exception of \mathrm{b} and 0 , equalities can be guaranteed by
Judah‐Shelah and Brendle preservation theory. To force \mathfrak{b} \leq $\theta$_{2} and  $\lambda$ \leq \mathfrak{d} , we need a
very special argument that is explained in Section 4. \square 

The following result is an strengthening of [FFMM18, Thm. 5.4] by allowing that the
cardinal \mathrm{v} is singular. Though [FFMM18, Thm. 5.4] waồ proved using a 3\mathrm{D} coherent
system, the result below uses a coherent system with a base as in Example 3.8(2). In
both results, it can be forced in addition that  a= $\kappa$ (the almost‐disjointness number).

Theorem 3.10 ([Mej]). Let  $\theta$_{0}\leq$\theta$_{1} \leq $\kappa$\leq $\mu$ be uncountable regular cardinals and let  v,

 $\lambda$ be cardinals such that  $\mu$ \leq $\nu$ =\mathrm{V}^{< $\kappa$} \leq $\lambda$=$\lambda$^{<$\theta$_{1}} . Then there is a ccc poset that forces
add (\mathcal{N})=$\theta$_{0}, \mathrm{c}\mathrm{o}\mathrm{v}(N)=$\theta$_{1}, \mathrm{b}= $\kappa$ , non(M) =\mathrm{c}\mathrm{o}\mathrm{v}(\mathcal{M})= $\mu$, \mathfrak{d}=\mathrm{v} and non(A/) =\mathrm{c}= $\lambda$.

Proof. Construct a coherent system on I=[ $\nu$]^{< $\kappa$}\cup\{ $\nu$\} of FS iterations of length  $\pi$ := $\lambda \nu \mu$
such that \mathbb{P}_{A,1} =\mathbb{C}_{A} (as in Example 3.8(2) ) and the further iterands are determined by
(\mathrm{I})-(\mathrm{I}\mathrm{I}\mathrm{I}) according to the following criteria:

(i) add full eventually different reals in $\omega$^{ $\omega$} according to (I) and (A);

(ii) add restricted amoeba reals over sets of size < $\theta$_{0} according to (II) and (B) for
 $\theta$=$\theta$_{0} ;

(iii) add restricted random reals over sets of size <$\theta$_{1} according to (II) and (B) for  $\theta$=$\theta$_{1} ;

(iv) add vertically restricted Hechler dominating reals according to (III) and (C).

The arguments in (\mathrm{A})-(\mathrm{C}) guarantee that \mathbb{P}_{ $\nu,\ \pi$} forces the desired statements. \square 

The coherent system of the previous proof can be extended directly to a coherent
system on \mathcal{P}( $\nu$) ordered \mathrm{b}\mathrm{y}\subseteq . This can be seen as a  2\mathrm{D} coherent system of dimensions
 $\nu$\times $\pi$ that allows restriction over any subset of the vertical component, i.e., when  A\subseteq $\nu$
and  $\xi$\leq $\pi$, \mathbb{P}_{A, $\xi$} is understood as the vertical restriction of \mathbb{P}_{ $\nu,\ \xi$} on A . See Figure 6 for a
graphic interpretation.

Horizontal restriction over an arbitrary subset of a  $\Gamma$ \mathrm{S} iteration has been considered
for quite some time. The more general framework is known as template iterations, \mathrm{a}
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Figure 6: Matrix iteration with vertical support restrictions.

technique created by Shelah [She04] to construct a ccc poset that forces \aleph_{1} < \mathfrak{d} < a.

This is a general method to construct an iteration over a linear order L with respect to a
well‐founded system \mathcal{I} of subsets of I (e.g., for a typical FS iteration  L= $\delta$ is an ordinal
and \mathcal{I}=  $\delta$+1) . This allows to construct a system \langle \mathbb{P}_{A} : A \subseteq  L\rangle such that \mathbb{P}_{A}\ll \mathbb{P}_{B}

whenever  A\subseteq B\subseteq  L , that is, \mathbb{P}_{A} is understood as the restriction of \mathbb{P}_{L} on A . Details,
improvements an applications can be found in e.g. [Bre02, Bre03, Bre05, Mej15,  $\Gamma$ \mathrm{M}17].

In theory, we can construct 2\mathrm{D} coherent systems that allow restriction on arbitrary
rectangles. However, new results using this method are unknown at the moment.

