A COMMENT ON BAGARIA-SHELAH'S FRAGMENT OF MARTIN'S AXIOM

TERUYUKI YORIOKA

INTRODUCTION

Harrington-Shelah showed that, for $x \in \mathbb{R}$, if $\aleph_1^{L[x]} = \aleph_1$ and Martin's axiom MA holds, then there exists a $\Delta_3^1(x)$ -set of reals without Baire property [4]. Bagaria extended their result as follow: For $x \in \mathbb{R}$, if $\aleph_1^{L[x]} = \aleph_1$, MA(σ -centered) holds and every Aronszajn tree is special, then there exists a $\Delta_3^1(x)$ -set of reals without Baire property [1]. Harrington-Shelah also showed that, if \aleph_1 is inaccessible to the reals and MA holds, then \aleph_1 is weakly compact in L, and that the existence of a weakly compact cardinal is equiconsistent to the assertion that MA holds and every projective set of reals has the Baire property [4]. So in [1], Bagaria asked if MA(σ -centered) plus the assertion that every Aronszajn tree is special implies MA(σ -linked). In [2], Bagaria-Shelah proved the consistency of the assertion (*) that MA(σ -centered) holds, every Aronszajn tree is special, and MA(σ -linked) fails.

In this paper, the consistency of the assertion (*) is proved by use of the idea due to Bagaria-Shelah in [2] combining with the rectangle refining property due to Larson-Todorčević [6]. §1 provides Bagaria-Shelah's work in [2] and introduces their fragment of Martin's axiom. §2 provides some remarks of the rectangle refining property and a proof of the theorem in this paper. In §3, some previous works on fragments of Martin's axiom are mentioned and are compared to the theorem in this paper.

1. BAGARIA-SHELAH'S FRAGMENT OF MARTIN'S AXIOM

In [2], Bagaria-Shelah introduced the following property of forcing notions.

Definition 1.1 ([2, DEFINITION 1]). For an integer $k \geq 2$, a forcing notion \mathbb{P} satisfies the property \Pr_k if, for any $\{p_{\alpha} : \alpha \in \omega_1\} \in [\mathbb{P}]^{\aleph_1}$, there exists a pairwise disjoint uncountable family $\{u_{\xi} : \xi \in \omega\}$ of non-empty finite subsets of ω_1 such that, for each $\{\xi_i : i \in k\} \in [\omega_1]^k$, there exists $\langle \alpha_i : i \in k \rangle \in \prod_{i \in k} u_{\xi_i}$ such that $\{p_{\alpha_i} : i \in k\}$

has a common extension in $\mathbb P.$

 $MA(Pr_k)$ denotes the forcing axiom for forcing notions with the property Pr_k .

The property \Pr_k is stronger than the countable chain condition. A σ -centered forcing satisfies the property \Pr_k for every integer $k \ge 2$. Bagaria-Shelah proved that a specialization of an Aronszajn tree by finite approximations also satisfies the property \Pr_k for every integer $k \ge 2$ [2, LEMMA 2]. So, for every integer $k \ge 2$, $MA(\Pr_k)$ implies $MA(\sigma$ -centered) and the assertion that every Aronszajn tree is special. They also showed that, for any integer $k \ge 2$, the property \Pr_k is preserved under finite support iterations [2, LEMMA 3].

Definition 1.2 ([2, LEMMA 4]). For an integer $k \ge 2$, the forcing notion \mathbb{P}^k_* consists of triples $p = \langle u_p, A_p, h_p \rangle$ such that

- u_p is a finite subset of ω_1 ,
- A_p is a subset of $[u_p]^{k+1}$ (which is a finite set), h_p is a function from the set $\{v \subseteq u_p : [v]^{k+1} \cap A_p = \emptyset\}$ into ω such that, for every $l \in \operatorname{ran}(h_p)$ and $\rho \in [h_p^{-1}[\{l\}]]^k$, $\bigcup \rho$ belongs to dom (h_p) ,

ordered by: $q \leq_{\mathbb{P}^k} p$ iff $u_q \supseteq u_p$, $A_p = A_q \cap [u_p]^{k+1}$ and $h_q \supseteq h_p$.

