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Abstract

In this note, we are concerned with the asymptotics of (mainly
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organization of this note.
In this note, we are concerned with the behavior of solutions for semi‐

hnear parabolic equations involving critical Sobolev exponent.
In §1, we introduce our problem in §1.1 and state our main results in

§1.2. §1.3 is devoted to the review of known facts and motivations for our
main results.

In §2, a typical argument for the subcritical case will be given in §2.1
and the difficulty for the critical case will be clarified in §2.2.

In §3, preliminary facts used for proofs of main results are introduced.
First we introduce in §3.1 a scale invariant structure of (P) with p = 2^{*}

which plays an important role in the anaylysis of the critical problem. §3.2
is devoted to the proof of the  $\varepsilon$‐regulatity type result and the profile decom‐
poition of Gerárd and Jaffard will be reviewd in §3.3.

§4 is concerned with the proof of main results. In §4.1, a potential‐well
type result together with the structure of the space of initial data in the
critical case, Theorem 1.1 and Theorem 1.2, are proved. The existence of
global bounds for the Sobolev norm for time‐global solutions, Theorem 1.3,
and the asymptotics of such solutions, Theorem 1.4, are verified in §4.2

In the final section §5, we introduce some discussions on (P) with critical
exponent. The first topic is the possibility for getting an extention of the
theory of an abstract dynamical system. For a dynamical system with a
compact orbit, the asymptotics will be clarified by the LaSalle principle. We
discuss in §5.1 the possibilility to extend the LaSalle principle to dynamical
systems with a noncompact orbit with the aid of an abstract version of the
profile decomposition. In §5.2, some (basic) open problems for (P) in the
critical case will be introduced.

In the appendix, we review the concavity argument of Payne‐Sattinger‐
Levine for the reader’s convenience.

Apart from Theorem 1.3 and Theorem 1.4, results presented in this note
is already pubhshed and the author try to give a self‐contained argument
for them except for proofs of Theorem 1.3 and Theorem 1.4 in §1.2.2.
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1 Problem, main results, known results and moti‐
vations

1.1 Problem and basic facts

1.1.1 Problem

Let  N\geq 3,  $\Omega$\subset \mathbb{R}^{N} be a smooth domain and let \dot{H}^{1}( $\Omega$) be a homogeneous
Sobolev space defined as a closure of C_{0}^{\infty}( $\Omega$) by the homogeneous Sobolev
norm \Vert\nabla. \Vert_{2} , where \Vert \Vert_{r} denotes the standard L^{r}‐norm. Let 2

*
:= \displaystyle \frac{2N}{N-2}

be the critical Sobolev exponent of the Sobolev embedding \dot{H}^{1} \hookrightarrow Ư. It is
known that \dot{H}^{1}\hookrightarrow L^{2^{*}} is continuous but fails to be compact. We consider

(P) \left\{\begin{array}{ll}
\partial_{t}u = \triangle u+u|u|^{p-2} & \mathrm{i}\mathrm{n}  $\Omega$\times(0, T_{m}) ,\\
u|_{t=0} = u_{0} & \mathrm{i}\mathrm{n}  $\Omega$
\end{array}\right.
with the homogeneous Dirichlet boundary condition

u=0 on \partial $\Omega$\times(0, T_{m})

if \partial $\Omega$\neq\emptyset , where  u_{0} \in  L^{\infty}\cap H^{1} for the sake of simplicity, T_{m} denotes the
maximal existence time of the classical solution u of (P). A solution with
 T_{m}=\infty is called as a time‐global solution. In the main body of this note,
we assume  p=2^{*},  $\Omega$=\mathbb{R}^{N} and u_{0}\geq 0.

We discuss in this note two topics concerning the asymptotic behavior
of solutions of (P). The first topic is the existence of so called a “stable
set” and an “unstable set”’ in \dot{H}^{1} . By using this fact, we can clarify the
structure of the space of initial data. These results win be given in Theorem
1.1 and Theorem 1.2. The second topic is concerned with the validity of the
following global bounds for time‐global solutions u :

\displaystyle \sup_{t>0}||\nabla u(t)\Vert_{2}<\infty . (1)

As is shown in §2.1 and in the proof of Theorem 1.4, the analysis of a bound
of the form (1) is a first step for the analysis of the asymptotic behavior
of a time‐global solution  u in the “energy space” \dot{H}^{1} . Note that by the
decreasing property of the energy J_{p} along the orbit of u (see (8) below),
(1) is equivalent to

\displaystyle \sup_{t>0}\Vert u(t)\Vert_{p}<\infty . (2)

We will introduce an argument to establish the validity of (2) for the case
where  p=2^{*},  $\Omega$=\mathbb{R}^{N} and u is a nonnegative time‐global solution of (P).
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Based on this bound, the asymptotics of time‐global nonnegative solutions
are given, see Theorem 1.3 and Theorem 1.4.

1.1.2 Time‐local existence of a solution

We review basic facts concering the time local existence of solutions of (P)
which is needed in proving main results. For the proof of facts stated below,
see e.g. Brezis‐Cazenave [3], Ruf‐Terraneo [45] and Weissler [54].

We consider the solution of (P) in the following sense:

u\in C^{2,1}(\mathbb{R}^{N}\times(0, T_{m}))\cap C^{1}((0, T_{m});L^{2})\cap C([0, T_{m});H^{1}) . (3)

The solution in this class is easily constructed. Indeed, since u_{0}\in L^{\infty} , the
existence of a classical solution of (P) is a standard fact and for u_{0}\in H^{1}, \mathrm{a}

solution u\in C^{1}((0, T_{m});L^{2})\cap C([0, T_{m});H^{1}) is constructed.

Since u in the class (3) is a classical solution, it satisfies the blow‐up
alternative in L^{\infty} ‐sense:

if  T_{m}<\infty , then  t\rightarrow T_{m}\mathrm{h}\mathrm{m}\Vert u(t)\Vert_{\infty}=\infty . (4)

It is also well known that this class of solution satisfies the integral equation

 u(t)=e^{t\triangle}u_{0}+\displaystyle \int_{0}^{t}dse^{(t-s) $\Delta$}u(s)|u(s)|^{p-2} (5)

associated with (P).

1.1.3 The energy structure

By multiplying \partial_{t}u to both sides of (P) and integrating over \mathbb{R}^{N} , we (for‐
mally) obtain the energy equality

\displaystyle \Vert\partial_{t}u(t)\Vert_{2}^{2}=-\frac{d}{dt}J_{p}(u(t)) , (6)

where J_{p} denotes the energy functional associated with (P) defined by

J_{p}(u)=\displaystyle \frac{1}{2}\Vert\nabla u\Vert_{2}^{2}-\frac{1}{p}\Vert u(t)\Vert_{p}^{p}.
It is known that solutions u of (P) satisfying (3) actually satisfy (6) for any
t\in(0, T_{m}) .
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In the main body of this note, we assume that p=2^{*},  $\Omega$=\mathbb{R}^{N} and u is
a nonnegative time‐global solution of (P). In this case, the concavity argu‐
ment (this name comes from the concavity of a part -\displaystyle \frac{1}{p}\Vert u\Vert_{p}^{p} in the energy
functional) of Payne‐Sattinger [44] and Levine [35] for bounded domains
together with the comparison argument implies that

\displaystyle \lim_{t\rightarrow\infty}J_{p}(u(t)) \geq 0 (7)

and, by (6) and (7), we have the existence of d\geq 0 satisfying

J_{p}(u_{0})\geq J_{p}(u(t))\downarrow d aồ  t\rightarrow\infty , (8)

see §6 and Mizoguchi [39, Lemma 2.4].

Remark 1.1

The assumption of the nonnegativity of solutions is only used to assure
(8), in other words, to exclude the existence of a solution satisfying

 T_{m}=\infty and \displaystyle \lim_{t\rightarrow\infty}J_{p}(u(t))=-\infty . (9)

For bounded  $\Omega$ , we can exclude the existence of such solutions by the con‐
cavity argument, see §6. In an unbounded domain case, we can also exclude
solutions satisfying (9) under the nonnegativity assumption by using the
comparison argument together with the corresponding result in bounded
domains. For sigh‐changing solutions in an unbounded domains, the ex‐
istence of a solution which satsifies (9) seems to be an open problem, see
Open problem 5.1. As for the subcritical problem in unbounded domains,
see e.g. Kavian [32], Mizoguchi‐Yanagida [41] and Mizoguchi‐Ninomiya‐
yanagida [40]. 1

1.2 Main results

The main results of this note consists of two parts.
The first part, Theorem 1.1 and Theorem 1.2, is concerned with the

existence of so‐called “potential‐well structure”’ and the structure of the
initial data space for (P) in \mathbb{R}^{N} with p = 2^{*} , respectively. Theorem 1.1
gives an affirmative answer for conjectures (19), (20) and (21) below (for an
“unstable set”, we need the nonnengativity of solutions).

The second part, Theorem 1.3 and Theorem 1.4, give a time‐global
bounds for Sobolev norms of time‐global solutions of (P) in \mathbb{R}^{N} with p=2^{*}
and its asymptotic behavior as time tends to infinity.

Known results and motivations for these problems will be discussed in
§1.3 in detail. We start with the first part.

6
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1.2.1 On the potential‐well structure

Let

W_{2^{*}} := \displaystyle \{w\in\dot{H}^{1}; -\Vert\nabla\grave{w}\Vert_{2}^{2}+\Vert w\Vert_{2^{*}}^{2^{*}} <0, J(u)<\frac{1}{N}S^{\frac{N}{2}}\},
V_{2^{*}} := \displaystyle \{\mathrm{w}\in\dot{H}^{1}; -\Vert\nabla \mathrm{w}\Vert_{2}^{2}+\Vert w\Vert_{2^{*}}^{2^{*}} >0, J(u)<\frac{1}{N}S^{\frac{N}{2}}\},

where S:=\displaystyle \inf_{w\in\dot{H}^{1}\backslash \{0\}}\frac{||\nabla w||_{2}^{2}}{||w\Vert_{2^{*}}^{2}}(>0) denotes the best Sobolev constant. Note

that W_{2}* forms a neighborhood of the origin in \dot{H}^{1} and V_{2}* a neighborhood
of the infinity in \dot{H}^{1}. W_{2}* (resp. V_{2}* ) is called a stable set (resp. an unstable
set).

We have the following (see [26]):

Theorem 1.1

Let u be a solution of (P) in \mathbb{R}^{N} with p=2^{*}
(a) Assume that there exists t_{0} \in [0, T_{m} ) such that u(t_{0}) \in  W_{2}* . Then
 T_{m}=\infty and \Vert\nabla u(t)\Vert_{2}\rightarrow 0 as t\rightarrow\infty.