4 FS iterations with ultrafilters

We deal with the problem of forcing \mathrm{b}\leq $\kappa$ and  $\lambda$\leq \mathfrak{d} in the proof of Theorem 3.9. There,
the iterands of the FS iteration \{\mathbb{P}_{ $\nu$ \mathrm{f}}, \dot{\mathbb{Q}}_{ $\nu,\ \xi$} :  $\xi$< $\pi$\rangle have size < $\kappa$ with the exception of the
iterands used to add restricted eventually different reals. These small iterands behave well
with the preservation theory for \langle$\omega$^{ $\omega$}, \leq^{*} }, but this cannot be ensured for the restricted E.
Although \mathrm{E} is $\omega$^{ $\omega$}‐good, restricted versions of it may add dominating reals, for instance,
Pawlikowski [Paw92] showed that a proper $\omega$^{ $\omega$}‐bounding Silver type poset forces that both
\mathrm{E}^{V} and random forcing restricted to the ground model add dominating reals. Judah and
Shelah [JS93] constructed a two step iteration of the form \mathbb{C}* $\Gamma$ , where  $\Gamma$ is a Suslin
ccc poset coded in the ground model  V , that forces that random forcing restricted to  V^{r} $\Gamma$

adds a dominating real.
This difficulty, in the case of random forcing, was attacked by Shelah [SheOO] to prove

the consistency of \mathrm{c}\mathrm{f}(\mathrm{c}\mathrm{o}\mathrm{v}(\mathcal{N}))= $\omega$ . Under suitable hypothesis, he forced with \mathbb{C}_{$\omega$_{ $\omega$}} followed
by a  $\Gamma$ \mathrm{S} iteration of length $\omega$_{ $\omega$+1} of restricted random forcing (in a more sophisticated way
than the one presented in (II) and (III) of Section 3). As \mathrm{c}\mathrm{o}\mathrm{v}(\mathcal{N})\leq \mathrm{b} implies that \mathrm{c}\mathrm{o}\mathrm{v}(\mathcal{N})
has uncountable cofinality (Bartoszyński [Bar88]), it is necessary that the iterands in
the previous iteration do not add dominating reals. In fact, this was dealt with by the
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construction, along de iteration, of sequences of finitely additive measures on \mathcal{P}( $\omega$) that
help to control that the restricted random posets do not add dominating reals.

A weaker variation of this technique was used to prove the following precursor of
Theorem 3.9.

Theorem 4.1 ([GMS16]). Assume that $\theta$_{0} \leq$\theta$_{1} \leq$\theta$_{2} \leq $\mu$=$\mu$^{\aleph_{0}} are regular uncountable
cardinals and  $\lambda$ is cardinal such that  $\mu$ <  $\lambda$= $\lambda$^{<$\theta$_{2}} . If  $\lambda$ \leq  2^{ $\mu$} then there is a ccc poset
that forces add (\mathcal{N})=$\theta$_{0}, \mathrm{c}\mathrm{o}\mathrm{v}(\mathcal{N})=$\theta$_{1}, \mathrm{b}=$\theta$_{2} , non(M) = $\mu$ and \mathrm{c}\mathrm{o}\mathrm{v}(\mathcal{M})=\mathfrak{c}= $\lambda$.

The requirement  $\lambda$\leq 2^{ $\mu$} concerns the application of the following topological result.

Theorem 4.2 (Engelking and Karlowicz [EK65]). If  $\mu$=$\mu$^{\aleph_{0}} and  $\delta$ < (2^{ $\mu$})^{+} then there
is a set H \subseteq $\mu$^{ $\delta$} of  size\leq  $\mu$ such that any countable partial function from  $\delta$ into  $\mu$ is
extended by some member of  H.