Note that \mathbb{P}^k_* is of size \aleph_1 . Bagaria-Shelah proved that \mathbb{P}^k_* has precaliber \aleph_1 [2, LEMMA 4 (1)]. They also define the following \mathbb{P}^k_* -names.

Definition 1.3 ([2, LEMMA 4]). Let k be an integer not smaller than 2. Define the \mathbb{P}^k_* -name \mathcal{A}^*_k by

$$\dot{\mathcal{A}}^k_* := \left\{ (\check{v},p) : p \in \mathbb{P}^k_*, v \in A_p
ight\},$$

and define the \mathbb{P}_{*}^{k} -name $\dot{\mathbb{Q}}_{*}^{k}$ by

$$\dot{\mathbb{Q}}^k_* := \left\{ (\check{v}, p) : p \in \mathbb{P}^k_*, v \in \operatorname{dom}(h_p) \right\}$$

We notice that

$$\Vdash_{\mathbb{P}^k_*} ``\dot{\mathcal{A}}^k_* = \bigcup_{p \in \dot{G}_{\mathbb{P}^k_*}} A_p \text{ and } \dot{\mathbb{Q}}^k_* = \left\{ v \in [\omega_1]^{<\aleph_0} : [v]^{k+1} \cap \dot{\mathcal{A}}^k_* = \emptyset \right\} ".$$

By considering $\dot{\mathbb{Q}}^k_*$ as a \mathbb{P}^k_* -name for a forcing notion, ordered by \supseteq , Bagaria-Shelah proved that

- [2, LEMMA 4 (3)]: $\Vdash_{\mathbb{P}^k}$ " $\dot{\mathbb{Q}}^k_*$ is σ -k-linked", and
- $[2, \text{LEMMA 4 } (5)]: \Vdash_{\mathbb{P}^k_*} \text{``for any } \{v_\alpha : \alpha \in \omega_1\} \in [\dot{\mathbb{Q}}^k_*]^{\aleph_1} \text{ with } v_\alpha \not\subseteq \alpha, \text{ and}$ any pairwise disjoint uncountable family $\{u_{\xi}: \xi \in \omega\}$ of non-empty finite subsets of ω_1 , there exists $\{\xi_i : i \in k+1\} \in [\omega_1]^{k+1}$ such that, for every $\langle \alpha_i : i \in k+1 \rangle \in \prod_{i \in k+1} u_{\xi_i}, \bigcup_{i \in k+1} v_{\alpha_i} \text{ does not belong to } \dot{\mathbb{Q}}^k_*$ ".

The last assertion implies that

$$\Vdash_{\mathbb{P}^k_*} `` \dot{\mathbb{Q}}^k_* \text{ is not } \sigma_{-}(k+1)\text{-linked}".$$

Definition 1.4 ([2, LEMMA 4]). For an integer $k \ge 2$ and $\alpha \in \omega_1$, define the \mathbb{P}^k_* -name I_{α} such that

$$\Vdash_{\mathbb{P}^k_*} `` \dot{I}_{\alpha} := \left\{ v \in \dot{\mathbb{Q}}^k_* : v \not\subseteq \alpha \right\} ".$$

Note that

$$\Vdash_{\mathbb{P}^k}$$
 " \dot{I}_{α} is dense in $\dot{\mathbb{Q}}^k_*$ "

[2, LEMMA 4 (4)]. The following is a key point of the proof of the failure of $MA(\sigma-linked)$ in the extension with finite support iterations of forcing notions with the property \Pr_k .