(b) Suppose that, in addition, u is a nonnegative solution of (P). Assume
that there exists  t_{0}\in [0, T_{m} ) such that u(t_{0})\in V_{2^{*}} . Then T_{m}<\infty.

Remark 1.2 (On the nonnegativity assumption in (b))
The nonnegativity assumption of solutions in above is only used to assure

(8), and if we can establish (8) for sign‐changing solutions, then we can
remove the nonnegativity assumption from (b). See Remark 1.1 and Open
problem 5.1. Ỉ

Remark 1.3 (On the blow‐up of \Vert\nabla u(t)\Vert_{2} in (b))
In the case (b), we have \Vert u(t)\Vert_{\infty} \rightarrow \infty as  t \rightarrow  T_{m} by the blow‐up

alternative (4). It is not known that whether \Vert\nabla u(t)\Vert_{2}\rightarrow\infty as  t\rightarrow T_{m} or
not, as is stated in Open problem 5.5. Ĩ

We next clarify the fine structure of the initial data space by assuming
the nonnegativity of solutions. This case the nonnegativity assumption is
crucial since the proof needs a comparison principle in an essential way.

Theorem 1.2

For any nonnegative function  $\varphi$\in L^{\infty}\cap H^{1} , there exist  0<\underline{ $\lambda$}\leq\overline{ $\lambda$}<\infty
satisfying the following: let  u $\lambda$ be a solution of (P) in \mathbb{R}^{N} with p=2^{*} and
initial data  u_{0}= $\lambda \varphi$ for  $\lambda$>0 , then there hold

7
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(a) if  $\lambda$\in (0,\underline{ $\lambda$}) , then there exists  t_{0}\in [0, T_{m} ) such that u_{ $\lambda$}(t_{0}) \in W_{2}*.

(b) if  $\lambda$\in (\overline{ $\lambda$}, \infty) , then there exists  t_{0}\in [0, T_{m} ) such that u_{ $\lambda$}(t_{0}) \in V_{2}*.

(c) if  $\lambda$\in [\underline{ $\lambda$}, \overline{ $\lambda$}] , then the orbit of u_{ $\lambda$}(t) does not intersect with W_{2}*\cup V_{2}*.

Remark 1.4 (On the regularity assumption on the profile function)
We can relax the regularity assumption on  $\varphi$ by using the parabolic

regularity. I

Remark 1.5 (On the asymptotic behavior)
Hence we see that  u_{ $\lambda$}(t)\rightarrow 0 in \dot{H}^{1} as  t\rightarrow\infty if  $\lambda$<\underline{ $\lambda$} and \Vert u_{ $\lambda$}(t)\Vert_{\infty}\rightarrow\infty

as  t\rightarrow T_{m}(<\infty) if  $\lambda$>\overline{ $\lambda$} by combining Theorem 1.1 and Theorem 1.2. As
for the solution u_{ $\lambda$} with  $\lambda$ \in [\underline{ $\lambda$},\overline{ $\lambda$}] , if  $\varphi$ is in addition radially symmetric,
then there hold  T_{m}=\infty and

 u_{ $\lambda$} t)-\Vert u(t)\Vert_{\infty}U(\Vert u(t)\Vert^{\frac{2}{\infty N-2}}\cdot)=o(1) in \dot{H}^{1} (10)

as t \rightarrow \infty , where  U is a Talenti function with \Vert U\Vert_{\infty} = 1 (which attains
the best constant S in (17)). Moreover, we can prove \underline{ $\lambda$}=\overline{ $\lambda$}, i.e., the set of
threshold modulus [\underline{ $\lambda$}, \overline{ $\lambda$}] is a singleton, see [27]. For results on an asymptotic
behavior of u_{ $\lambda$} for  $\lambda$\in [\underline{ $\lambda$}, \overline{ $\lambda$}] with a nonradial  $\varphi$ , see [23] and [24]. 1

Remark 1.6 (The existence and the nonexistence of the potential‐
well structure with respect to p)

Note that if  p < 2^{*} , then \dot{H}^{1} cannot be embedded to Ư, which yields

S_{p} :=\displaystyle \inf_{w\in\dot{H}^{1}\backslash \{0\}}\frac{\Vert\nabla w\Vert_{2}^{2}}{||w\Vert_{p}^{\mathrm{p}}} =0 . Hence there is no “potential well”’ structure

in this case and the existence of the potential‐well structure for the case
 $\Omega$ = \mathbb{R}^{N} only holds for the critical case. In spite of the fact S_{p} = 0 , the
similar result with Theorem 1.2 also holds in the subcritical case. This is

based on a potential well structure for a “forward self‐similarly transformed
equation” of (P), see e.g. Kavian [32], Kawanago [33] and references therein.

Ỉ

1.2.2 On global bounds for time‐global solutions

By [27], we know that if u is a nonnegative, radially symmetric, time‐global
solution of (P) with p = 2^{*} and  $\Omega$ = \mathbb{R}^{N} , then the time‐global bounds
(1) holds. We here show the validity of (1) for nonnegative global‐in‐time
solution of (P) without the assumption of radial symmetry, and give an
asymptotic behavior of them.

8
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Theorem 1.3 (Global bounds for the critical case)
Let u be a nonnegative time‐global solution of (P) with p=2^{*} and  $\Omega$=

\mathbb{R}^{N} . Then there holds \displaystyle \sup_{t>0}\Vert\nabla u(t)\Vert_{2}<\infty. 1

Remark 1.7 (For the general case)
In theorem above, the nonnegativity assumption of solutions is only used

to assure (8), and if we establish (8) for sign‐changing solutions, then we
can remove the nonnegativity assumption, see also Remark 1.1. For (P) on
general smooth domain  $\Omega$ with  p=2^{*} , we have

\displaystyle \lim_{t\rightarrow}\sup_{\infty}\Vert\nabla u(t)\Vert_{2}<\infty
if

\displaystyle \lim \mathrm{i}\mathrm{n}\mathrm{f}t\rightarrow\infty\Vert\nabla u(t)\Vert_{2}<\infty , (11)

see [28]. Therefore, for an arbitrary time‐global solution of  u , we have either

\displaystyle \mathrm{h}\mathrm{m}\sup_{\mathrm{t}\rightarrow\infty}\Vert\nabla u(t)\Vert_{2}<\infty
or

\displaystyle \lim_{t\rightarrow\infty}\Vert\nabla u(t)\Vert_{2}=\infty.
For a bounded  $\Omega$ , we always have (11) (see Corollary 2.1 below for the
subcritical case whose proof is also valid for the critical case, see also Remark
2.5). For  $\Omega$=\mathbb{R}^{N} with p=2^{*} , we have the alternative

\displaystyle \mathrm{h}\mathrm{m}\sup_{t\rightarrow\infty}\Vert\nabla u(t)\Vert_{2}<\infty
or

\displaystyle \lim_{t\rightarrow\infty}\Vert\nabla u(t)\Vert_{2}=\infty and \displaystyle \lim_{t\rightarrow\infty}J_{2}*(u(t))=-\infty . (12)

since \displaystyle \lim_{t\rightarrow\infty}J_{2}*(u(t))>-\infty implies (11) as is shown by the same argument
for bounded  $\Omega$ above (the conclusion of Lemma 2.2 (b) for the bounded
domain case should be replaced by that of Proposition 3.2 in the case  $\Omega$=

\mathbb{R}^{N}) . The existence of a sign‐changing solution u satsifying (12) is an open
problem, see Open problem 5.1. 1

Remark 1.8 (An extension of a class of initial data)
We can considerably enlarge the admissible class of initial datum, see

e.g. Brezis‐Cazenave [3] and Ruf‐Terraneo [45]. Ĩ

9
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Based on Theorem 1.3, we can clarify the following asymptotics of time‐
global solutions of (P) which are bounded in \dot{H}^{1} For a Banach space X

and for A\subset X , let \mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}_{X}(u, A) :=\displaystyle \inf_{v\in A}\Vert u-v\Vert_{X}.

Theorem 1.4 (Asymptotics for the critical case)
Let a time‐global solution u of (P) with p=2^{*} and  $\Omega$=\mathbb{R}^{N} satisfies

\displaystyle \sup_{t>0}\Vert\nabla u(t)\Vert_{2}<\infty . (13)

Let  E_{\infty}(u_{0}) be a set defined by

E_{\infty}(u_{0})

:= \displaystyle \{_{J}\sum_{=1}^{n}($\lambda$^{J})^{\frac{N-2}{2}}$\varphi$^{g}($\lambda$^{J}(\cdot-y^{g} $\varphi$^{\mathrm{J}} is a stationary solution of (P),

($\lambda$^{j})_{J^{=1}}^{n} \subset \mathbb{R}+, (y^{\mathrm{J}})_{j=1}^{n}\subset \mathbb{R}^{N}, n\in \mathrm{N}\cup\{0\} with \displaystyle \sum_{J^{=1}}^{n}J_{2}*( $\psi$)\leq J_{2}*(u_{0}) }.
Then there holds

\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}_{L^{2}}*(u(t), E_{\infty}(u_{0}))\rightarrow 0 (14)

as  t\rightarrow\infty (Note that all $\psi$^{j} may be trivial).

