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INTRODUCTION

Harrington‐Shelah showed that, for x \in \mathbb{R} , if \aleph_{1^{L[x\rfloor}} = \aleph_{1} and Martin’s axiom
MA holds, then there exists a \triangle_{3}^{1}(x) ‐set of reals without Baire property [4]. Bagaria
extended their result as follow: For x \in \mathbb{R} , if \aleph_{1^{L[x]}} = \aleph_{1} , MA(  $\sigma$‐centered) holds
and every Aronszajn tree is special, then there exists a \triangle_{3}^{1}(x) ‐set of reals without
Baire property [1]. Harrington‐Shelah also showed that, if \aleph_{1} is inaccessible to the
reals and MA holds, then \aleph_{1} is weakly compact in L , and that the existence of
a weakly compact cardinal is equiconsistent to the assertion that MA holds and
every projective set of reals has the Baire property [4]. So in [1], Bagaria asked
if MA(  $\sigma$‐centered) plus the assertion that every Aronszajn tree is special implies
MA(  $\sigma$‐linked). In [2], Bagaria‐Shelah proved the consistency of the assertion (^{*} )
that MA(  $\sigma$‐centered) holds, every Aronszajn tree is special, and MA (  $\sigma$‐linked) fails.

In this paper, the consistency of the assertion (^{*} ) is proved by use of the idea
due to Bagaria $\Gamma$ Shelah in [2] combining with the rectangle refining property due
to Larson‐Todorčevič [6]. §1 provides Bagaria‐Shelah’s work in [2] and introduces
their fragment of Martin’s axiom. §2 provides some remarks of the rectangle refining
property and a proof of the theorem in this paper. In §3, some previous works on
fragments of Martin’s axiom are mentioned and are compared to the theorem in
this paper.

1. BAGARIA−SHELAH’S FRAGMENT OF MARTIN’S AXIOM

In [2], Bagaria‐Shelah introduced the following property of forcing notions.

Definition 1.1 ([2, DEFINITION 1 For an integer  k \geq  2 , a forcing notion \mathbb{P}

satisfies the property \mathrm{P}\mathrm{r}_{k} if, for any \{p_{ $\alpha$} :  $\alpha$\in$\omega$_{1}\} \in [\mathbb{P}]^{\aleph_{1}} , there exists a pairwise
disjoint uncountable family \{u $\xi$ :  $\xi$\in $\omega$\} of non‐empty finite subsets of $\omega$_{1} such that,
for each \{$\xi$_{i} : i\in k\}\in[$\omega$_{1}]^{k} , there exists \langle$\alpha$_{i} :  i\in k\rangle \displaystyle \in\prod_{i\in k}u_{$\xi$_{\mathrm{z}}} such that \{p_{$\alpha$_{i}} : i\in k\}
has a common extension in \mathbb{P}.

MA (\mathrm{P}\mathrm{r}_{k}) denotes the forcing axiom for forcing notions with the property \mathrm{P}\mathrm{r}_{k}.

The property \mathrm{P}\mathrm{r}_{k} is stronger than the countable chain condition. A  $\sigma$‐centered
forcing satisfies the property \mathrm{P}\mathrm{r}_{k} for every integer k \geq  2 . Bagaria‐Shelah proved
that a specialization of an Aronszajn tree by finite approximations also satisfies the
property \mathrm{P}\mathrm{r}_{k} for every integer k \geq  2 [2 , LEMMA 2]. So, for every integer k \geq  2,
MA (\mathrm{P}\mathrm{r}_{k}) implies MA (  $\sigma$‐centered) and the assertion that every Aronszajn tree is
special. They also showed that, for any integer  k\geq 2 , the property \mathrm{P}\mathrm{r}_{k} is preserved
under finite support iterations [2, LEMMA 3].
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In [2], Bagaria‐Shelah introduced the following forcing notion that plays a role of
the failure of MA(  $\sigma$‐linked) in the extension with finite support iterations of forcing
notions with the property \mathrm{P}\mathrm{r}_{k}.