For motivational purposes, we briefly explain the forcing construction to prove The‐
orem 4.1. It consists of a  $\Gamma$ \mathrm{S} iteration \langle \mathbb{P}_{ $\xi$}, \dot{\mathbb{Q}}_{ $\xi$} :  $\xi$ <  $\delta$\rangle of length  $\delta$=  $\lambda \mu$ where the first
 $\theta$_{2} iterands are Cohen forcing \mathbb{C} and, afterwards, ccc posets of size < $\theta$_{2} are used as in
(\mathrm{i})-(\mathrm{i}\mathrm{i}\mathrm{i}) of the proof Theorem 3.9, and also restricted \mathrm{E} of size \leq  $\mu$ . Let  E \subseteq  $\delta$ be the
set of steps where we use restricted E. This set should be defined in such a way that \mathbb{P}_{ $\delta$}
forces that the set \{e_{ $\xi$} :  $\xi$ \in E\} of restricted eventually different reals form a strongly
 $\mu$-\mathrm{E}\mathrm{d}( $\omega$) ‐dominating family of size  $\lambda$ . A method similar to (B) of Section 3 helps to deal
with this strongly dominating family, so the actual problem is to ensure that the iteration
forces \mathrm{b} \leq $\theta$_{2} , and for that we need to be careful in the way the restrictions of \mathrm{E} are
defined.

Before we continue this discussion, it is crucial to understand why \mathrm{E} does not add
dominating families, even more, how \mathrm{E} preserves strongly $\omega$^{ $\iota$ v}‐unbounded families. We
first fix some notation. For (s, m)\in$\omega$^{< $\omega$}\times $\omega$ define \mathrm{E}(s, m) :=\{s\} \times \mathcal{S}( $\omega$, m) . Note that

\displaystyle \mathrm{E}=\bigcup_{(s,m)\in $\omega$< $\omega$\times $\omega$}\mathrm{E}(s, m) . When D is a non‐principal ultrafilter on  $\omega$ and \langle$\varphi$_{n} : n < $\omega$\rangle
is a sequence of slaloms in  S( $\omega$, m) , define the D ‐limit of \langle$\varphi$_{n} : n < $\omega$\rangle by  $\varphi$=\displaystyle \lim_{n}^{D}$\varphi$_{n}
if, for any i, j < $\omega$, j \in  $\varphi$(i) ffi \{n < $\omega$ : j \in $\varphi$_{n}(i)\} \in  D . Note that this D‐limit is in
S( $\omega$, m) . If \overline{p}= \langle p_{n} : n < $\omega$\} is a sequence in \mathrm{E}(s, m) , p_{n} = (s, $\varphi$_{n}) , the D ‐limit of \overline{p} is
defined by \displaystyle \lim_{n}^{D}p_{n} :=(s, \displaystyle \lim_{n}^{D}$\varphi$_{n}) . For any poset \mathbb{P} and any sequence \overline{p}= \langle p_{n} : n < $\omega$\rangle,
denote by \dot{W}_{\mathbb{P}}(\overline{p}) := \{n < $\omega$ : p_{n} \in \dot{G}_{\mathrm{P}}\} where \dot{G}_{\mathrm{P}} is the canonical name of the generic
set. The subindex \mathbb{P} is omitted when clear from the context.

Lemma 4.3. Let D be a non‐principal ultrafilter on  $\omega$ . If  G is \mathrm{E} ‐genenc over V then,
in V[G], D can be extended to an ultrafilter in D^{*} on \mathcal{P}( $\omega$)\cap V[G] such that, for any
(s, m) \in$\omega$^{< $\omega$}\times $\omega$ and any sequence \overline{p}\in \mathrm{E}(s, m)\cap V that has its D ‐limit in G, W(\overline{p})[G] \in

 D^{*}

This lemma is a direct consequence of the following claim in V.

Claim 4.4. Assume N< $\omega$, \{(s_{k}, m_{k}) : k<N\}\subseteq$\omega$^{< $\omega$}\times $\omega$, \{\overline{p}^{k}:k<N\} such that each

\overline{p}^{k}= \langle p_{k,n} :  n< $\omega$\rangle is a sequence in \mathrm{E}(s_{k}, m_{k}) , q_{k} is the D ‐limit of \overline{p}^{k} for each k<N , and
q\in \mathrm{E} is stronger than evew q_{k} . If a\in D then q forces that a\displaystyle \cap\bigcap_{k<N}\dot{W}(\overline{p}^{k}) is non‐empty.

Proof. We can express the forcing conditions as p_{k,n}=(s_{k}, $\varphi$_{k,n}) , q_{k}=(s_{k}, $\varphi$_{k}) where each
$\varphi$_{k} is the D‐limit of \{$\varphi$_{k,n} : n < $\omega$\} in S( $\omega$, m_{k}) . Assume that q'= (t,  $\psi$) \leq  q in E. As
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q' \leq  q_{k} , by the definition of $\varphi$_{k} we have \{n <  $\omega$ : \forall i \in |t| \backslash  |s_{k}| (t(i) \not\in $\varphi$_{k,n}(i))\} \in  D.