Remark 1.9 (For nonnegative solutions)
If u is a nonnegative solution of (P), then the assumption of Theorem 1.4

holds by virtue of Theorem 1.3. In this case, $\psi$^{\mathrm{J}} in the definition of E_{\infty}(u_{0})
can be taken as a nonnegative function and identical for any j , and the
convergence in (14) can be improved to that in \dot{H}^{1} by using a “quantization
of the energy limit”, see [28]. It is not clear whether we can improve the
convergence in (14) to \dot{H}^{1} for sign‐changing case, see Open problem 5.2. Ĩ

Remark 1.10 (Meaning of the asymptotics in the critical case)
We here discuss(ffie intuitive meaning of the result in Theorem 1.4, see

also §4.2.2, the proof of Proposition 4.4. Let u be a time‐global solution with
(13). From Theorem 1.4 and the proof of Proposition 4.4, we see that for
any time sequence (t_{n}) with t_{n} \rightarrow\infty , there exists a subsequence (denoted
by the same symbol) of (un), ($\lambda$_{n}^{j}) \subset \mathbb{R}+, (y_{n}^{J}) \subset \mathbb{R}^{N} and a sequence of

10
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stationary solutions ($\psi$_{n}^{J})\subset\dot{H}^{1} of (P), where j=1, \cdots ,, such that

 u t_{n})-\displaystyle \sum_{J^{=1}}^{l}($\lambda$_{n}^{J})^{\frac{N-2}{2}}$\varphi$_{n}^{J}($\lambda$_{n}^{J}(\cdot-y_{n}^{J})):=r_{n}^{l} , (15)

\displaystyle \lim_{l\rightarrow\infty}\lim_{n\rightarrow\infty}\Vert r_{n}^{l}\Vert_{2}* =0 . (16)

Note that (P) is invariant under the spatial translations, i.e., if u(x, t)
satisfies (P), then u(x-y, t) also satisfies (P) with initial u_{0}(x-y) for any
y \in \mathbb{R}^{N} . Also, (P) has a scale invariance under u(x, t) \mapsto$\mu$^{\frac{2}{p-2}}u( $\mu$ x, $\mu$^{2}t) ,
where  $\mu$\in \mathbb{R}+ , see Proposition 3.1 below. The peculiarity of the critical case
p=2^{*} is that, only in this case, the energy function J is also invariant under
the scaling above. In other words, only in the critical case, the evolution
equation structure and the variatioinal strucure are both invariant under
the scaling. The relation (16) says that time‐global solutions behave like as
a superposition of rescaled stationary solutions by reflecting this invariance.
This behavior is out of the scope of “the absorbtion to a set of equilibrium”,
a postulate (24) below in the subcritical case. In §5.1, we will try to in‐
terpret the result of Theorem 1.4 as “the absorbtion of a set of extended
equilibrium” I

1.3 Known results and motivation for main results

In this subsection, we review known facts and motivate main results.

1.3.1 On the potential‐well structure

Here we review known facts concerning Theorem 1.1 and Theorem 1.2. We
start by reviewing the “potential‐well structure” which motivates results like
in Theorem 1.1.

The Sobolev inequality The first important thing is the Sobolev in‐
equality. Indeed, the inequality of the following type is called as the Sobolev
inequality:

S_{p}\Vert u\Vert_{p}^{2}\leq \Vert\nabla u\Vert_{2}^{2}, u\in\dot{H}^{1}( $\Omega$) ,

where

S_{p}:=u\in H^{1}\backslash \{0\}!^{\mathrm{n}\mathrm{f}\frac{\Vert\nabla u||_{2}^{2}}{||u\Vert_{p}^{2}}} (17)

is called as the best Sobolev constant. It is well‐known that S_{p} > 0 for

bounded  $\Omega$ with  p\in[1, 2^{*}] , or  $\Omega$=\mathbb{R}^{N} with p=2^{*}

11
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The Nehari manifold, the stable set and the unstable set Let

J_{p}(u):=\displaystyle \frac{1}{2}\Vert\nabla u\Vert_{2}^{2}-\frac{1}{p}\Vert u\Vert_{p}^{p},
the energy functional associated with (P). Take any  $\varphi$\in\dot{H}^{1} . Then it is easy
to see that a function

f( $\lambda$):=J_{p}( $\lambda \varphi$)=\displaystyle \frac{$\lambda$^{2}}{2}\Vert\nabla $\varphi$\Vert_{2}^{2}-\frac{$\lambda$^{p}}{p}\Vert $\varphi$\Vert_{p}^{p}
attains its maximum uniquley at some \overline{ $\lambda$}>0 and w :=\overline{ $\lambda$} $\varphi$ satisfies

\Vert\nabla w\Vert_{2}^{2}-\Vert w\Vert_{p}^{p}=0.

Hence every ray emanating from the origin in \dot{H}^{1} intersects with

N :=\{\mathrm{w}\in\dot{H}^{1}\backslash \{0\}; \Vert\nabla \mathrm{w}\Vert_{2}^{2}-\Vert w\Vert_{p}^{p}=0\}

at a unique point. The manifold N is called as a Nehari manifold.
A stationary solution u of (P) satisfies - $\Delta$ u=u|u|^{p-2} . Then multiplying

u to the both sides and integration over \mathbb{R}^{N} , we have \Vert\nabla u\Vert_{2}^{2}=\Vert u\Vert_{p}^{p} . Hence
N contains all the stationary solutions of (P).

It is known that, under the assumption on  $\Omega$ and  p which allow the
Sobolev inequality, there holds

\displaystyle \inf_{u\in N}J_{p}(u)= (\frac{1}{2}-\frac{1}{p})s^{\frac{p}{p^{p-2}}} =:d_{p} , (18)

where S_{p} is the best Sobolev constant defined by (17). The value d_{p} is
called a “potential depth”, also as a \mathrm{m}\mathrm{o} $\iota$mtain pass value” or “ground state
energy” of  J_{p} , see e.g. Willem [53].

Now let

W_{p} := \{w\in\dot{H}^{1}; -\Vert\nabla w\Vert_{2}^{2}+\Vert w\Vert_{p}^{p}<0, J_{p}(u)<d_{p}\},
V_{p} := \{w\in\dot{H}^{1}; -\Vert\nabla \mathrm{w}\Vert_{2}^{2}+\Vert \mathrm{w}\Vert_{p}^{p}>0, J_{p}(u)<d_{p}\}.

Then W_{p} forms a neighborhood of the origin in \dot{H}^{1} and V_{p} a neighborhood of
the infinity in \dot{H}^{1}. W_{p} (resp. V_{p} ) is called as a stable set (resp. an unstable
set). By considering the level set structure of J_{p} and the decreasing property
(8) of J_{p}(u(t)) , we can expect that

W_{p} and V_{p} are invariant sets of a flow associated with (P). (19)
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Moreover, since W_{p} is a neighborhood of the origin,

an orbit which intersects with W_{p} may exist globally in time

and tends to 0 (20)

while

an orbit enters V_{p} may blow up in finite time (21)

since V_{p} forms a neighborhood of the infinity. These situation can be drawn
in a picture which is first introduced by Ôtani [43].

+2J_{p}
\lfloorergy line  J_{p}=\displaystyle \frac{1}{2}y-\frac{1}{p}x )

+2d_{p}
ound e

\displaystyle \mathrm{n}\mathrm{e}\mathrm{r}\not\in \mathrm{y}1\mathrm{i}\mathrm{n}\mathrm{e}d_{p}=\frac{}{2}y-\frac{1}{p}x)

\mathrm{y}

=\Vert u\Vert_{p}^{p}

Known results and perspectives The verification of (19) and (20) is
started by Payne‐Sattinger [44] for hyperbolic equations and by Levine [35]
for pababolic equations. Later a vast amount of works are done and, among
of them, Ikehata‐Suzuki [24] proved (19) and (20) are indeed true for the
subcritical and bounded‐domain case. Actually, as for the stable set W_{p},
it is rather easy to see the invariance of W_{p} as is shown in the proof of
Proposition 4.1. Then we see that

\displaystyle \sup_{t<T_{7n}}\Vert\nabla u(t)\Vert_{2}<\infty,
13
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since it is easy to see that

\displaystyle \sup_{w\in W_{p}}\Vert\nabla w\Vert_{2}^{2}<S_{p}^{\overline{\mathrm{p}}-\overline{2}}B
by the picture above. In the subcritical and bounded case, we can conclude
 T_{m}=\infty from this relation since in this case we have

\displaystyle \lim \Vert\nabla u(t)\Vert_{2}=\infty if  T_{m}<\infty , (22)
 t\uparrow T_{m}

see Lemma 2.1 and Lemma 5.1. On the other hand, in the critical case, (22)
does not hold in general. This is proved by Schweyer [46] (see Open problem
5.5 of this note). This result says that we cannot rely on the argument given
above to obtain Theorem 1.1. In this note, we overcome this difficulty to
introduce Proposition 3.3, the  $\varepsilon$‐regularity, which claims

if \displaystyle \sup ||\nabla u(t)\Vert_{2}<S^{\frac{2^{*}}{2^{*}2^{*}-2}} , then T_{m}=\infty.
t\in[0,T_{m})

By using the potential‐well structure together with the comparison argu‐
ment, Lions [37] and Cazenave‐Lions [5] give a similar result as in Theorem
1.4 again for the subcritical and bounded domain case. In this case, the orbit
associated with time‐global solution is compact by virtue of the compactness
of the Sobolev embedding and one can prove that

every global‐in‐time solution converges to a stationary solution. (23)

This together with the nonnegativity assumption yields the set of threshlod
modulus [\underline{ $\lambda$}, \overline{ $\lambda$}] as is given in Theorem 1.1 is a singleton.

Once we have established Theorem 1.1, then the proof of Theorem 1.2
is not so much difficult. The analysis of the structure of the set consists of
threshold modulus is different from the one sketched above, see Remark 1.5
and [27], and is not treated in this note.

1.3.2 On global bounds for time‐global solutions

The investigation of the existence of global bounds of the form (1) is initiated
in Ôtani [43] in the setting of an abstract evolution equation theory governed
by subdifferential operators. The systematic analysis of the asymptotics of
time‐global solutions for abstract nonlinear parabolic equation is introduced
by e.g. Henry [22].
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Subcritical case For a subcritical problem on a bounded domain, i.e.,
problem (P) with p < 2^{*} and bounded  $\Omega$ , Ôtani [43] obtained (1) for  p

in the subcritical range. Later, more detailed analysis was done, see e.g.
Cazenave‐Lions [5], Giga [17], Fila [12], Ikehata‐Suzuki [24] and references
therein. All these works are concerned with the subcritical case and it is

proved that every (time‐global) solution has a time‐global bounds (1). Also,
based on this global bounds, it is proved that

every time‐global solution is attracted to a set of

stationary solutions, (24)

see e.g. Cazenave‐Haraux [4, §9] and references therein. We also discuss
in this note how to obtain this fact, see Proposition 3.1 below. As for a
subcritical problem on the entire domain, see e.g. Kavian [32], Kawanago
[33] and references therein. See e.g. Cortázar‐del Pino‐Elgueta [7], Feireisl‐
Petzeltová [11], Chill‐Jendoubi [6] and references therein for (P) with a linear
term.