Lemma 1.5 ([2, LEMMA 6]). For any integer $k \geq 2$ and any \mathbb{P}^k_* -name \mathbb{Q} for a forcing notion with the property \Pr_{k+1} ,

 $\Vdash_{\mathbb{P}^{k}_{*} \times \dot{\mathbb{Q}}} \text{``there are no directed subset } G \text{ of } \dot{\mathbb{Q}}^{k}_{*} \text{ such that } \dot{I}_{\alpha} \cap G \neq \emptyset \text{ for all } \alpha \in \omega_{1} \text{''}.$

This implies that, for any integer $k \geq 2$ and any \mathbb{P}_*^k -name \mathbb{Q} for a forcing notion with the property \Pr_{k+1} ,

$$\Vdash_{\mathbb{P}^{k}*\hat{\mathbb{O}}}$$
 "MA _{\aleph_1} (σ -k-linked) fails ".

Therefore, the following has been concluded.

Theorem 1.6 ([2, LEMMA 6]). It is consistent that $MA(Pr_{k+1})$ holds, and $MA_{\aleph_1}(\sigma \text{-}k\text{-}linked)$ fails.

2. The rectangle refining property and the main result

Larson-Todorčević introduced a property of ccc partitions on $[\omega_1]^2$, called the rectangle refining property, and obtained a consistency of the affirmative of Katětov's problem [6]. The following is a version of the rectangle refining property for forcing notions. A similar definition of the following is appeared in [9, 11]. The following notation is inspired by [3, Theorem 3.1].

Definition 2.1. A forcing notion \mathbb{P} satisfies the rectangle refining property if there exists a function w from \mathbb{P} into $[\omega_1]^{<\aleph_0}$ such that

- (•) for any pair of compatible conditions p and q in \mathbb{P} , there exists a common extension r of p and q in \mathbb{P} such that $w(r) = w(p) \cup w(q)$, and
- (rec) for any uncountable subsets I and J of \mathbb{P} , if the set $\{w(p); p \in I \cup J\}$ forms a Δ -system, then there are uncountable subsets I' and J' of I and J respectively such that each element of I' is compatible with any element of J' in \mathbb{P} .

The rectangle refining property is a stronger property than the countable chain condition. Like the property \Pr_k , typical examples of forcing notions with the rectangle refining property are a σ -centered forcing notion and a specialization of an Aronszajn tree by finite approximations. For other examples, see [9, 10, 11]. Note that forcing notions with the rectangle refining property satisfies Chodounský-Zapletal's Y-cc [3]. Let $\langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\beta} : \alpha \leq \lambda, \beta < \lambda \rangle$ be a finite support iteration of forcing notions with the rectangle refining property, and, for each $\beta < \lambda$, let $\dot{\psi}_{\beta}$ be a \mathbb{P}_{β} -name for a function that witnesses the rectangle refining property of $\dot{\mathbb{Q}}_{\beta}$. By induction on $\alpha \leq \lambda$, it can be prove that, for every $p \in \mathbb{P}_{\alpha}$, there is an extension q of p in \mathbb{P}_{α} such that, for each $\xi \in \text{supp}(q)$, there exists $w_{\xi}^{q} \in [\omega_1]^{<\aleph_0}$ such that

$$q \upharpoonright \xi \Vdash_{\mathbb{P}_{\mathcal{E}}} "\dot{w}_{\xi}(q(\xi)) = w_{\mathcal{E}}^{q} ".$$

Such a q is here called a nice condition of \mathbb{P}_{α} . Note that the set of nice conditions of \mathbb{P}_{α} is dense in \mathbb{P}_{α} . We say that an uncountable set $\{p_{\zeta} : \zeta \in \omega_1\}$ of nice conditions of \mathbb{P}_{α} forms a Δ -system as a set of conditions of the iteration if $\{\operatorname{supp}(p_{\zeta}) : \zeta \in \omega_1\}$ forms a Δ -system with root Δ and, for each $\xi \in \Delta$, $\{w_{\xi}^{p_{\zeta}} : \zeta \in \omega_1\}$ also forms a Δ -system. Note that every uncountable set of nice conditions of \mathbb{P}_{α} has an uncountable subset that forms a Δ -system as a set of conditions of the iteration. The rectangle refining property is preserved under finite support iterations in the following sense.