Definition 1.2 ([2, LEMMA 4 For an integer k\geq 2 , the forcing notion \mathbb{P}_{*}^{k} con‐
sists of triples p= \{u_{p}, A_{p}, h_{p}\} such that

\bullet  u_{p} is a finite subset of $\omega$_{1},

\bullet  A_{p} is a subset of [u_{p}]^{k+1} (which is a finite set),
\bullet  h_{p} is a function from the set \{v\subseteq u_{p}: [v]^{k+1}\cap A_{p}=\emptyset\} into  $\omega$ such that,

for every  l\in \mathrm{r}\mathrm{a}\mathrm{n}(h_{p}) and  $\rho$\in [h_{p}^{-1}[\{l\}]]^{k}, \cup $\rho$ belongs to dom(hp),

ordered by:  q\leq_{\mathbb{P}_{*}^{k}}p iff u_{q}\supseteq u_{p}, A_{p}=A_{q}\cap[u_{p}]^{k+1} and h_{q}\supseteq h_{p}.

Note that \mathbb{P}_{*}^{k} is of size \aleph_{1} . Bagaria‐Shelah proved that \mathbb{P}_{*}^{k} has precaliber \aleph_{1} [2,
LEMMA 4 (1)]. They also define the following \mathbb{P}_{*}^{k}‐names.

Definition 1.3 ([2, LEMMA 4 Let k be an integer not smaller than 2. Define
the \mathbb{P}_{*}^{k} ‐name \dot{A}_{k}^{*} by

\dot{A}_{*}^{k}:=\{(\check{v},p):p\in \mathbb{P}_{*}^{k}, v\in A_{p}\},
and define the \mathbb{P}_{*}^{k} ‐name \dot{\mathbb{Q}}_{*}^{k} by

\dot{\mathbb{Q}}_{*}^{k} :=\{ (\check{v}, p) : p\in \mathbb{P}_{*}^{k}, v\in \mathrm{d}\mathrm{o}\mathrm{m}(h_{p})\}.
We notice that

1\displaystyle \vdash_{\mathbb{P}_{*}^{k}}(\dot{\mathcal{A}}_{*}^{k}=\bigcup_{p\in G_{\mathrm{F}_{*}^{k}}}A_{p}
and \dot{\mathbb{Q}}_{*}^{k}=\{v\in[$\omega$_{1}]^{<\aleph_{0}} : [v]^{k+1}\cap\dot{\mathcal{A}}_{*}^{k}=\emptyset\}

`,

By considering \dot{\mathbb{Q}}_{*}^{k} as a \mathbb{P}_{*}^{k} ‐name for a forcing notion, ordered \mathrm{b}\mathrm{y}\supseteq , Bagaria‐Shelah
proved that

[2, LEMMA 4 (3)]: |\vdash_{\mathbb{P}_{\mathrm{r}}^{k}}(\dot{\mathbb{Q}}_{*}^{k} is  $\sigma$-k‐linked and

[2, LEMMA 4 (5)]: 1\vdash_{\mathbb{P}_{*}^{k}}
(

for any \{v_{ $\alpha$} :  $\alpha$\in$\omega$_{1}\} \in [\dot{\mathbb{Q}}_{*}^{k}]^{\aleph_{1}} with v_{ $\alpha$} \not\in  $\alpha$ , and
any pairwise disjoint uncountable family \{u_{ $\xi$} :  $\xi$\in $\omega$\} of non‐empty finite
subsets of $\omega$_{1} , there exists \{$\xi$_{i}:i\in k+1\} \in [$\omega$_{1}]^{k+1} such that, for every

\langle$\alpha$_{i}:i\in k+1\rangle \displaystyle \in\prod_{i\in k+1}u_{$\xi$_{2}}, \displaystyle \bigcup_{i\in k+1}v_{$\alpha$_{i}} does not belong to \dot{\mathbb{Q}}_{*}^{k} ”

The last assertion implies that

|\vdash_{\mathbb{P}_{*}^{k}} \dot{\mathbb{Q}}_{*}^{k} is not  $\sigma$-(k+1) ‐linked”

Definition 1.4 ([2, LEMMA 4 For an integer k \geq  2 and  $\alpha$ \in $\omega$_{1} , define the
\mathbb{P}_{*}^{k} ‐name \dot{I}_{ $\alpha$} such that

1\vdash_{\mathrm{P}_{*}^{k}} \dot{I}_{ $\alpha$}:=\{v\in\dot{\mathbb{Q}}_{*}^{k}:v\not\subset $\alpha$\}
Note that

1\vdash_{\mathbb{P}_{*}^{k}}`` \`{I}_{ $\alpha$} is dense in \dot{\mathbb{Q}}_{*}^{k} ”