Critical case There is not so much result on the case p=2^{*} , a critical
problem. As for the asymptotics of time‐global solution, it is pointed out in
Ni‐Sacks‐Tavantzis [42] that (P) with bounded domain admits a time‐global
weak solution which is unbounded in L^{\infty} ‐sense. Since the solution treated in

[42] is a weak one, it is not clear whether the solution blows‐up in finite time
or not in a classical sense. Later, it is proved in Galaktionov‐Vazquez [15]
that these solutions are indeed time‐global in the classical sense under the
assumtion of radial symmetry and nonnegativity of solutions. The precise
asymptotics of these solutions are given in [27] which is described as

u t)-\Vert u(t)\Vert_{\infty}U(\Vert u(t)\Vert^{\frac{2}{\infty N-2}}\cdot)=o(1) in \dot{H}^{1} (25)

as  t\rightarrow\infty , where  U is a unique nonnegative nontrivial stationary solution
of (P) (in \mathbb{R}^{N} ) with \Vert U\Vert_{\infty}=1 (U is called a Talenti function, see [48] and
e.g. [47, §I This results shows that the solution u behaves like a scaling of
a nontrivial stationary solution of (P) in the long‐time asymptotics. Since
\dot{H}^{1} ‐norm is invariant under the scaling appeared in (25) (see Propoition 3.1
below), we have

\Vert\nabla u(t)\Vert_{2}^{2}=\Vert\nabla(\Vert u(t)\Vert_{\infty}U(\Vert u(t)\Vert^{\frac{2}{\infty N-2}}\cdot))\Vert_{2}+o(1)=\Vert\nabla U\Vert_{2}^{2}+o(1) (26)

as  t\rightarrow\infty , thus (1) holds for this solution. Based on this fact, it is proved
in [27] that the time‐global bounds (1) is true for any time‐global, radially
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symmetric and nonnegative solution  u of (P) in ball or \mathbb{R}^{N} . For the validity
of (1) for another case, see e.g. [26] and references therein.

The asymptotics (25) suggests that the general asymptotic behavior in
the critical case is not so simple as in the subcritical case (24). Indeed,
for (P) on a ball, it is proved in [27] that there holds \Vert u(t)\Vert_{\infty} \rightarrow \infty as
 t\rightarrow\infty , hence a solution in (25) concentrates at the origin as  t\rightarrow\infty while
the Sobolev norm is bounded (26). Observe that this  u does not converges
to any function in the strong \dot{H}^{1} ‐topology, since u(t) \rightharpoonup 0 as  t\rightarrow\infty in \dot{H}^{1}

(this comes from u(x, t) \rightarrow 0 a.e. x as  t\rightarrow\infty by (25)) while \Vert\nabla u(t)\Vert_{2}^{2}\star 0
which is obvious from (26). Hence, in the critical case, some time‐global
solution exhibit different behavior from the absorbtion to a set of stationary
solution and the validity of (1) for general time‐global solution is an open
problem so far.

We claim in this note that, in spite of these evidences which indicate the
difference between the subcritical and the critical case, general nonnegative
time‐global solution of (P) with p=2^{*} and  $\Omega$=\mathbb{R}^{N} satisfy (1) (Theorem
1.3). Moreover, we will clarify the fact that, different from the subcritical
case, time‐global solutions behave like a finite number of superposition of
rescaled and translated starionary solutions (Theorem 1.4) as is implied by
the asymptotics (25) for the radially symmetric case.

2 Backgrounds: methods valid for the subcritical
case are not applicable for the critial case

2.1 Problem with subcritical and bounded domain: a com‐

pact case

In order to motivate Theore 1.3 and Theorem 1.4 and to clarify the difficulty
in the critical case further, let us review the argument for the subcritical
problem in a bounded domain. We always assume

p<2^{*} and  $\Omega$ is a bounded domain in \mathbb{R}^{N} (1)

in this subsection unless stated.

Proposition 2.1 (Bounds and asymptotics in the subcritical and
the bounded domain case)

Let us assume (1) and let u be a time‐global solution of (P) with p<2^{*}
Then we have the following:
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(a) There holds \displaystyle \sup_{t>0}\Vert\nabla u(t)\Vert_{2}<\infty.
(b) Let E(u_{0}) be a set defined by

E(u_{0}) := {  $\varphi$; $\varphi$ is a stationary solution of (P)}.

Then there holds \mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}_{L^{p}}(u(t), E(u_{0}))\rightarrow 0 as t\rightarrow\infty.

Remark 2.1 (On the applicability of the argument for subcritical
and bounded domain case to the critical case)

The heart of the proof of proposition above is that

\bullet for (a): control of an oscillation of \Vert u(t)\Vert_{p} . The following proof of this
needs the subcriticality of the nonlinearity (6).

\bullet for (b): compactness of the embedding \dot{H}^{1} \hookrightarrow\ovalbox{\tt\small REJECT}. This needs the
subcriticality of the nonlinearity and the boundedness of the domain.

Hence the following proof of Proposition 2.1 cannot be applied to our original
problem, i.e., problem with critical exponent and on the entire domain. See
§2.2 for more detail. Ỉ

Remark 2.2 (The convergence in \dot{H}^{1} )
In (b), it is not hard to extend the convergence in \dot{H}^{1} , say, by using

L^{\infty} ‐global bounds (see e.g. Cazenave‐Lions [5], Giga [17]). The verification
needs more analysis and we omit here for the simplicity. Note that there
exists a time‐global solution without L^{\infty} ‐global bounds in the critical case,
see (25), see also Remark 1.9 and Open problem 5.2. 1

2.1.1 Prelimnaries

Here we introduce preliminary facts for the proof of Proposition 2.1.

Evolution equation aspects First we recall that the energy equality (6)
holds, hence the decreasing property of J_{p} along the orbit of u is assured.
Lemma 6.1 implies that the limit of the energy along a time‐global solution
(in a bounded domain) is nonnengative, hence we obtain

\sqrt{}p(u_{0})\geq J_{p}(u(t))\downarrow d as  t\rightarrow\infty (2)

with  d\geq 0.

The proof of Proposition 2.1 (a) heavily relies on the uniform dependence
of a local existence time of solution of (P) on Ư‐norm of the initial data.
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Lemma 2.1 (Non‐oscillation theorem for \Vert u(t)\Vert_{p} in the subcritical
case)

For any M>0 , there exists T(M)>0 which satisfies the following: for
any solution u of (P) with u_{0} satisfying \Vert u_{0}\Vert_{p}\leq M,

\Vert u(t)\Vert_{p}\leq 2\Vert u_{0}\Vert_{p} for t\leq T(M) (3)

holds.

Proof of Lemma 2.1.

Taking Ư‐norm of (5), we see

\displaystyle \Vert u(t)\Vert_{p}\leq\Vert u_{0}\Vert_{p}+\int_{0}^{t}ds\Vert e^{(t-s) $\Delta$}u^{p-1}\Vert_{p}.
Recall the decay estimates of e^{t $\Delta$} (see e.g. Giga‐Giga‐Saal [18, §1.1.2]):

\displaystyle \Vert e^{t $\Delta$} $\varphi$\Vert_{r}\leq\frac{C}{t^{\frac{N}{2}(\frac{1}{q}-\frac{1}{r})}}\Vert $\varphi$\Vert_{q} , (4)

where  1\leq q\leq r\leq\infty and  $\varphi$\in L^{q} . By using Iy_{-L^{A}}p-\overline{1} estimate of e^{t\triangle} above,
we have

\displaystyle \int_{0}^{t}ds\Vert e^{(t-s) $\Delta$}u^{p-1}\Vert_{p}\leq\int_{0}^{t}ds\frac{C}{(t-s)^{\frac{N}{2}(\frac{p-1}{p}-\frac{1}{p})}}\Vert u\Vert_{p}^{p-1} (5)

The convergence of s‐integral needs  $\delta$ :=1-\displaystyle \frac{N}{2}(\frac{p-1}{p}-\frac{1}{p}) > 0 , which is

(somewhat remarkably) equivalent to

p<\displaystyle \frac{2N}{N-2}(=2^{*}) . (6)

By Combining these two relations, we have

\displaystyle \Vert u(t)\Vert_{p}\leq\Vert u_{0}||_{p}+Ct^{ $\delta$}\max\Vert u(s)\Vert_{p}^{p-1}
s\in[0,t]

Thus for \displaystyle \max_{s\in[0,t]}\Vert u(t)\Vert_{p}=:M_{p}(t) , we obtain

M_{p}(t)\leq \Vert u_{0}\Vert_{p}+Ct^{ $\delta$}M_{p}(t)^{p-1} (7)

Now suppose that M_{p}(t) reached the twice of the Ư‐norm of initial data:

M_{p}(t)=2\Vert u_{0}\Vert_{p} . (8)
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Then by (7), we see that

2\Vert u_{0}\Vert_{p}\leq\Vert u0\Vert_{p}+Ct^{ $\delta$}(2\Vert u_{0}\Vert_{p})^{p-1},
which is equivalent to

T(\displaystyle \Vert u_{0}\Vert_{p}):= (\frac{1}{2^{p-1}C||u_{0}||_{p}^{p-2}})^{\frac{1}{ $\delta$}} \leq t.
This together with (8) yields

\Vert u(t)\Vert_{p}\leq 2|^{ $\iota$}|u_{0}\Vert_{p} if t\leq T(\Vert u_{0}\Vert_{p})

by taking a contraposition. 1

Variational aspects The proof of Proposition 2.1 heavily rehes on the
variational aspect of an energy funcitonal J_{p} along the orbit of u :

Lemma 2.2 (Palais‐Smale analysis along the orbit)
Let (t_{n}) be a time sequecne satsifying \partial_{t}u(t_{n}) \rightarrow  0 in L^{2} as n \rightarrow \infty.

Then the follwing holds.
(a) (u(t_{n})) satisfies \Vert(d\sqrt{}p)_{u_{n}}\Vert_{(\dot{H}^{1})^{*}} \rightarrow 0 as n\rightarrow\infty.

(b) There holds \displaystyle \Vert\nabla u(t_{n})\Vert_{2}^{2}=\Vert u(t_{n})\Vert_{p}^{p}+o(1)=\frac{d}{\frac{1}{2}-\frac{1}{\mathrm{p}}}+o(1) as n\rightarrow\infty.

(c) Then there exists a stationary solution u\in\dot{H}^{1} of (P) and a subsequence
of (u(t_{n})) such that u(t_{n})\rightarrow u in \dot{H}^{1} as n\rightarrow\infty.

Remark 2.3 (Terminology from the the variationl analysis)
Let J be a C^{1} ‐functional on a Banach space X and let (u_{n}) \subset X . Then

\bullet (u_{n}) is said to be a “Palais‐Smale sequence of J at level d” if

\Vert(dJ)_{u_{n}}\Vert x* \rightarrow 0, J(u_{n})\rightarrow d as n\rightarrow\infty.

\bullet  J is said to satisfy a “Palais‐Smale condition at level d' ) if every Palais‐
Smale sequence of J at level d contains a strongly convergent subse‐
quence.