Lemma 2.2. Suppose that $\langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\beta} : \alpha \leq \lambda, \beta < \lambda \rangle$ is a finite support iteration of forcing notions with the rectangle refining property, and let $\alpha \leq \lambda$. Then, for every uncountable set $\{p_{\zeta} : \zeta \in \omega_1\}$ of nice conditions of \mathbb{P}_{α} , and every pair of uncountable subsets I and J of ω_1 , if $\{p_{\zeta} : \zeta \in \omega_1\}$ forms a Δ -system as a set of conditions of the iteration, then there are $I' \in [I]^{\aleph_1}$ and $J' \in [J]^{\aleph_1}$ such that, for each $\zeta \in I$ and $\eta \in J'$, p_{ζ} and p_{η} are compatible in \mathbb{P}_{α} .

Proof. This is proved by induction on $\alpha \leq \lambda$. In the case that α is a limit ordinal, this is proved by inductive hypothesis. Suppose that \mathbb{P}_{α} satisfies the conclusion of the lemma, that $\{p_{\zeta} : \zeta \in \omega_1\}$ is an uncountable set of nice conditions of $\mathbb{P}_{\alpha+1}$ such that $\{\operatorname{supp}(p_{\zeta}) : \zeta \in \omega_1\}$ forms a Δ -system with root Δ with $\alpha \in \Delta$, and, for each $\xi \in \Delta$, $\{w_{\xi}^{p_{\zeta}(\varepsilon)} : \zeta \in \omega_1\}$ also forms a Δ -system, and that I and J are uncountable subsets of ω_1 .

By inductive hypothesis, there are $I^{(1)} \in [I]^{\aleph_1}$ and $J^{(1)} \in [J]^{\aleph_1}$ such that, for each $\zeta \in I^{(1)}$ and $\eta \in J^{(1)}$, $p_{\zeta} \upharpoonright \alpha$ and $p_{\eta} \upharpoonright \alpha$ are compatible in \mathbb{P}_{α} . By refining $I^{(1)}$ and $J^{(1)}$ if necessary, we may assume that $I^{(1)}$ is disjoint from $J^{(1)}$. Define \mathbb{P}_{α} -names $\dot{I}^{(2)}$ and $\dot{J}^{(2)}$ such that

$$\Vdash_{\mathbb{P}_{\alpha}} ``\dot{I}^{(2)} := \left\{ \zeta \in I^{(1)} : p_{\zeta} \upharpoonright \alpha \in \dot{G}_{\mathbb{P}_{\alpha}} \right\} \text{ and } \dot{J}^{(2)} := \left\{ \zeta \in J^{(1)} : p_{\zeta} \upharpoonright \alpha \in \dot{G}_{\mathbb{P}_{\alpha}} \right\} ".$$

Claim that there exists $q \in \mathbb{P}_{\alpha}$ such that

 $q \Vdash_{\mathbb{P}_{\alpha}}$ "both $\dot{I}^{(2)}$ and $\dot{J}^{(2)}$ are uncountable".

To see this, assume not. Then, since \mathbb{P}_{α} is ccc, there is $\delta \in \omega_1$ such that

$$\Vdash_{\mathbb{P}_{\alpha}} ``` \dot{I}^{(2)}, \dot{J}^{(2)} \subseteq \delta "$$

Take $\zeta \in I^{(1)} \setminus \delta$ and $\eta \in J^{(1)} \setminus \delta$, and take a common extension r of $p_{\zeta} \upharpoonright \alpha$ and $p_{\eta} \upharpoonright \alpha$ in \mathbb{P}_{α} . Then

$$r \Vdash_{\mathbb{P}_{\alpha}} `` \zeta \in \dot{I}^{(2)} \setminus \delta \text{ and } \eta \in \dot{J}^{(2)} \setminus \delta ",$$

which is a contradiction.