Hence a\displaystyle \cap\bigcap_{k<N}\{n < $\omega$ : \forall i \in |t| \backslash  |s_{k}| (t(i) \not\in $\varphi$_{k,n}(i))\} is no‐empty, so choose an n in
that set. Put r :=(t, $\psi$') where $\psi$'(i) := $\psi$(i)\displaystyle \cup\bigcup_{k<N}$\varphi$_{k,n}(i) , which is clearly a condition
stronger than q' and q_{n,k} for any k<N , so it forces n\displaystyle \in a\cap\bigcap_{k<N}\dot{W}(\overline{p}^{k}) . \square 

The effect of the previous lemma in the preservation of strongly unbounded families in
$\omega$^{ $\omega$} can be generalized thanks to the following notion. Denote by Fr :=\{x\subseteq $\omega$ : | $\omega$\backslash x| <

\aleph_{0}\} the Frechet filter. A filter on  $\omega$ is free iff it contains Fr. Denote by  F^{+} the family of
subsets of  $\omega$ that intersect every member of  F.

Definition 4.5 ([BCM]). Let \mathbb{P} be a poset, F a free filter on  $\omega$ and let  $\mu$ be an infinite
cardinal.

(1) A set  Q \subseteq \mathbb{P} is F ‐linked if, for any sequence \overline{p}= \langle p_{n} : n < $\omega$\rangle in  Q , there exists a
q\in \mathbb{P} that forces \dot{W}(\overline{p}) \in F^{+}.

(2) A set Q \subseteq \mathbb{P} is ultrafilter‐linkel, abbreviated uf‐linked, if Q is D‐linked for any non‐
principal ultrafilter D on  $\omega$.

(3) The poset \mathbb{P} is  $\mu$-F‐linked if \displaystyle \mathbb{P}=\bigcup_{ $\alpha$< $\mu$}P_{ $\alpha$} for some sequence \langle P_{ $\alpha$} :  $\alpha$< $\mu$\rangle of  F‐linked
subsets of \mathbb{P} . The notion  $\mu$-uf‐linked is defined likewise. When  $\mu$ = \aleph_{0} , we write
 $\sigma$-F ‐linked and  $\sigma$-uf‐linked.

(4) The poset \mathbb{P} is  $\mu$-F ‐Knaster if any subset of \mathbb{P} of size  $\mu$ contains an  F‐linked set of
size  $\mu$ . The notion  $\mu$-uf‐Knaster is defined likewise.

When F\subseteq F' are free filters, it is clear that any F‐linked set is F'‐linked. In particular,
a set is uf‐linked iff it is F‐linked for every free filter F . Though Fr‐linked is the weakest,
and uf‐linked is the strongest among these properties, they are equivalent for some posets.
In the result below, \mathfrak{p} denotes the pseudo‐intersection number, which is the smallest
cardinal where Martin’s axiom for  $\sigma$‐centered posets fails.

Lemma 4.6 ([Mej, Lemma 5.5]). Let \mathbb{P} be a poset.

(a) If F is a free filter on  $\omega$ generated  by<\mathfrak{p} ‐many sets, then any subset of \mathbb{P} is F ‐linked
iff it is Ft‐linked.

(b) If \mathbb{P} has p‐cc then any subset of \mathbb{P} is uf‐linked iff it is  $\Gamma$ \mathrm{t} ‐linked.

Lemma 4.3 implies that \mathrm{E} is  $\sigma$-\mathrm{u}\mathrm{f}‐linked, and hence \aleph_{1^{-}}\mathrm{u}\mathrm{f}‐Knaster. So the preservation
of strongly unbounded families is a consequence of the following result.

Theorem 4.7 ([BCM]). If  $\kappa$ is an uncountable regular cardinal then any  $\kappa$- $\Gamma$ \mathrm{r} ‐Knaster
poset preserves all the strongly  $\kappa-\omega$^{ $\omega$} ‐unbounded families from the ground model.