In these terminology, Lemma 2.2 says that (u(t_{n})) is a Palais‐Smale sequence
of J_{p} at level d if (t_{n}) is a time‐sequence satisfying \Vert\partial_{t}u(t_{n})\Vert_{2} = o(1) as
 n\rightarrow\infty . Moreover, the proof below is essentiany the same for the verification
of the validity of the Palais‐Smale condition at level  d for \sqrt{}p in the subcritical
and bounded domain case, see e.g. Willem [53, §1]. Lemma 2.2 implies the
analysis of the asymptptic behavior of a time‐global solution of (P) is closely
related with the variational analysis of the energy functional \sqrt{}p. 1
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Proof of Lemma 2.2.

Let (t_{n}) be a sequence which satisfies

\partial_{t}u(t_{n})\rightarrow 0 in L^{2} (9)

as n \rightarrow \infty.

(a) First we show that (u(t_{n})) satisfies \Vert(dJ_{p})_{u_{n}}\Vert_{(\dot{H}^{1})^{*}} \rightarrow 0 as  n\rightarrow\infty . Now
observe that, for any  $\varphi$\in\dot{H}^{1} , we have

|\displaystyle \int(\triangle u(t_{n})+u(t_{n})|u(t_{n})|^{p-2}) $\varphi$|= |\displaystyle \int\partial_{t}u(t_{n}) $\varphi$| \leq \Vert\partial_{t}u(t_{n})\Vert_{2}\Vert $\varphi$\Vert_{2} . (10)

Note that the Poincaré inequality holds since  $\Omega$ is a bounded domain. Thus
we obtain

(10) \leq C\Vert\partial_{t}u(t_{n})\Vert_{2}\Vert\nabla $\varphi$\Vert_{2} (11)

and we see

\Vert(dJ_{p})_{u(\mathrm{t}_{n})}\Vert_{(\dot{H}^{1}( $\Omega$))^{*}}

= \displaystyle \sup_{ $\varphi$\in\dot{H}^{1}( $\Omega$),\Vert\nabla $\varphi$\Vert_{2}=1}|\int(-\nabla u(t_{n})\nabla $\varphi$+u(t_{n})|u(t_{n})|^{p-2} $\varphi$)|
= \displaystyle \sup_{ $\varphi$\in\dot{H}^{1}( $\Omega$),\Vert\nabla $\varphi$\Vert_{2}=1}|\int(\triangle u(t_{n})+u(t_{n})|u(t_{n})|^{p-2}) $\varphi$|
\displaystyle \leq \sup C\Vert\partial_{t}u(t_{n})\Vert_{2}\Vert\nabla $\varphi$\Vert_{2}

 $\varphi$\in\dot{H}^{1}( $\Omega$) , \Vert\nabla $\varphi$\Vert_{2}=1

= C\Vert\partial_{t}u(t_{n})\Vert_{2}=o(1)

as  n\rightarrow\infty , where we have used (9) in the last line. This implies \Vert(d\sqrt{}p)_{u_{7 $\iota$}}\Vert_{(\dot{H}^{1})^{*}} \rightarrow

 0 as n\rightarrow\infty.

(b) By \Vert(d\sqrt{}p)_{u_{n}}\Vert_{(\dot{H}^{1})^{*}} \rightarrow 0 as  n\rightarrow\infty , we see that (d\displaystyle \sqrt{}p)_{u_{n}}(\frac{u(t_{n})}{\Vert\nabla u(t_{n})\Vert_{2}}) \rightarrow 0

as  n\rightarrow\infty , i.e.,

\Vert\nabla u(t_{n})\Vert_{2}^{2}-\Vert u(t_{n})\Vert_{p}^{p}=o(1)\Vert\nabla u(t_{n})\Vert_{2} (12)

as  n\rightarrow\infty . Moreover, by the decreasing property of the energy (2), we also
see that

\displaystyle \frac{1}{2}\Vert\nabla u(t_{n})\Vert_{2}^{2}-\frac{1}{p}\Vert u\{t_{n})\Vert_{p}^{p}=J_{p}(u(t_{n}))=d+o(1)
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as  n\rightarrow\infty . From these relations, we easily obtain

(\displaystyle \frac{1}{2}-\frac{1}{p}) \Vert\nabla u(t_{n})\Vert_{2}^{2}=d+o(1)\Vert\nabla u(t_{n})\Vert_{2}+o(1) ,

which yields the boundedness of \Vert\nabla u(t_{n})\Vert_{2} . By using this bounds together
with (12), we have

\Vert\nabla u(t_{n})\Vert_{2}^{2}=\Vert u(t_{n})\Vert_{p}^{p}+o(1) (13)

as  n\rightarrow\infty . This relation and (2) leads

 d+o(1) = \displaystyle \sqrt{}p(u(t_{n}))=\frac{1}{2}\Vert\nabla u(t_{n})\Vert_{2}^{2}-\frac{1}{p}\Vert u(t_{n})\Vert_{p}^{p}
= (\displaystyle \frac{1}{2}-\frac{1}{p})\Vert\nabla u(t_{n})\Vert_{2}^{2}+o(1) ,

hence

\displaystyle \Vert\nabla u(t_{n})\Vert_{2}^{2}=\frac{d}{\frac{1}{2}-\frac{1}{p}}+o(1)
as  n\rightarrow\infty . This relation and (13) yields the conclusion for \Vert u(t_{n})\Vert_{p}^{p}.
(c) By (b) and the compactness of \dot{H}^{1} \hookrightarrow Ư, we see that

 u(t_{n})\rightharpoonup u weakly in \dot{H}^{1} and strongly in L^{p} (14)

for some u\in\dot{H}^{1} along a subsequence. Particularly, by \Vert(dJ)_{u(t_{n})}\Vert_{(\dot{H}^{1})^{*}} \rightarrow 0

as  n\rightarrow\infty , we have (dJ)_{u(t_{n})}(u)\rightarrow 0 as  n\rightarrow\infty , i.e.,

\displaystyle \int\nabla u(t_{n})\nabla u-\int|u(t_{n})|^{p-2}u(t_{n})u=o(1) .

This relation yields

\Vert\nabla u\Vert_{2}^{2}=\Vert u\Vert_{p}^{p} (15)

since (14) implies

\displaystyle \int\nabla u(t_{n})\nabla u=\int\nabla u\nabla u+o(1) , \displaystyle \int|u(t_{n})|^{p-2}u(t_{n})u=\int|u|^{p}+o(1) .

Hence by (b), (14) and (15), we have

\Vert\nabla u(t_{n})\Vert_{2}^{2}=\Vert u(t_{n})\Vert_{p}^{p}+o(1)=\Vert u\Vert_{p}^{p}+o(1)=\Vert\nabla u\Vert_{2}^{2}+o(1)
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and from this relation together with (14) we obtain

u(t_{n})\rightarrow u strongly in \dot{H}^{1}

as n \rightarrow \infty.

Now we take any  $\varphi$\in\dot{H}^{1} . Flrom the convergence above togther with the
Sobolev embedding, we see that

\displaystyle \int\nabla u(t_{n})\nabla $\varphi$=\int\nabla u\nabla $\varphi$+o(1) , (16)

\displaystyle \int u(t_{n})|u(t_{n})|^{p-2} $\varphi$=\int u|u|^{p-2} $\varphi$+o(1) (17)

as  n\rightarrow\infty . Observe that the assertion (a) implies

|-\displaystyle \int\nabla u(t_{n})\nabla $\varphi$+\int u(t_{n})|u(t_{n})|^{p-2} $\varphi$|=|(dJ_{p})_{u(t_{n})}( $\varphi$)|=o(1)
as  n\rightarrow\infty , which together with (16) and (17) yields

\displaystyle \int\nabla u\nabla $\varphi$=\int u|u|^{p-2} $\varphi$,
i.e., u is a weak stationary solution of (P). The standard elhptic regularity
says that u is a classical stationary solution of (P), see e.g. [47, Appendix
\mathrm{B}] . This completes the proof. Ì

Remark 2.4 (The validity for the critical case I)
Note that, for a bounded domain  $\Omega$ , proofs above for Lemma 2.2 (a) and

(b) hold true also for  p=2^{*} In the proof of Lemma 2.2 (c), the compactness
of of the Sobolev embedding is used to obtain (14) (the strong convergence
in L^{p}) and this is the only place we need the subcriticality of p in the proof
of Lemma 2.2. Ĩ

The following partial result on the bounds for Ư‐norm immediately
follows from the Lemma above:

Corollary 2.1 (Liminf is finite)
There holds \displaystyle \lim\inf_{t\rightarrow\infty}\Vert u(t)\Vert_{p}<\infty.
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Proof of Corollary 2.1.
First we claim that

there exists a time sequecne satsifying \partial_{t}u(t_{n})\rightarrow 0 in L^{2} . (18)

Indeed, by (2), there exists  t_{n}\rightarrow\infty such that

\displaystyle \frac{d}{dt}J_{p}(u(t))t=t_{n} =o(1)

as  n\rightarrow\infty (since otherwise \sqrt{}p(u(t)) \rightarrow -\infty as  t\rightarrow \infty). Observe that the
energy equality (6) yields

\displaystyle \frac{d}{dt}J_{p}(u(t))t=t_{n}=-\Vert\partial_{t}u(t_{n})\Vert_{2}^{2}.
By combining these relatios, we have

\Vert\partial_{t}u(t_{n})\Vert_{2}^{2}=o(1)

as  n\rightarrow\infty , whence follows (18).
The assertion (18) and Lemma 2.2 (b) yields

\displaystyle \Vert\nabla u(t_{n})\Vert_{2}^{2}=\Vert u(t_{n})\Vert_{p}^{p}+o(1)=\frac{d}{\frac{1}{2}-\frac{1}{p}}+o(1) ,

as  n\rightarrow\infty , which implies the conclusion. Ĩ

Remark 2.5 (The validity for the critical case II)
Note that the proof of Corollary 2.1 is based on (2), Lemma 2.2 (a) and

(b) and they hold true also for the critical case, see Remark 2.4 and Remark
6.1. Thus the conclusion of Corollary 2.1 is true for (P) on bounded  $\Omega$ with
 p=2^{*} Í

Hence in order to prove the existence of a global bound for \Vert u(\cdot)\Vert_{p} , it is
enough to exclude the possibility of an oscillation of \Vert u(\cdot)\Vert_{p} . This is done
by using Lemma 2.1.
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2.1.2 The existence of global bounds for Soboev norm: proof of
Proposition 2.1 (a)

Now we show \displaystyle \sup_{t>0}\Vert u(t)\Vert_{p}<\infty . Assume on the contrary \displaystyle \lim\sup_{t\rightarrow\infty}\Vert u(t)\Vert_{p}<
\infty , namely, there exists ($\tau$_{n}) such that $\tau$_{n}\rightarrow\infty and

\Vert u($\tau$_{n})\Vert_{p}\rightarrow\infty (19)

as  n\rightarrow\infty . Let  T be a function appeared in Lemma 2.1 and let u_{n}(s) :=

u($\tau$_{n}+s) , where s \in [-T(M), 0] with M := 2(\displaystyle \frac{d}{\overline{2}^{-}}\frac{\mathrm{T}}{p})^{\frac{1}{p}} By the energy

equality (6) and the decreasing property of the energy (2) with a fimite
energy limit d\geq 0 , we have

\displaystyle \int_{-T(M)}^{0}ds\Vert\partial_{s}u_{n}(s)\Vert_{2}^{2} = \displaystyle \int_{$\tau$_{n}-T(M)}^{$\tau$_{n}}dt\Vert\partial_{t}u(t)\Vert_{2}^{2}
= \sqrt{}p(u($\tau$_{n}-T(M)))-J_{p}(u($\tau$_{n}))=d-d+o(1)
= o(1) .