Let $q \in \mathbb{P}_{\alpha}$ be a condition of \mathbb{P}_{α} that forces $\dot{I}^{(2)}$ and $\dot{J}^{(2)}$ to be uncountable. Since $\dot{\mathbb{Q}}_{\alpha}$ is a \mathbb{P}_{α} -name for a forcing notion with the rectangle refining property, there are \mathbb{P}_{α} -names $\dot{I}^{(3)}$ and $\dot{J}^{(3)}$ such that

 $q \Vdash_{\mathbb{P}_{\alpha}}$ $\dot{I}^{(3)}$ and $\dot{J}^{(3)}$ are uncountable subsets of $\dot{I}^{(2)}$ and $\dot{J}^{(2)}$ respectively, and, for each $\zeta \in \dot{I}^{(3)}$ and $\eta \in \dot{J}^{(3)}$, $p_{\zeta}(\alpha)$ and $p_{\eta}(\alpha)$ are compatible in $\dot{\mathbb{Q}}_{\alpha}$.

For each $i \in \omega_1$, take an extension q_i of q in \mathbb{P}_{α} and $\zeta_i, \eta_i \in \omega_1$ such that, for each $i \in \omega_1, q_i$ forms a nice condition and

$$q_i \Vdash_{\mathbb{P}_{\alpha}} `` \zeta_i \in \dot{I}^{(3)} \text{ and } \eta_i \in \dot{J}^{(3)} ",$$

and, for each $i, j \in \omega_1$ with i < j,

$$\max\{\zeta_i,\eta_i\} < \min\{\zeta_j,\eta_j\}.$$

Take an uncountable subset K of ω_1 such that $\{q_i : i \in K\}$ forms a Δ -system as a set of conditions of the iteration. By inductive hypothesis, take uncountable disjoint subsets K_0 and K_1 of K such that, for each $i \in K_0$ and $j \in K_1$, q_i and q_j are compatible in \mathbb{P}_{α} . Define $I' := \{\zeta_i : i \in K_0\}$ and $J' := \{\eta_j : j \in K_1\}$. Since

$$q_i \Vdash_{\mathbb{P}_{\alpha}} `` \zeta_i \in \dot{I}^{(3)} \subseteq \dot{I}^{(2)} \subseteq I^{(1)} \subseteq I "$$

for each $i \in K_0$, I' is an uncountable subset of I. Similarly, $J' \subseteq J$. The pair I' and J' is what we want.

Lemma 2.3. Suppose that k is an integer not smaller than 2, and $\dot{\mathbb{Q}}$ is a \mathbb{P}^k_* -name for a forcing notion with the rectangle refining property. Then

$$\Vdash_{\mathbb{P}^{k}_{*} \ast \dot{\mathbb{Q}}} \text{``there are no } K \in [\omega_{1}]^{\aleph_{1}} \text{ such that } [K]^{k+1} \subseteq \dot{\mathbb{Q}}^{k}_{*} \text{''}.$$

This lemma implies that $\mathbb{P}^k_* * \mathbb{Q}$ forces the failure of $\mathsf{MA}_{\aleph_1}(\sigma\text{-}k\text{-linked})$ for \mathbb{Q}^k_* in some strong sense. See in the next section.

Proof. Throughout the proof, we work in the extension with \mathbb{P}^k_* . Suppose that \mathbb{Q} is a forcing notion with the rectangle refining property (in the extension with \mathbb{P}^k_*), $q \in \mathbb{Q}$ and \dot{K} is a \mathbb{Q} -name for an uncountable subset of ω_1 such that

$$q \Vdash_{\mathbb{Q}} \left[\dot{K} \right]^{k+1} \subseteq \mathbb{Q}^{k}_{*}$$

For each $\alpha \in \omega_1$, take an extension q_α of q in \mathbb{Q} and $\delta_\alpha \in \omega_1$ such that, for each $\alpha \in \omega_1$, q_α forms a nice condition and

$$q_{\alpha} \Vdash_{\mathbb{P}_{\alpha}} `` \delta_{\alpha} \in K",$$

and, for each $\alpha, \alpha' \in \omega_1$ with $\alpha < \alpha', \delta_\alpha < \delta_{\alpha'}$. Note that each set $\{\delta_\alpha\}$ is a condition of \mathbb{Q}^k_* . Since \mathbb{Q} satisfies the rectangle refining property, we can take uncountable subsets $I_l, l \leq k$, of ω_1 such that, for each $\langle \alpha_l : l \leq k \rangle \in \prod_{l \leq k} I_l, \{q_{\alpha_l} : l \leq k\}$