[2, LEMMA 4 (4)]. The following is a key point of the proof of the failure of
MA(  $\sigma$‐linked) in the extension with finite support iterations of forcing notions with
the property \mathrm{P}\mathrm{r}_{k}.
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Lemma 1.5 ([2, LEMMA 6 For any integer k \geq  2 and any \mathbb{P}_{*}^{k} ‐name \dot{\mathbb{Q}} for a
forcing notion with the property \mathrm{P}\mathrm{r}_{k+1},

|\vdash_{\mathbb{P}_{*}^{k}*\mathbb{Q}} there are no directed subset G of \dot{\mathbb{Q}}_{*}^{k} such that \dot{I}_{ $\alpha$} \cap G \neq \emptyset for all
 $\alpha$\in$\omega$_{1}

This implies that, for any integer k\geq 2 and any \mathbb{P}_{*}^{k}‐name \dot{\mathbb{Q}} for a forcing notion
with the property \mathrm{P}\mathrm{r}_{k+1},

|\vdash_{\mathbb{P}_{*}^{k}*\dot{\mathbb{Q}}} “ \mathrm{M}\mathrm{A}_{\mathrm{N}_{1}} (  $\sigma$-k‐linked) fails”’

Therefore, the following has been concluded.

Theorem 1.6 ([2, LEMMA 6 It is consistent that MA (\mathrm{P}\mathrm{r}_{k+1}) holds, and
\mathrm{M}\mathrm{A}_{\aleph_{1}} (  $\sigma$-k ‐linked) fails.

2. THE RECTANGLE REFINING PROPERTY AND THE MAIN RESULT

Larson‐Todorčevič introduced a property of ccc partitions on [$\omega$_{1}]^{2} , called the rec‐
tangle refining property, and obtained a consistency of the affirmative of Katětov’s
problem [6]. The following is a version of the rectangle refining property for forcing
notions. A similar definition of the following is appeared in [9, 11]. The following
notation is inspired by [3, Theorem 3.1].

Definition 2.1. A forcing notion \mathbb{P} satisfies the rectangle refining property if there
exists a function w from \mathbb{P} into [$\omega$_{1}]^{<\aleph_{0}} such that

for any pair of compatible conditions p and q in \mathbb{P} , there exists a common
extension r of p and q in \mathbb{P} such that w(r)=w(p)\cup w(q) , and

(rec) for any uncountable subsets I and J of \mathbb{P} , if the set \{w(p);p\in I\cup J\}
forms a  $\Delta$‐system, then there are uncountable subsets  I' and J' of I and
J respectively such that each element of I' is compatible with any element
of J' in \mathbb{P}.

The rectangle refining property is a stronger property than the countable chain
condition. Like the property \mathrm{P}\mathrm{r}_{k} , typical examples of forcing notions with the
rectangle refining property are a  $\sigma$‐centered forcing notion and a specialization
of an Aronszajn tree by finite approximations. For other examples, see [9, 10, 11].
Note that forcing notions with the rectangle refining property satisfies Chodounský‐

Zapletal’s Y‐cc [3]. Let \langle \mathbb{P}_{ $\alpha$}, \dot{\mathbb{Q}}_{ $\beta$} :  $\alpha$\leq $\lambda$,  $\beta$< $\lambda$\rangle be a finite support iteration of
forcing notions with the rectangle refining property, and, for each  $\beta$< $\lambda$ , let \dot{w}_{ $\beta$} be
\mathrm{a}\mathbb{P}_{ $\beta$} ‐name for a function that witnesses the rectangle refining property of \dot{\mathbb{Q}}_{ $\beta$} . By
induction on  $\alpha$\leq $\lambda$ , it can be prove that, for every  p\in \mathbb{P}_{ $\alpha$} , there is an extension q

of p in \mathbb{P}_{ $\alpha$} such that, for each  $\xi$\in \mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(q) , there exists  w_{ $\xi$}^{q}\in [$\omega$_{1}]^{<\aleph_{0}} such that

q \mathrm{r} $\xi$|\vdash_{\mathbb{P}_{ $\xi$}} \dot{w}_{ $\xi$}(q( $\xi$))=w_{ $\xi$}^{q}
”

Such a q is here called a nice condition of \mathbb{P}_{ $\alpha$} . Note that the set of nice conditions of