Hence, for a.e.  s\in [-\displaystyle \frac{T(M)}{2}, 0] , there holds

\partial_{t}u($\tau$_{n}+s)\rightarrow 0 in L^{2}.

Take such  s\in [-\displaystyle \frac{T(M)}{2}, 0] and let t_{n} :=$\tau$_{n}+s . Then the above relation says
that (t_{n}) satisfies \partial_{t}u(t_{n}) \rightarrow 0 in L^{2} , i.e., the assumption of Lemma 2.2 (b)
holds, which yields Hence we have

\displaystyle \Vert u(t_{n})\Vert_{p}^{p}=\frac{d}{\frac{1}{2}-\frac{1}{p}}+o(1)\leq 2(\frac{d}{\frac{1}{2}-\frac{1}{p}})^{\frac{1}{p}}=M (20)

for large n . Hence by regarding u(t_{n}) as an initial data and applying Lemma
2.1, we see that

\Vert u(t_{n}+ $\sigma$)\Vert_{p}\leq 2\Vert u(t_{n})\Vert_{p},  $\sigma$\in [0, T(M)]

holds. Recall that $\tau$_{n}=t_{n}-s and  s\in [- \displaystyle \frac{T(M)}{2}, 0] . Hence we can put  $\sigma$ :=-s

in the relation above, and thus we have

\Vert u($\tau$_{n})\Vert_{p}\leq 2\Vert u(t_{n})\Vert_{p} . (21)

Relations (19), (20) and (21) yield a contradiction.
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2.1.3 The asymptotic behavior of time‐global solutions: proof of
Proposition 2.1 (b)

Let us assume that, on the contrary, the conclusion does not hold. Then
there exists a time sequecne (t_{n}) with  t_{n}\rightarrow\infty as  n\rightarrow\infty and  $\varepsilon$>0 satsifying

\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}_{Lp}(u(t_{n}), E(u_{0})) \geq $\epsilon$ . (22)

Let  u_{n}(s) :=u(t_{n}+s) for  s\in [0 , 1 ].

Step 1. Identification of the limit I. Existence.
Note that (u_{n}(0)) \subset \dot{H}^{1} is bounded by Proposition 2. 1 (\mathrm{a}) (note that

u_{n}(0)=u(t_{n})) . Hence by

the compactness of \dot{H}^{1} \hookrightarrow L^{p} , (23)

which is assured by the assumption of the subcriticality and the boundedness
of the domain, we see that, passing to a subsequence if necessary,

u_{n}(0)\rightarrow u(0) strongly in Ư (24)

as  n\rightarrow\infty , where  u(0) is some element of \dot{H}^{1}

Step 2. Identification of the limit II. Stationary solution.
We show that u(0) is a stationary solution of (P).
By the energy equality (6) and the decreasing property (2) with finite d,

we have

\displaystyle \int_{0}^{1}ds\Vert\partial_{s}u_{n}(s)\Vert_{2}^{2} = \displaystyle \int_{t_{n}}^{t_{n}+1}dt\Vert\partial_{t}u(t)\Vert_{2}^{2}=J_{p}(u(t_{n}))-J_{p}(u(t_{n}+1))
= d-d+o(1)=o(1) . (25)

Hence, for a.e.  s\in [0 , 1 ] , there holds

\partial_{t}u(t_{n}+s)\rightarrow 0 in L^{2}.

Take such s \in [0 , 1 ] . Then the above relation says that (t_{n}+s) satisfies
\partial_{t}u(t_{n}+s) \rightarrow  0 in L^{2} . Hence by the subcriticality asuumption together
with Lemma 2.2 (c), we see that

u(t_{n}+s) \rightarrow u(s) strongly in \dot{H}^{1} (26)

as  n\rightarrow\infty , where

 u(s) is a stationary solution of (P). (27)
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We prove u(s)=u(0) . Indeed, we have

\Vert u(s)-u(0)\Vert_{2} \leq \Vert u(s)-u(t_{n}+s)\Vert_{2}+\Vert u(t_{n}+s)-u(t_{n})\Vert_{2}
+\Vert u(t_{n})-u(0)\Vert_{2}

= o(1)

since (24), (26) together with the boundedness of  $\Omega$ and

\displaystyle \Vert u(t_{n}+s)-u(t_{n})\Vert_{2}\leq\int_{0}^{s}d $\sigma$\Vert\partial_{ $\sigma$}u_{n}( $\sigma$)\Vert_{2}\leq\sqrt{s}\sqrt{\int_{0}^{1}ds\Vert\partial_{s}u_{n}(s)\Vert_{2}^{2}}=o(1)
by (25). This relation and (27) yields

u(0) in (24) is a stationary solution. (28)

By the decreasing property of the energy (2), we also have

J(u(0))\leq J(u0).

This relation together with the result above says u(0)\in E(u_{0}) . Hence (24)
yields, along a subsequence,

\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}_{L^{p}}(u(t_{n}), E(u_{0}))\rightarrow 0

as  n\rightarrow\infty , contradicting (22). I

2.2 Difficulty in the critical and the whole domain case

As is already mentioned in Remark 2.1, the heart of the proof of Proposition
2.1 is that the control an oscillation of \Vert u(t)\Vert_{p} for (a) and the compactness
of the embedding \dot{H}^{1} \hookrightarrow  L^{p} for (b). The former needs the subcriticality
of the nonlinearity (6) while the latter the subcriticality of the nonlinearity
and the boundedness of the domain to assure (23).

In our original problem (P), i.e., the entire domain and the critical case,
an argument given in the previous subsection confronts several difficulties.
In this subsection, we discuss this difficulty.

Difficulty comes from the noncompactness of the Sobolev embed‐
ding First we try to obtain

\displaystyle \lim_{t\rightarrow}\inf_{\infty}\Vert u(t)\Vert_{2}* <\infty , (29)

a part of the assetion of Theorem 1.3, which is proved in Corollary 2.1 for
the subcritical, bounded domain case. Note that the proof of Corollary 2.1
for obtaimng (29) proceed in the following steps:
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\bullet Step 1. Proof of the existence of a time sequence (t_{n}) such that
\Vert\partial_{t}u(t_{n})\Vert_{L^{2}}=o(1) as n\rightarrow\infty.

\bullet Step 2. Proof of the fact that \Vert\partial_{t}u(t_{n})\Vert_{L^{2}} =o(1) as  n\rightarrow\infty can be
sharpened to \Vert\partial_{t}u(t_{n})\Vert_{(\dot{H}^{1})^{*}} =o(1) as  n\rightarrow\infty (Lemma 2.2 (\mathrm{a}) ).

Recall that Step 1 requires an energy decreasing property (2) with a finite
energy limit d . The decreasing property of \sqrt{}p(u(t)) immediately follows
from the energy equality (6) while the proof of the finiteness of the limit d

given in Lemma 6.1 requires the boundedness of the domain. As is stated in
Remark 6.1, it seems difficult to extend the proof of Lemma 6.1 to general
unbounded domains.

Also, Step 2 needs the Poincaré inequality (11), hence this step cannot
be cleared for general unbounded domains. Of course for several unbounded
domains such as infinite strip‐like domains the Poincaré inequality holds and
Step 2 may be cleared for such domains

Secondly, we try to show Theorem 1.4, the asymptotics of time‐global
solutions, which is proved in Propoition 2.1 (b) for the subcritical, bounded
domain case. Recall that the verification of Proposition 2. 1(\mathrm{b}) , particularly
(28), heavily relies on Lemma 2.2 (c) which needs the compactness of the
Sobolev embedding as is observed in the proof of it.

These observations show that it is difficult to prove Theorem 1.3 and
Theorem 1.4 by using the direct extension of the argument for Proposition
2.1, the subcriticl and the bounded domain case.

Difficulty comes from the control of the oscillation Moreover, even
if we can get (29), we have to prove

\displaystyle \lim_{t\rightarrow}\sup_{\infty}\Vert u(t)\Vert_{p}<\infty
to obtain Theorem 1.3. This is heavily related with the “prevention of the
oscillation of \Vert u(t)\Vert_{p} ” in t which is given in Lemma 2.1 by using the standard
decay estimate of the heat kernel e^{t $\Delta$} for the subcritical case. Here recall
that the proof of Lemma 2.1 again requires (6), the subcriticality in an
essential way. Observe that this time the subcriticality is needed to assure
the convergence of s‐integral in (5) and seems difficult to extend to the
critical case. Indeed, Lemma 2.1 says that the local existence time T can
be taken uniformly for the bounded set of initial data in Ư. In the critical
case, this is not proved (see Open problem 5.5) and the local existence
time can be taken uniformly only for a “compact” set of an initial data in
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L^{2^{*}} , see e.g. Brezis‐Cazenave [3] and Ruf‐Terraneo [45]. This indicates the
possibihty of the existence of a finite time blow‐up solution which develops
a singularity in the L^{\infty}‐sense by keeping L^{2^{*}} ‐norm bounded but losing a
compactness in L^{2^{*}} at T_{m} . A solution which have the asymptotics above is
indeed constructed by Schweyer [46]. Also, in several heat flows associated
with the “critical” geometric functionals such as harmonic map heat flow
admits this kind of blow‐up phenomena which is called a “bubbling”, see
Open problem 5.5.