has a common extension in \mathbb{Q} . We build a pairwise disjoint uncountable family $\{u_{\xi} : \xi \in \omega_1\}$ of finite subsets of ω_1 such that each u_{ξ} contains some member of I_l for all $l \leq k$. Applying $\{\{\delta_{\alpha}\} : \alpha \in \omega_1\}$ and $\{u_{\xi} : \xi \in \omega_1\}$ to [2, LEMMA 4 (5)] (which is a property of \mathbb{Q}^k_* , mentioned above), we can find $\langle \alpha_l : l \leq k \rangle \in \prod_{i=1}^{k} I_l$ such

that $\{\delta_{\alpha_l} : l \leq k\} \notin \mathbb{Q}^k_*$. However, $\{q_{\alpha_l} : l \leq k\}$ has a common extension r in \mathbb{Q} , and then,

$$r \Vdash_{\mathbb{Q}} {}^{"} \{ \delta_{\alpha_l} : l \leq k \} \in \left[\dot{K} \right]^{k+1} \subseteq \mathbb{Q}^k_* {}^{"}$$

which is a contradiction.

Therefore, we obtain the following theorem

Theorem 2.4. For each integer $k \ge 2$, it is consistent that MA(rec) holds, and MA_{\aleph_1} (σ -k-linked) fails.

3. CONCLUDING REMARK

Connections between several fragments of Martin's axiom have been studied. For example, Bagaria proved that it is consistent that $MA(\sigma\text{-centered})$ holds and $MA(\sigma\text{-linked})$ fails [1, 3.6], and that it is consistent that MA(productive ccc) holds, every Aronszajn tree is special and MA fails. Chodounský-Zapletal introduced the property of forcing notions, called Y-cc, which is a stronger property than the countable chain condition, and showed that it is consistent that MA(Y-cc) holds and $cov(\mathcal{N}) = \aleph_1$ [3]. Note that MA(Y-cc) implies $MA(\sigma\text{-centered})$ and the assertion

that every Aronszajn tree is special^{*1}. Hence, this Chodounský-Zapletal's result also implies the consistency of the assertion $(*)^{*2}$.

In 1980s, Todorčević investigated Martin's Axiom from the view point of Ramsey theory, and introduced the following fragments of Martin's axiom: $\mathcal{K}_{<\omega}$ denotes the assertion that every ccc forcing notion has precaliber \aleph_1 (that is, every uncountable subset has a centered subset I, which means that any finite subset of I has a common extension); \mathcal{K}_n denotes the assertion that every ccc forcing notion has the property K_n (that is, every uncountable subset of a ccc forcing notion has an uncountable *n*-linked subset I, which means that any *n*-many elements of I has a common extension)^{*3}; $\mathcal{K}'_{<\omega}$ denotes the assertion that every ccc partition $K_0 \cup K_1 = [\omega_1]^{<\aleph_0}$ has an uncountable K_0 -homogeneous set, for each $n \in \omega$; \mathcal{K}'_n denotes the assertion that every ccc partition $K_0 \cup K_1 = [\omega_1]^n$ has an uncountable K_0 -homogeneous set.^{*4} The following diagram is a summary of implications of these fragments of MA_{\aleph_1}. The triangle on the left side of the diagram is the Todorčević-Veličković theorem [8].

It is not known whether any other implications in this diagram hold under ZFC. Bagaria-Shelah's lemma [2, LEMMA 6] can be modified the lemma for the failure of \mathcal{K}'_{k+1} for $\dot{\mathbb{Q}}^k_*$ in the extension with $\mathbb{P}^k_* * \dot{\mathbb{Q}}$. So it is proved that, for each integer $k \geq 2$, it is consistent that MA(Pr_{k+1}) holds and \mathcal{K}'_{k+1} fails.