Proof. Let \mathbb{P} be a  $\kappa$- $\Gamma$ \mathrm{r}‐Knaster poset and let F\subseteq$\omega$^{ $\omega$} be a  $\kappa$‐strongly unbounded family
in the ground model. Towards a contradiction, assume that there is a \mathbb{P}‐name \dot{h} of a real
in $\omega$^{ $\omega$} and a p\in \mathbb{P} such that p1\vdash|\{x\in F : x\leq^{*}\dot{h}\}| \geq $\kappa$ . Find  F'\subseteq F of size  $\kappa$ , a family
of conditions \{p_{x} : x \in F'\} \subseteq \mathbb{P} and a natural number m such that, for each x \in  F',
p_{x}\leq p and p_{x}1\vdash\forall n\geq m (x(n) \leq\dot{h}(n)) . As \mathbb{P} is  $\kappa$- $\Gamma$ \mathrm{r}‐Knaster, there is some F'' \subseteq F' of
size rc such that \{p_{x} : x\in F is Fr‐linked.
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Note that there is a j \geq  m such that the set \{x(j) : x \in  F is infinite. (otherwise
F'' would be bounded, which contradicts that F is strongly  $\kappa$‐unbounded). Choose \{x_{n} :
n< $\omega$\} \subseteq F'' such that x_{n}(j) \neq x_{n'}(j) whenever n\neq n' . For each  n< $\omega$ , put  p_{n} :=p_{x_{n}}.

As \overline{p}= \langle p_{n} : n <  $\omega$\rangle is a sequence in a Fr‐linked set, there is a condition  q \in \mathbb{P} such
that q1\vdash W(p) is infinite” Therefore, q forces that \exists^{\infty}n < $\omega$(x_{n}(j) \leq \dot{h}(j)) , which is a
contradiction. \square 

We continue our discussion of the construction for Theorem 4.1. As \mathbb{P}_{$\theta$_{2}}=\mathbb{C}_{$\theta$_{2}} already
adds a strongly $\theta$_{2}-$\omega$^{ $\omega$} ‐unbounded family, by Theorem 4.7 it would be enough to construct
the iteration in such a way that \mathbb{P}_{ $\delta$}/\mathbb{P}_{$\theta$_{2}} is $\theta$_{2}-\mathrm{F}\mathrm{r}‐Knaster. The posets of size < $\theta$_{2} are
 $\vartheta$-\mathrm{u}\mathrm{f}‐linked for some  $\vartheta$<$\theta$_{2} , so they can be used without worry. We actually need to be
very careful on how to define the steps for restricted E.

For the moment, assume that the iteration has been constructed such that, for each
 $\xi$\in E , there is a complete subposet \mathbb{P}_{ $\xi$}' of \mathbb{P}_{ $\xi$} of size \leq $\mu$ and \dot{\mathbb{Q}}_{ $\xi$}=\mathrm{E}^{V^{\mathrm{p}_{ $\xi$}}} Let us try to
prove that \mathbb{P}_{ $\delta$} is $\theta$_{2}-\mathrm{F}\mathrm{r}‐Knaster. Assume that \langle p_{ $\alpha$} :  $\alpha$ < $\theta$_{2}\rangle is a sequence of members of
\mathbb{P}_{ $\delta$} . Wlog assume that for each  $\alpha$<$\theta$_{2} and  $\xi$\in E\cap \mathrm{d}\mathrm{o}\mathrm{m}p_{ $\alpha$}, p_{ $\alpha$}( $\xi$) is a \mathbb{P}_{ $\xi$}' ‐name and  p_{ $\alpha$}\mathrm{r} $\xi$
decides the pair (s_{ $\xi$}^{ $\alpha$}, m_{ $\xi$}^{ $\alpha$}) such that p_{ $\alpha$}( $\xi$) \in \mathrm{E}(s_{ $\xi$}^{ $\alpha$}, m_{ $\xi$}^{ $\alpha$}) . By the \triangle‐system lemma, there
is a  K \subseteq $\theta$_{2} of size $\theta$_{2} such that \{\mathrm{d}\mathrm{o}\mathrm{m}p_{ $\alpha$} :  $\alpha$\in  K\rangle forms a \triangle‐system with root  R , even
more, we may assume that the \triangle‐system is quite uniform, i.e., all such domains have the
same size and, for every  $\xi$\in  R , if  $\xi$\in E then all the (s_{ $\xi$}^{ $\alpha$},m_{ $\xi$}^{ $\alpha$}) for  $\alpha$\in  K are equal to a
single (s_{ $\xi$}^{*}, m_{ $\xi$}^{*}) , else, if  $\xi$\not\in E then all p_{ $\alpha$}( $\xi$) for  $\alpha$\in K are equal to a single q( $\xi$) (because