These suggests that the assumption of the subcriticality in the \mathrm{p}\mathrm{r}\mathrm{o}\backslash of of
Lemma 2.1 (a) (hence in that of Proposition 2.1 (\mathrm{a}) ) above is an essential
one and it is not clear how to get the boundedness of \Vert u(t)\Vert_{p} in the critical
case.

Strategy for the critical and the entire domain case The considera‐
tion above shows that the direct extension of the argument which is valid for
the subcritical case to the critical case is not so obvious, thus the existence
of a global bound for the critical problem remains an open problem for a
certain period of time.

In the following, we abondon the standard argument above which relies
on the subcriticality and the compactness of the Sobolev embedding, and
rely on a different approach based on the scaling argument together with
the “profile decomposition”, a compactness device which gives the detailed
information for the lack of the compactness in the critical case. Based on
it, we prove Proposition 4.6, a substitute of Lemma 2.1 in the critical case
and clarify the asymptotic behavior of time‐global solutions. Consequently,
we have Theorem 1.3 and Theorem 1.4.

3 Preliminaries

We introduce preliminary facts which will be needed in the proof of Theorem
1.1, Theorem 1.3 and Theorem 1.4.

3.1 Scaling invariance and the existence of a balanced time
sequence

In this subsection, we check the invariance property of (P) on \mathbb{R}^{N} with p=2^{*}
and J_{2}* under the scaling with x, t and u , and introduce the existence of
time sequence (t_{n}) satsifying

\Vert\nabla u(t_{n})\Vert_{2}^{2}=\Vert u(t_{n})\Vert_{2^{*}}^{2^{*}}+o(1) (1)
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as n\rightarrow\infty.

Let u be a solution of (P) and let  $\mu$>0 . For any x_{0}\in \mathbb{R}^{N} and t_{0} >0,
let

y:= $\mu$(x-x_{0}) , s:=$\mu$^{2}(t-t_{0}) , $\mu$^{\frac{2}{p-2}}u_{ $\mu$,x_{0}}(y, s):=u(x, t) . (2)

Then it is easy to see that

Proposition 3.1 (Scale invariance)
Let  $\delta$>0 . Then u_{ $\mu$,x0} satisfies

\partial_{s}u_{ $\mu$,x_{\mathrm{O}}}=\triangle_{y}u_{ $\mu$,x0}+u_{ $\mu$,x\mathrm{o}}|u_{ $\mu$,x0}|^{p-2} in \mathbb{R}^{N}\times [0,  $\delta$]

if and only if u satisfies

\partial_{t}u=\triangle_{x}u+u|u|^{p-2} in \mathbb{R}^{N}\times [t_{0}, t_{0}+\displaystyle \frac{ $\delta$}{$\mu$^{2}}]
Moreover, we have

$\mu$^{\frac{N-2}{p-2}(2^{*}-p)}\displaystyle \int_{0}^{ $\delta$}\Vert\partial_{s}u_{ $\mu$,x_{0}}\Vert_{2}^{2}ds=\int_{t_{0}}^{t_{0+_{ $\mu$}}}$\Gamma$^{ $\delta$}\Vert\partial_{t}u\Vert_{2}^{2}dt,
$\mu$^{\frac{N-2}{p-2}(2^{*}-p)}\Vert\nabla u_{ $\mu$,x_{0}}(s)\Vert_{2}= \Vert\nabla u(t)\Vert_{2},
 $\mu$\displaystyle \frac{N-2}{p-2}(\frac{2}{N-2}(r-p)+2^{*}-p)_{\Vert u_{ $\mu$,x_{\mathrm{O}}}(s)\Vert_{r}=} \Vert u(t)\Vert_{r}.

Remark 3.1 (The peculiarity of the critical problem)
The proposition above says that the problem (P) is always invariant

under (2). The important feature of the critical case is that only in this case,
the energy structure, i.e., L^{2}(I;L^{2}) , \dot{H}^{1} and Ư‐norms, is also invariant, i.e.,
there hold

\displaystyle \int_{0}^{ $\delta$}\Vert\partial_{s}u_{ $\mu$,x_{0}}\Vert_{2}^{2}ds=\int_{t_{0}}^{t_{0+_{ $\mu$}}}$\Gamma$^{ $\delta$}\Vert\partial_{t}u\Vert_{2}^{2}dt,
\Vert\nabla u_{ $\mu$,x0}(s)\Vert_{2}=\Vert\nabla u(t)\Vert_{2},
\Vert u_{ $\mu$,x0}(s)\Vert_{2^{*}} =\Vert u(t)\Vert_{2^{*}},
(\Vert u_{ $\mu$,x_{\mathrm{O}}}(s)\Vert_{2}= $\mu$\Vert u(t)\Vert_{2}) .

This is one of the origin of the noncompactness for the evolution and the
variational structure assocated with (P) with p=2^{*}. 1
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Proposition 3.2 (Existence of a balanced time sequence [26])
Let u be a nonnegative time‐global solution of (P) with p=2^{*} and  $\Omega$=

\mathbb{R}^{N} . Then there exists t_{n} \rightarrow \infty such that ||\nabla u(t_{n})\Vert_{2}^{2}-\Vert u(t_{n})\Vert_{p}^{p} = o(1) as

n\rightarrow\infty.

Remark 3.2 (On the nonnegativity assumption)
The nonnegativity assumption of solutions is only used to assure (8),

and if we can establish (8) for sign‐changing solutions, then we can remove
the nonnegativity assumption. See Remark 1.1 and Open problem 5.1. 1

Remark 3.3 (The existence of Palais‐Smale sequences in the orbit
is delicate in an unbounded domain)

The conclusion of the Proposition above is the same as in Lemma 2.2
(b). As is already mentioned in §2.2, the proof for Lemma 2.2 (b) uses the
subcriticality of the nonlinearity and the boundedness of the domain in an
essential way. In the proof below, we use the scale invariance assured by
Proposition 3.1 together with the existence of the energy limit (8) instead of
the subcriticality of the nonlinearity and the boundedness of the domain. In
this Proposition, we do not know whether (u(t_{n})) is a Palais‐Smale sequecne
or not, while we know it in Lemma 2.2, see Open problem 5.2. The problem
whether u(t_{n}) is a Palais‐Smale or not is equivalent to the control of the
behavior of L^{2}‐norm of (u(t_{n})) as is observed from the following proof, see
also Open problem 5.3. Moreover, the existence of a time sequence (t_{n})
satisfying the conclusion of Proposition above seems an open problem if we
consider an “essentially unbounded domain” without sacle invariance and
Poincaré inequality. Ỉ

Proof of Proposition 3.2.
Let $\tau$_{n}\rightarrow\infty be a sequence such that

\displaystyle \lim_{n\rightarrow\infty}\Vert u($\tau$_{n})\Vert_{2}=\lim_{t\rightarrow}\sup_{\infty}\Vert u(t)\Vert_{2}(\leq\infty) .

We define $\lambda$_{n}>0 by

$\lambda$_{n}^{2}:=\displaystyle \frac{1}{\Vert u($\tau$_{n})\Vert_{2}^{2}} (3)

and define y, s, u_{n} by y :=$\lambda$_{n}x, s :=$\lambda$_{n}^{2}(t-$\tau$_{n}) and u_{n}(y, s) :=$\lambda$^{\frac{N-2}{n^{2}}}u(x, t) .
Observe that

\Vert u_{n}(0)\Vert_{2}^{2}=$\lambda$_{n}^{2}\Vert u($\tau$_{n})||_{2}^{2}=1 (4)
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by Proposition 3.1 and (3). Then by Proposition 3.1, (6) and (8), there
holds

\displaystyle \int_{0}^{ $\delta$}ds\Vert\partial_{s}u_{n}\Vert_{2}^{2} = -J_{2^{*}}(u_{n}( $\delta$))+J_{2^{*}}(u_{n}(0))
= -J_{2^{*}} (u($\tau$_{n}+\displaystyle \frac{ $\delta$}{$\lambda$_{n}^{2}}))+J_{2^{*}}(u($\tau$_{n}))
= -d+d+o(1)=o(1) (5)

as  n\rightarrow\infty for any  $\delta$>0 , thus

\displaystyle \Vert u_{n}( $\sigma$)-u_{n}(0)\Vert_{2}\leq\int_{0}^{ $\sigma$}\Vert\partial_{s}u_{n}(s)\Vert_{2}ds\leq\sqrt{ $\delta$}(\int_{0}^{ $\delta$}\Vert\partial_{s}u_{n}(s)\Vert_{2}^{2}ds)^{\frac{1}{2}} =o(1)

as  n\rightarrow\infty , uniformly in  $\sigma$\in [0,  $\delta$] . This relation together with (4) yields

\Vert u_{n}( $\sigma$)\Vert_{2}^{2}\leq 2\Vert u_{n}(0)\Vert_{2}^{2}=2,  $\sigma$\in [0,  $\delta$]

for large n . Again by (5), we can find  $\eta$\in [0,  $\delta$] such that

\Vert\partial_{s}u_{n}( $\eta$)\Vert_{2}=o(1) , (6)

as  n\rightarrow\infty , passing to a subsequence if necessary. Since  u_{n} satisfies (P) due
to Proposition 3.1, by multplying u_{n} to (P) and integrating over \mathbb{R}^{N} , we
have

|-\Vert\nabla u_{n}( $\eta$)\Vert_{2}^{2}+\Vert u_{n}( $\eta$)\Vert_{2^{*}}^{2^{*}}| \leq |\displaystyle \int\partial_{s}u_{n}( $\eta$)u_{n}( $\eta$)|
\leq \Vert\partial_{s}u_{n}( $\eta$)\Vert_{2}\Vert u_{n}( $\eta$)\Vert_{2}=o(1) (7)

\mathrm{a}s\rightarrow\infty , where we used (6) in the last line. Let  t_{n} :=$\tau$_{n}+\displaystyle \frac{ $\eta$}{$\lambda$_{n}^{2}} . Then from
(7) and Proposition 3.1, we obtain

\Vert\nabla u(t_{n})\Vert_{2}^{2}=\Vert\nabla u_{n}( $\eta$)\Vert_{2}^{2}= \Vert u_{n}( $\eta$)\Vert_{2^{*}}^{2^{*}}+o(1)=\Vert u(t_{n})\Vert_{2^{*}}^{2^{*}}+o(1) ,

which implies the conclusion. 1

3.2 The  $\varepsilon$‐regularity

Here we prove a kind of  $\epsilon$‐regularity result. Let

 S := \mathrm{i}\mathrm{n}\mathrm{f}\underline{\Vert\nabla u\Vert_{2}^{2}}
u\in\dot{H}^{1}\backslash \{0\} \Vert u\Vert_{2^{*}}^{2}

’

the best constant of the Sobolev embedding \dot{H}^{1}\mapsto L^{2^{*}}

31

51



Proposition 3.3 (The  $\epsilon$‐regularity)
If \displaystyle \sup_{t\in[0,T_{m})}\Vert u(t)\Vert_{2^{*}}^{2^{*}} <S^{\frac{N}{2}} , then T_{m}=\infty.