\mathbb{P}_{ $\alpha$} is dense in \mathbb{P}_{ $\alpha$} . We say that an uncountable set \{p_{ $\zeta$} :  $\zeta$\in$\omega$_{1}\} of nice conditions
of \mathbb{P}_{ $\alpha$} forms a \mathrm{A}‐system as a set of conditions of the iteration if \{\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(p_{ $\zeta$}) :  $\zeta$\in$\omega$_{1}\}
forms a \mathrm{A}‐system with root \triangle and, for each  $\xi$\in\triangle, \{w_{ $\xi$}^{p_{ $\zeta$}} :  $\zeta$\in$\omega$_{1}\} also forms a \triangle-

system. Note that every uncountable set of nice conditions of \mathbb{P}_{ $\alpha$} has an uncountable
subset that forms a \triangle‐system as a set of conditions of the iteration. The rectangle
refining property is preserved under finite support iterations in the following sense.
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Lemma 2.2. Suppose that \langle \mathbb{P}_{ $\alpha$}, \dot{\mathbb{Q}}_{ $\beta$} :  $\alpha$\leq $\lambda$,  $\beta$< $\lambda$\rangle is a finite support iteration of

forcing notions with the rectangle refining property, and let  $\alpha$\leq $\lambda$ . Then, for every
uncountable set \{p_{ $\zeta$} :  $\zeta$\in$\omega$_{1}\} of nice conditions of\mathbb{P}_{ $\alpha$} , and every pair of uncountable
subsets I and J of $\omega$_{1} , if \{p_{ $\zeta$} :  $\zeta$\in$\omega$_{1}\} forms a  $\Delta$ ‐system as a set of conditions of
the iteration, then there are  I'\in[I]^{\aleph_{1}} and J'\in[J]^{\aleph_{1}} such that, for each  $\zeta$\in I and
 $\eta$\in J', p_{ $\zeta$} and p_{ $\eta$} are compatible in \mathbb{P}_{ $\alpha$}.

Proof. This is proved by induction on  $\alpha$\leq $\lambda$ . In the case that  $\alpha$ is a limit ordinal,
this is proved by inductive hypothesis. Suppose that \mathbb{P}_{a} satisfies the conclusion of
the lemma, that \{p_{ $\zeta$} :  $\zeta$\in$\omega$_{1}\} is an uncountable set of nice conditions of \mathbb{P}_{ $\alpha$+1} such
that \{\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}(p_{ $\zeta$}): $\zeta$\in$\omega$_{1}\} forms a  $\Delta$‐system with root \triangle with  $\alpha$\in\triangle , and, for each

 $\xi$\in\triangle, \{\mathrm{w}_{ $\xi$}^{p_{ $\zeta$( $\xi$)}} :  $\zeta$\in$\omega$_{1}\} also forms a \triangle‐system, and that  I and J are uncountable
subsets of $\omega$_{1}.

By inductive hypothesis, there are I^{(1)} \in [I]^{\aleph_{1}} and J^{(1)} \in [J]^{\aleph_{1}} such that, for
each  $\zeta$ \in I^{(1)} and  $\eta$ \in  J^{(1)}, p_{ $\zeta$} \mathrm{r} $\alpha$ and  p_{ $\eta$} \lceil $\alpha$ are compatible in \mathbb{P}_{ $\alpha$} . By refining
I^{(1)} and J^{(1)} if necessary, we may assume that I^{(1)} is disjoint from J^{(1)} . Define
\mathbb{P}_{ $\alpha$} ‐names Ì(2) and j^{(2)} such that

|\vdash_{\mathbb{P}_{ $\alpha$}} “ \dot{I}^{(2)} :=\{ $\zeta$\in I^{(1)} : p_{ $\zeta$} [a\in\dot{G}_{\mathbb{P}_{ $\alpha$}}\} and j^{(2)} :=\{ $\zeta$\in J^{(1)} : p_{ $\zeta$} \mathrm{r}a\in\dot{G}_{\mathbb{P}_{ $\alpha$}}\} ,,

Claim that there exists q\in \mathbb{P}_{ $\alpha$} such that

q1\vdash_{\mathrm{p}_{ $\alpha$}} “ both \dot{I}^{(2)} and j^{(2)} are uncountable”

To see this, assume not. Then, since \mathbb{P}_{ $\alpha$} is ccc, there is  $\delta$\in$\omega$_{1} such that

|\vdash_{\mathbb{P}_{ $\alpha$}} j^{(2)}, j^{(2)} \subseteq $\delta$ ”

Take  $\zeta$ \in I^{(1)}\backslash  $\delta$ and  $\eta$ \in  J^{(1)}\backslash  $\delta$ , and take a common extension  r of p_{ $\zeta$} \mathrm{r} $\alpha$ and
 p_{ $\eta$} \mathrm{r} $\alpha$ in \mathbb{P}_{ $\alpha$} . Then

 r|\vdash_{\mathbb{P}_{ $\alpha$}}( $\zeta$\in\dot{I}^{(2)}\backslash  $\delta$ and  $\eta$\in j^{(2)}\backslash  $\delta$
which is a contradiction.