\dot{\mathbb{Q}}_{ $\xi$} is forced to have size < $\kappa$ ). To conclude the  $\theta$_{2^{-}}\mathrm{F}\mathrm{r}‐Knaster property, the point is to
ensure that, for any countable subsequence \overline{p}= \langle p_{n} : n < $\omega$ ) of \{p_{ $\alpha$} :  $\alpha$ \in  K\rangle there is a
 q that forces \dot{W}(p) infinite. As \overline{p} also forms a uniform \triangle‐system, it would be suitable to
construct  q with domain R . We already have q( $\xi$) for  $\xi$\in R\backslash E . For each  $\xi$ \in  R\cap E,
(;p_{n}( $\xi$) : n <  $\omega$\rangle is a sequence of \mathbb{P}_{ $\xi$}' ‐names in \mathrm{E}(s_{ $\xi$}^{*}, m_{ $\xi$}^{*}) , so we may expect that q( $\xi$) is
defined as some ultrafilter limit of that sequence.

The main challenge now is to construct the ultrafilters for  $\xi$ \in  E that will serve to
calculate the desired ultrafilter limits. One problem is that a single sequence of (names
of) ultrafilters indexed by E may not work to ensure the $\theta$_{2^{-}}\mathrm{F}\mathrm{r}‐Knaster property, and
actually it is necessary to guarantee that only < \mathrm{A}‐many such sequences of ultrafilters

will be enough. The reason is that \dot{\mathbb{Q}}_{ $\xi$}=\mathrm{E}^{V^{$\mu$_{ $\xi$}}} should be constructed such that ultrafilter
limits are available within this poset for the  $\xi$‐th ultrafilters in all the sequences. This
means that \mathbb{P}_{ $\xi$}' should be constructed such that the restriction to V^{\mathbb{P}_{ $\xi$}'} of the  $\xi$‐th ultrafilters

in all the sequences are in  V^{\mathbb{P}_{ $\xi$}'} . Thanks to Theorem 4.2, it can be guaranteed that just
 $\mu$‐many sequences of ultrafilters are enough, so the construction of \mathbb{P}_{ $\delta$} and the proof of
Theorem 4.1 can be concluded. Note that this dynamic indicates that the sequences of
ultrafilters and the FS iteration must be constructed simultaneously by recursion.

Though details on the proof of Theorem 4.1 are omitted, we roughly sketched them
just to picture the complexity of such argument. Now, once we aim to do something
similar to conclude the proof of Theorem 3.9, we realize that we have to deal with a
matrix of ultrafilters of dimensions  $\nu$\times $\pi$ , which may look much more complicated than
the argument of Theorem 4.1. However, when trying to work out with the construction
already defined in the first part of the proof of Theorem 3.9, there is the advantage that we
only need to find a suitable matrix of ultrafilters instead of constructing it simultaneously
with the forcing as in the previous sketch. This is in fact the case, and what is the most
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surprising is that Theorem 4.2 is not necessary since it is enough to construct one matrix
of ultrafilters for each countable uniform \triangle‐system.

Lemma 4.8 ([BCM]). Let \mathbb{P}_{ $\nu,\ \pi$} be the 2D coherent system constructed in the first part
of the proof of Theorem 3.9. If \overline{p}.= \langle p_{n} : n <  $\omega$\rangle  $\iota$ s a uniform \triangle ‐system in \mathbb{P}_{ $\nu,\ \pi$} then
there \dot{u} a q\in \mathbb{P}_{ $\nu,\ \pi$} such that q1\vdash W_{\mathrm{P}_{ $\nu,\ \pi$}}(\overline{p}) is infinite”. Moreover, if D is a non‐principal
ultrafilter in the ground model then there is some q\in \mathbb{P}_{ $\nu,\ \pi$} that forces \dot{W}_{1\mathrm{P}_{ $\gamma,\ \pi$}}(\overline{p}) \in D^{+}.