Larson-Todorčević showed that a Suslin tree forces that there exists a ladder system coloring which cannot be uniformized [5, THEOREM 6.2], and that, for each non-principal ultrafilter U in the ground model, $(2^{\omega_1}, <_{\text{lex}})$ cannot be embedded into ω^{ω}/U [5, THEOREM 6.3]. It is proved that \mathcal{K}'_4 implies that every ladder system coloring can be uniformized [8, §2], and that \mathcal{K}'_4 implies that, for every non-principal ultrafilter U in the ground model, $(2^{\omega_1}, <_{\text{lex}})$ can be embedded into ω^{ω}/U [7, 7.7. THEOREM]. Larson-Todorčević proved that it is consistent that a Suslin tree can force $\mathcal{K}'_2(\text{rec})$ [6]. In [11], the author develops their result to $\mathcal{K}_{<\omega}(\text{rec})$ in some sense. Therefore, it is proved that it is consistent that $\mathcal{K}_{<\omega}(\text{rec})$ holds in some sense and \mathcal{K}'_3 fails, by use of forcing with a Suslin tree. Lemma 2.3 says that \mathcal{K}'_{k+1} for $\dot{\mathbb{Q}}^k_*$ fails in the extension with $\mathbb{P}^k_* * \dot{\mathbb{Q}}$. So consequently, it is proved that it is consistent that MA(rec) holds, and both \mathcal{K}'_3 and MA_{R1}(σ -linked) fail. This cannot be concluded by use of a forcing extension with a Suslin tree.

^{*&}lt;sup>1</sup>Because both a σ -centered forcing and a specialization of an Aronszajn tree by finite approximations satisfy Y-cc.

^{*&}lt;sup>2</sup>Notice that Random forcing is σ -linked.

^{*&}lt;sup>3</sup>A forcing notion with the property K_n satisfies the property Pr_n .

^{*4}They are defined by Todorčević in several papers. In [5, Definition 4.9] and [8, §2], \mathcal{K}_n 's are defined as assertions for ccc forcing notions, however in [6, §4] and [7, §7], \mathcal{K}_n 's are defined as assertions for ccc partitions. To separate them, we use the notations as above. These notations are same to ones in [10].

References

- [1] J. Bagaria. Fragments of Martin's axiom and δ_3^1 sets of reals. Annals of Pure and Applied Logic, 69(1):1–25, 1994.
- [2] J. Bagaria and S. Shelah. On partial orderings having precalibre-N1 and fragments of martin's axiom. Fundamenta Mathematicae, 232(2):181-197, 2016.
- [3] D. Chodounský and J. Zapletal. Why Y-c.c. Annals of Pure and Applied Logic, 166(11):1123-1149, 2015.
- [4] L. Harrington and S. Shelah. Some exact equiconsistency results in set theory. Notre Dame Journal of Formal Logic, 26(2):178-188, 1985.
- [5] P. Larson and S. Todorčević. Chain conditions in maximal models. Fundamenta Mathematicae, 168(1):77-104, 2001.
- [6] P. Larson and S. Todorčević. Katětov's problem. Transactions of the American Mathematical Society, 354(5):1783-1791, 2002.
- [7] S. Todorčević. Partition Problems in Topology, volume 84 of Contemporary mathematics. American Mathematical Society, Providence, Rhode Island, 1989.
- [8] S. Todorčević. and B. Veličković. Martin's axiom and partitions. Compositio Mathematica, 63(3):391-408, 1987.
- [9] T. Yorioka. Some weak fragments of Martin's axiom related to the rectangle refining property. Archive for Mathematical Logic, 47(1):79-90, 2008.
- [10] T. Yorioka. A non-implication between fragments of Martin's Axiom related to a property which comes from Aronszajn trees. Annals of Pure and Applied Logic, 161(4):469-487, 2010.
- [11] T. Yorioka. Uniformizing ladder system colorings and the rectangle refining property. Proceeding of the American Mathematical Society, 138:2961-2971, 2010.

FACULTY OF SCIENCE, SHIZUOKA UNIVERSITY, OHYA 836, SHIZUOKA, 422-8529, JAPAN. *E-mail address*: yorioka@shizuoka.ac.jp