Let  q \in \mathbb{P}_{ $\alpha$} be a condition of \mathbb{P}_{ $\alpha$} that forces \dot{I}^{(2)} and j^{(2)} to be uncountable.

Since \dot{\mathbb{Q}}_{ $\alpha$} is a \mathbb{P}_{ $\alpha$} ‐name for a forcing notion with the rectangle refining property,
there are \mathbb{P}_{ $\alpha$} ‐names \dot{I}^{(3)} and j^{(3)} such that

q|\vdash_{\mathrm{p}_{ $\alpha$}} “ \dot{I}^{(3)} and j^{(3)} are uncountable subsets of \dot{I}^{(2)} and j^{(2)} respectively,
and, for each  $\zeta$ \in \dot{I}^{(3)} and  $\eta$ \in  j^{(3)}, p_{ $\zeta$}( $\alpha$) and p_{ $\eta$}( $\alpha$) are compatible in
\dot{\mathbb{Q}}_{ $\alpha$},,

For each i\in$\omega$_{1} , take an extension q_{i} of q in \mathbb{P}_{ $\alpha$} and $\zeta$_{i}, $\eta$_{i} \in$\omega$_{1} such that, for each
i\in$\omega$_{1}, q_{i} forms a nice condition and

q_{i}1\vdash_{\mathbb{P}_{ $\alpha$}} “ $\zeta$_{i}\in\dot{I}^{(3)} and $\eta$_{i}\in j^{(3)} ,

and, for each i, j\in$\omega$_{1} with i<j,

\displaystyle \max\{$\zeta$_{i}, $\eta$_{i}\}<\min\{$\zeta$_{j}, $\eta$_{j}\}.

Take an uncountable subset K of $\omega$_{1} such that \{q_{i}:i\in K\} forms a \triangle‐system as
a set of conditions of the iteration. By inductive hypothesis, take uncountable
disjoint subsets  K_{0} and K_{1} of K such that, for each i\in K_{0} and j\in K_{1}, q_{i} and q_{j}

are compatible in \mathbb{P}_{ $\alpha$} . Define I' :=\{$\zeta$_{i}:i\in K_{0}\} and J' :=\{$\eta$_{j}:j\in K_{1}\} . Since

q_{i}^{1\vdash}\mathbb{P}_{ $\alpha$} $\zeta$_{i}\in\dot{I}^{(3)} \subseteq\dot{I}^{(2)}\subseteq I^{(1)}\subseteq I ”
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for each i \in  K_{0}, I' is an uncountable subset of I . Similarly, J' \subseteq  J . The pair I'

and J' is what we want. \square 

Lemma 2.3. Suppose that k is an integer not smaller than 2, and \dot{\mathbb{Q}} is a \mathbb{P}_{*}^{k} ‐name
for a forcing notion with the rectangle refining property. Then

|\vdash_{\mathbb{P}_{*}^{k}*\dot{\mathbb{Q}}} “ there are no K\in[$\omega$_{1}]^{\aleph_{1}} such that [K]^{k+1} \subseteq\dot{\mathbb{Q}}_{*}^{k}

This lemma implies that \mathbb{P}_{*}^{k}*\dot{\mathbb{Q}} forces the failure of \mathrm{M}\mathrm{A}_{\mathrm{N}_{1}} (  $\sigma$-k‐linked) for \dot{\mathbb{Q}}_{*}^{k} in
some strong sense. See in the next section.