Second part of the proof of Theorem 3. g . By a \triangle‐system argument, Lemma 4.8 implies
that \mathbb{P}_{\mathrm{v}, $\pi$} is $\theta$_{2^{-}}\mathrm{F}\mathrm{r}‐Knaster. Even more, for any uncountable regular  $\kappa$ between  $\theta$_{2} and  $\lambda$,
the Cohen reals added by \mathbb{C}_{ $\kappa$}\ll \mathbb{P}_{0,1} form a strongly  $\kappa-\omega$^{ $\omega$} ‐unbounding family in V_{ $\nu,\ \pi$} . In
particular, \mathbb{P}_{ $\nu,\ \pi$} forces \mathrm{b}\leq$\theta$_{2} and  $\lambda$\leq \mathfrak{d} , which concludes the proof. \square 

We conclude this section with one application of Theorem 3.9. Very recently, Gold‐
stern, Kellner and Shelah [GKS] proved that, assuming four strongly compact cardinals,
there is a ccc poset that divides Cichoń’s diagram into 10 different values, which is the
maximal number of values the diagram can be divided. First, a poset that separates the
left side of Cichoń’s diagram is obtained, e.g. the one in Theorem 4.1, and then Boolean
ultrapowers are applied to this poset to force that the right side can be separated in
addition. For this purpose, the poset for Theorem 4.1 is modified so that it is possible to
construct it under GCH.

Theorem 4.9 ([GKS]). Assume GCH and that $\theta$_{0} <$\theta$_{1} < $\theta$_{2} <$\theta$_{3} < $\lambda$_{4} are uncountable
regular strongly \aleph_{1} ‐inaccessible cardinals () and that $\theta$_{2} is a successor of a regular cardinal.
Then there is a ccc poset that forces add ( \mathcal{N}) = $\theta$_{0}, \mathrm{c}\mathrm{o}\mathrm{v}(\mathcal{N}) = $\theta$_{1\mathrm{z}} \mathrm{b} =$\theta$_{2} , non(M) =$\theta$_{3}
and \mathrm{c}\mathrm{o}\mathrm{v}(\mathcal{M})=\mathfrak{c}=$\lambda$_{4}.

Theorem 4.10 ([GKS]). Assume GCH and that $\kappa$_{8} < $\theta$_{0} < $\kappa$_{7} < $\theta$_{1} < $\kappa$_{6} < $\theta$_{2} < $\kappa$_{5} <

$\theta$_{3} < $\lambda$_{4} < $\lambda$_{5} < $\lambda$_{6} < $\lambda$_{7} < $\lambda$_{8} are uncountable regular cardinals such that $\theta$_{i} (i=0,1,2,3)
and $\lambda$_{4} are strongly \aleph_{1} ‐inaccessible cardinals, $\theta$_{2} is a successor of a regular cardinal and
each $\kappa$_{j} (j=5,6,7,8) is a strongly compact cardinal. Then there is a ccc poset that forces
add (N)=$\theta$_{0}, \mathrm{c}\mathrm{o}\mathrm{v}(\mathcal{N})=$\theta$_{1}, \mathrm{b}=$\theta$_{2} , non ( \mathcal{M} ) =$\theta$_{3}, \mathrm{c}\mathrm{o}\mathrm{v}(\mathcal{M})=$\lambda$_{4}, \mathfrak{d}=$\lambda$_{5} , non (\mathcal{N})=$\lambda$_{6},
\mathrm{c}\mathrm{o}\mathrm{f}(\mathcal{N})=$\lambda$_{7} and \mathfrak{c}=$\lambda$_{8}.

We summarize very briefly the technique of Boolean ultrapowers from [KTT, GKS].
Assume GCH (for simplicity), let  $\kappa$ be a strongly compact cardinal and  $\lambda$ >  $\kappa$ regular.
Consider the Boolean completion \mathrm{I}\mathrm{B}_{ $\kappa,\ \lambda$} of the poset  $\Gamma$ \mathrm{n}< $\kappa$( $\lambda$,  $\kappa$) of partial functions from  $\lambda$

to  $\kappa$ with domain of size < $\kappa$ (ordered \mathrm{b}\mathrm{y}\supseteq ). It is possible to find a suitable  $\kappa$‐complete
ultrafilter  U on \mathrm{B} such that its corresponding elementary embedding j : V\rightarrow M satisfies
(among other properties):

(1) j has critical point  $\kappa$, \mathrm{c}\mathrm{f}(j( $\kappa$))= $\lambda$ and  $\lambda$\leq j( $\kappa$)<$\lambda$^{+} ;

(2) if |A| < $\kappa$ then  j[A]=j(A) ;

(3) if  $\theta$> $\kappa$ is regular then \displaystyle \max\{ $\lambda$,  $\theta$\} \leq j( $\theta$) <\displaystyle \max\{\mathrm{A},  $\theta$\}^{+} ;

(4) if  $\theta$> $\kappa$ and  I is \mathrm{a}< $\theta$‐directed partial order then  j[I] is cofinal in j(I) .