Proof. Throughout the proof, we work in the extension with \mathbb{P}_{*}^{k} . Suppose that \mathbb{Q}
is a forcing \mathrm{n}otion with the rectangle refining property (in the extension with \mathbb{P}_{*}^{k} ),
q\in \mathbb{Q} and K is a \mathbb{Q}‐name for an uncountable subset of $\omega$_{1} such that

q^{1\vdash}\mathbb{Q} [\dot{K}]^{k+1}\subseteq \mathbb{Q}_{*}^{k} ”

For each  $\alpha$ \in$\omega$_{1} , take an extension q_{ $\alpha$} of q in \mathbb{Q} and $\delta$_{ $\alpha$} \in$\omega$_{1} such that, for each
 $\alpha$\in$\omega$_{1}, q_{ $\alpha$} forms a nice condition and

q_{ $\alpha$}|\vdash_{\mathrm{p}_{ $\alpha$}} $\delta$_{ $\alpha$}\in\dot{K} ” ,

and, for each  $\alpha$, $\alpha$'\in$\omega$_{1} with  $\alpha$<$\alpha$', $\delta$_{ $\alpha$} <$\delta$_{$\alpha$'} . Note that each set \{$\delta$_{ $\alpha$}\} is a condi‐
tion of \mathbb{Q}_{*}^{k} . Since \mathbb{Q} satisfies the rectangle refining property, we can take uncount‐
able subsets I_{l}, l \leq  k , of $\omega$_{1} such that, for each \langle$\alpha$_{l} :  l\leq k\rangle \in \displaystyle \prod_{t\leq k}I_{l}, \{q_{$\alpha$_{ $\iota$}} : l\leq k\}
has a common extension in \mathbb{Q} . We build a pairwise disjoint uncountable family
\{u_{ $\xi$} :  $\xi$\in$\omega$_{1}\} of finite subsets of $\omega$_{1} such that each u_{ $\xi$} contains some member of

I_{l} for all l \leq  k . Applying \{\{$\delta$_{ $\alpha$}\}: $\alpha$\in$\omega$_{1}\} and \{u_{ $\xi$} :  $\xi$\in$\omega$_{1}\} to [2, LEMMA 4 (5)]
(which is a property of \mathbb{Q}_{*}^{k} , mentioned above), we can find \{$\alpha$_{l} :  l\leq k\rangle \displaystyle \in\prod_{l\leq k}I_{l} such

that \{$\delta$_{$\alpha$_{ $\iota$}} : l\leq k\} \not\in \mathbb{Q}_{*}^{k} . However, \{q_{$\alpha$_{l}} : l\leq k\} has a common extension r in \mathbb{Q},
and then,

r|\vdash_{\mathbb{Q}} \{$\delta$_{ $\alpha \iota$} :l\leq k\}\in [\dot{K}]^{k+1}\subseteq \mathbb{Q}_{*}^{k}
which is a contradiction. \square 

Therefore, we obtain the following theorem

Theorem 2.4. For each integer k \geq  2 , it is consistent that MA(rec) holds, and
\mathrm{M}\mathrm{A}_{\aleph_{1}} (  $\sigma$-k ‐linked) fails.

3. CONCLUDING REMARK

Connections between several fragments of Martin’s axiom have been studied.
For example, Bagaria proved that it is consistent that MA(  $\sigma$‐centered) holds and
MA(  $\sigma$‐linked) fails [1, 3.6], and that it is consistent that MA(productive ccc) holds,
every Aronszajn tree is special and MA fails. Chodounský‐Zapletal introduced
the property of forcing notions, called Y‐cc, which is a stronger property than the
countable chain condition, and showed that it is consistent that MA(Y‐cc) holds and
\mathrm{c}\mathrm{o}\mathrm{v}(\mathcal{N}) = \aleph_{1} [3] . Note that MA(Y‐cc) implies MA (  $\sigma$‐centered) and the assertion
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that every Aronszajn tree is special* 1. Hence, this Chodounský‐Zapletal’s result
also implies the consistency of the assertion (^{*})^{*2}.

In 1980\mathrm{s} , Todorčevič investigated Mai in’s Axiom from the view point of Ramsey
theory, and introduced the following fragments of Martin’s axiom: \mathcal{K}_{< $\omega$} denotes the
assertion that every ccc forcing notion has precaliber \aleph_{1} (that is, every uncountable
subset has a centered subset I , which means that any finite subset of I has a common
extension); \mathcal{K}_{n} denotes the assertion that every ccc forcing notion has the property
K_{n} (that is, every uncountable subset of a ccc forcing notion has an uncountable
$\eta$_{ $\Gamma$}‐linked subset I , which means that any nrmany elements of I has a common
extension) *3_{;\mathcal{K}_{< $\omega$}'} denotes the assertion that every ccc partition K_{0}\cup K_{1}=[$\omega$_{1}]^{<\aleph_{0}}
has an uncountable K_{0}‐homogeneous set, for each n\in $\omega$;\mathcal{K}_{n}' denotes the assertion
that every ccc partition K_{0}\cup K_{1}=[$\omega$_{1}]^{n} has an uncountable K_{0}‐homogeneous set.