3Recall that  $\theta$ is a strongly  $\kappa$ ‐inaccessible cardinal if, for any cardinals  $\mu$< $\theta$ and  $\nu$< $\kappa$, $\mu$^{ $\nu$}< $\theta$.
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As a consequence,

Lemma 4.11 ([KTT, GKS Additionally to the above, assume that A is an analytic
relational system and that \mathbb{P} is a ccc poset. Then:

(a) j(\mathbb{P}) is ccc (in V , not just in M).

(b) If  $\theta$\neq $\kappa$ is regular and \mathbb{P} adds a strongly  $\theta$-\mathrm{A} ‐unbounded family of size  $\theta$ , then  j(\mathbb{P})
also adds a strongly  $\theta$-\mathrm{A} ‐unbounded family of size  $\theta$.

(c) If \mathbb{P} adds a strongly  $\theta$-\mathrm{A} dominating family of size $\lambda$' then

(i) whenever  $\theta$< $\kappa$, j(\mathbb{P}) adds a strongly  $\theta$-\mathrm{A} dominating family of size |j($\lambda$')| ;

(ii) whenever  $\kappa$<$\theta$_{f}j(\mathbb{P}) adds a strongly  $\theta$-\mathrm{A} dominating family of size $\lambda$'.

Thanks to the previous lemma, it is enough to define the poset for Theorem 4.10 as
j_{9}(j_{8}(j_{7}(j_{6}(\mathbb{P})))) where \mathbb{P} is the poset from Theorem 4.9 and j_{i} : V\rightarrow M_{i} (i=5,6,7,8)
is the elementary embedding corresponding to a suitable Boolean ultrapower by \mathrm{B}_{$\kappa$_{ $\eta$},$\lambda$_{i}}.

Note that the poset obtained in Theorem 3.9 can be constructed directly under GCH
and it separates the cardinals of the left of Cichoń’s diagram and, in addition, separates
cov(M) on the right side. Therefore, applying the aforementioned Boolean ultrapower
techniques to this poset, we can actually separate Cichoń’s diagram into 10 values by using
three strongly compact cardinals. Furthermore, the hypothesis on the regular cardinals of
Theorem 4.10 can also be relaxed.

Theorem 4.12 ([BCM]). Assume GCH and that $\kappa$_{8} < $\theta$_{0} < $\kappa$_{7} < $\theta$_{1} < $\kappa$_{6} < $\theta$_{2} \leq $\theta$_{3} \leq

$\lambda$_{4}\leq$\lambda$_{5}<$\lambda$_{6}<$\lambda$_{7}<$\lambda$_{8} are uncountable regular cardinals such that each $\kappa$_{j} (j=6,7,8) is
a strongly compact cardinal. Then there is a ccc poset that forces add (\mathcal{N})=$\theta$_{0}, \mathrm{c}\mathrm{o}\mathrm{v}(\mathcal{N})=

$\theta$_{1}, \mathrm{b}=$\theta$_{2} , non (\mathcal{M})=$\theta$_{3}, \mathrm{c}\mathrm{o}\mathrm{v}(\mathcal{M})=$\lambda$_{4}, \mathfrak{d}=$\lambda$_{5} , non (\mathcal{N})=$\lambda$_{6}, \mathrm{c}\mathrm{o}\mathrm{f}(\mathcal{N})=$\lambda$_{7} and \mathfrak{c}=$\lambda$_{8}.

If \mathbb{P} is the ccc poset obtained in Theorem 3.9 (with  $\mu$=$\theta$_{3},  $\nu$=$\lambda$_{4} and  $\lambda$=$\lambda$_{5} ), then
j_{8}(j_{7}(j_{6}(\mathbb{P}))) is the desired poset for the previous theorem.

Without using large cardinals, the maximum number of different cardinals in Cichoń’s
diagram that have been obtained so far is 7 and all such examples belong to [FFMM18,
Mej, BCM] (e.g. Theorems 3.9 and 3.10). It is still unknown how to force 8 different
values modulo ZFC alone.
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