*4

The following diagram is a summary of implications of these fragments of \mathrm{M}\mathrm{A}_{\aleph_{1}}.
The triangle on the left side of the diagram is the Todorčevič‐Veličkovič theorem
[8].

\mathrm{M}\mathrm{A}_{\aleph_{1}}<_{\mathrm{A}}<^{>^{\mathcal{K}_{< $\omega$}}}\uparrow\rightarrow.
. . \rightarrow \mathcal{K}_{n+1}\rightarrow \mathcal{K}_{n}\rightarrow . . . \rightarrow \mathcal{K}_{3}\rightarrow \mathcal{K}_{2}

\mathcal{K}_{< $\omega$}'\rightarrow . . . \rightarrow \mathcal{K}_{n+1}'\downarrow\rightarrow \mathcal{K}_{ $\tau \iota$}\downarrow,\rightarrow .. . \rightarrow \mathcal{K}_{3}|,\rightarrow \mathcal{K}_{2}'\downarrow
It is not known whether any other implications in this diagram hold under ZFC.
Bagaria‐Shelah’s lemma [2, LEMMA 6] can be modified the lemma for the failure
of \mathcal{K}_{k+1}' for \dot{\mathbb{Q}}_{*}^{k} in the extension with \mathbb{P}_{*}^{k}*\dot{\mathbb{Q}} . So it is proved that, for each integer
k\geq 2 , it is consistent that MA (\mathrm{P}\mathrm{r}_{k+1}) holds and \mathcal{K}_{k+1}' fails.

Larson‐Todorčevič showed that a Suslin tree forces that there exists a ladder

system coloring which cannot be uniformized [5, THEOREM 6.2], and that, for each
non‐principal ultrafilter U in the ground model, (2^{$\omega$_{1}}, <\mathrm{l}\mathrm{e}\mathrm{x}) cannot be embedded
into $\omega$^{ $\omega$}/U [5 , THEOREM 6.3]. It is proved that \mathcal{K}_{4}' implies that every ladder system
coloring can be uniformized [8, §2], and that \mathcal{K}_{3}' implies that, for every non‐principal
ultrafilter U in the ground model, (2^{$\omega$_{1}}, <\mathrm{l}\mathrm{e}\mathrm{x}) can be embedded into $\omega$^{ $\omega$}/U [7 , 7.7.
THEOREM]. Larson‐Todorčevié proved that it is consistent that a Suslin tree can
force \mathcal{K}_{2}' (rec) [6]. In [11], the author develops their result to \mathcal{K}_{< $\omega$}(\mathrm{r}\mathrm{e}\mathrm{c}) in some
sense. Therefore, it is proved that it is consistent that \mathcal{K}_{<\mathrm{I}v}(\mathrm{r}\mathrm{e}\mathrm{c}) holds in some
sense and \mathcal{K}_{3}' fails, by use of forcing with a Suslin tree. Lemma 2.3 says that

\mathcal{K}_{k+1}' for \dot{\mathbb{Q}}_{*}^{k} fails in the extension with \mathbb{P}_{*}^{k}*\dot{\mathbb{Q}} . So consequently, it is proved that
it is consistent that MA(rec) holds, and both \mathcal{K}_{3}' and \mathrm{M}\mathrm{A}_{\aleph_{1}} (  $\sigma$‐linked) fail. This
cannot be concluded by use of a forcing extension with a Suslin tree.

”Because both a  $\sigma$‐centered forcing and a specialization of an Aronszajn tree by finite approx‐
imations satisfy Y‐cc.

*2
Notice that Random forcing is  $\sigma$‐linked.

*3\mathrm{A} forcing notion with the property K_{n} satisfies the property \mathrm{P}\mathrm{r}_{n}.
*4They are defined by Todorčevič in several papers. In [5, Definition4.9] and [8, §2], \mathcal{K}_{n} ’s are

defined as assertions for ccc forcing notions, however in [6, §4] and [7, §7], \mathcal{K}_{n} ’s are defined as
assertions for ccc partitions. To separate them, we use the notations as above. These notations
are same to ones in [10].
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