Observe that if \displaystyle \sup_{t\in[0,T_{ $\tau$ r $\iota$})}\Vert\nabla u(t)\Vert_{2}^{2} <S^{\frac{N}{2}} , then the assumption of the
Proposition above holds by virtue of the Sobolev inequality.

Remark 3.4 (The meaning of Proposition 3.3)
Recall that S is attained by a function

U(x):= [\displaystyle \frac{\sqrt{N(N-2)}}{1+|x|^{2}}]^{\frac{N-2}{2}}
and also by U_{ $\mu$,y}(x) := $\mu$^{\frac{N-2}{2}}U( $\mu$(x-y)) with  $\mu$ > 0 and y \in \mathbb{R}^{N} due to
the scale invariace of \dot{H}^{1} and L^{2^{*}} ‐norms. These are only minimizers for S,

see [48] and also e.g. [47, p.178]. The function U_{ $\mu$,y} is called the Talenti
function and it is easy to see that

\Vert\nabla U_{ $\mu$,y}\Vert_{2}^{2}=\Vert U_{ $\mu$,y}\Vert_{2^{*}}^{2^{*}}=S^{\frac{N}{2}}.
The proposition above says that if the norm of u cannot obtain enough
quantity to exceed that of minimizers U_{ $\mu$,y} , then u cannot provide enough
norm to develop a singularity which is a rescaling of U_{ $\mu$,y} , consequenlty, u is
time‐global. This type of result is called  $\varepsilon$‐regularity” and known to hold
in a various kinds of critical heat flows. 1

Proof of Proposition 3.3.
Asume on the contrary that  T_{m}<\infty though

\displaystyle \sup \Vert u(t)\Vert_{2^{*}}^{2^{*}} <S\frac{2^{*}}{2^{*}-2}(=S^{\frac{N}{2}}) . (8)
t\in[0,T_{m})

Note that in this case we have

2
\displaystyle \sup \Vert\nabla u(t)\Vert_{2}^{2}\leq 2J_{2}*(u_{0})+-- \sup \Vert u(t)\Vert_{2^{*}}^{2^{*}} <\infty . (9)

 t\in[0,T_{m}) 2_{t\in[0,T_{m})}^{*}

Step 0 . Finding blow‐up sequence.
By the blow‐up alternative (4), we see that \Vert u(t)\Vert_{\infty} \rightarrow \infty as  t \rightarrow  T_{m}

and we can find a sequence (t_{n}) satisfying t_{n}\rightarrow T_{m} and

\displaystyle \sup_{t\leq t_{n}}\Vert u(t)\Vert_{\infty}=\Vert u(t_{n})\Vert_{\infty}\rightarrow\infty (10)
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as  n\rightarrow\infty . Now take (x_{n})\subset \mathbb{R}^{N} such that

|u(x_{n}, t_{n})|\displaystyle \geq\frac{1}{2}\Vert u(t_{n})\Vert_{\infty} . (11)

Step 1. Construction of a rescaled solution sequence.
Let us introduce an family of rescaled function u_{n}(y, s) of u(x, t) by

$\lambda$^{\frac{N-2}{n^{2}}}u_{n}(y, s)=u(x, t) , (12)

where

$\lambda$^{\frac{N-2}{n^{2}}} :=\Vert u(t_{n})\Vert_{\infty}, y:=$\lambda$_{n}(x-x_{n}) , s:=$\lambda$_{n}^{2} (t—tn). (13)

Then it is obvious from (10), (11), (12) and (13) that

\displaystyle \Vert u_{n}(s)\Vert_{\infty}\leq \Vert u_{n}(0)\Vert_{\infty}=1, s\in [-1, 0], |u_{n}(0,0)|\geq\frac{1}{2} . (14)

Note that by Proposition 3.1 and (5), u_{n} satisfies’

u_{n}(s)=e^{\mathrm{t} $\Delta$}u_{n}(0)+\displaystyle \int_{0}^{s}d $\sigma$ e^{(s- $\sigma$)\triangle}u_{n}( $\sigma$)|u_{n}( $\sigma$)|^{2^{*}-2}.
Taking L^{\infty}‐norm of both sides of this relation and using L^{\infty}-L^{\infty} estimate
of e^{t $\Delta$} (see (4)), we see

\displaystyle \Vert u_{n}(s)\Vert_{\infty} \leq \Vert u_{n}(0)\Vert_{\infty}+\int_{0}^{s}d $\sigma$\Vert e^{(s- $\sigma$) $\Delta$}u_{n}^{2^{*}-1}\Vert_{\infty}
\displaystyle \leq \Vert u_{n}(0)\Vert_{\infty}+s \sup \Vert u_{n}( $\sigma$)\Vert_{\infty}^{2^{*}-1}

 $\sigma$\in[0,s]

Then for \displaystyle \max_{ $\sigma$\in[0,s]}\Vert u_{n}( $\sigma$)\Vert_{\infty}=:M_{n,\infty}(s) , we obtain

M_{n,\infty}(s)\leq \Vert u_{n}(0)\Vert_{\infty}+sM_{n,\infty}(s)^{2^{*}-1} (15)

Now suppose that M_{n,\infty}(s) reached the twice of the L^{\infty}‐norm of initial data:

M_{n,\infty}(s)=2\Vert u_{n}(0)\Vert_{\infty} . (16)

Then by (15), we see that

2\Vert u_{n}(0)\Vert_{\infty}\leq \Vert u_{n}(0)\Vert_{\infty}+s(2\Vert u_{n}(0)\Vert_{\infty})^{2^{*}-1},
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which is equivalent to

T_{\infty}(\displaystyle \Vert u_{n}(0)\Vert_{\infty}):=\frac{1}{2^{2^{*}-1}\Vert u_{0}\Vert_{\infty}^{2^{*}-2}}\leq s.
This together with (16) yields (by taking a contraposition)

there holds \Vert u_{n}(s)\Vert_{\infty}\leq 2\Vert u_{n}(0)\Vert_{\infty} if s\leq T_{\infty}(\Vert u_{n}(0)\Vert_{\infty})=: $\delta$.

Consequently, cobining this relation with (14), we have

\displaystyle \sup \Vert u_{n}(s)\Vert_{\infty}\leq 2 (17)
s\in[-1, $\delta$]

for any n.

Step 2. Convergence of a rescaled solution sequence
Now the L^{p}‐regularity theory of parabolic operators (see e.g. [36, p.172,

Theorem 7.13]) implies that (u_{n}) is a bounded sequence in  W_{p_{)}1\mathrm{o}\mathrm{c}}^{2,1}((-1,  $\delta$] \times

\mathbb{R}^{N}) for sufficeintly large p . Then we see that (u_{n}) is a bounded sequence
in C^{0, $\gamma$;0_{2}^{f}}, for any  $\gamma$ \in (0,1) , since W_{p,1\mathrm{o}\mathrm{c}}^{2,1} \rightarrow  C^{0, $\gamma$;0_{2}^{f}}, if 1-\displaystyle \frac{N+2}{p} > 0 and
 $\gamma$\in (0,1) , see e.g. [34, p.80, Lemma 3.3]. Then by the standard parabolic

regularity, for  $\beta$\in (0,1) , we can find a function  u\in  C_{1\mathrm{o}\mathrm{c}}^{2, $\beta$,1;\frac{ $\beta$}{2}}(\mathbb{R}^{N}\times [-1,  $\delta$])
such that

u_{n}\rightarrow u in C_{1\mathrm{o}\mathrm{c}}^{2, $\beta$;1,\frac{ $\beta$}{2}}(\mathbb{R}^{N}\times[-1,  $\delta$]) (18)

Particularly, this convergence and (14) lead

\displaystyle \frac{1}{2}\leq|u_{n}(0,0)|=|u(0,0)|+o(1) (19)

as n \rightarrow \infty.

Step 3. Properties of a limit function I. Time‐independence.
It follows from Porposition 3.1 that u_{n} is a solution of (P):

\partial_{s}u_{n}(\mathcal{S})=\triangle u_{n}+u_{n}|u_{n}|^{2^{*}-2} in \mathbb{R}^{N}\times [a, b] , (20)

where -\infty<a<b<\infty , hence the energy equality like (6) is satisfied:

\displaystyle \int_{a}^{b}dx\Vert\partial_{s}u_{n}(s)\Vert_{2}^{2}ds=-J_{2}*(u_{n}(b))+J_{2}*(u_{n}(a)) . (21)
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Note that the scale invariance of the energy functional (Proposition 3.1) and
the decreasing property of the energy functional (7) for the original function
u yield

-J_{2}*(u_{n}(b))+J_{2}*(u_{n}(a)) = -J_{2^{*}} (u(t_{n}+\displaystyle \frac{b}{$\lambda$_{n}^{2}})) +J_{2}* (u(t_{n}+\displaystyle \frac{a}{$\lambda$_{n}^{2}}))
= -d+d+o(1)=o(1)

as  n\rightarrow\infty . Thus by combining these two relations we have, for -\infty<a<

b<\infty,

\displaystyle \int_{a}^{b}dx\Vert\partial_{s}u_{n}(s)\Vert_{2}^{2}ds=o(1) (22)

as n \rightarrow \infty.

Now take K\subset \mathbb{R}^{N} be a compact set and set

\displaystyle \Vert u\Vert_{2,K}^{2}:=\int_{K}|u|^{2}
and take any s_{1},  s_{2}\in [-1,  $\delta$] . Then there holds

\Vert u(s_{1})-u(s_{2})\Vert_{2,K} \leq \Vert u(s_{1})-u_{n}(s_{1})\Vert_{2,K}+\Vert u_{n}(s_{1})-u_{n}(s_{2})\Vert_{2,K}
+\Vert u_{n}(s_{2})-u(s_{2})\Vert_{2,K}

= : (I) +(\mathrm{I}\mathrm{I}) + (III). (23)

The convergence (18) leads

(I) =o(1) and (III) =o(1) . (24)

Moreover, by virtue of (22), we see

\displaystyle \Vert u_{n}(s_{1})-u_{n}(s_{2})\Vert_{2}\leq\int_{s_{1}}^{s_{2}}\Vert\partial_{s}u_{n}(s)\Vert_{2}d_{S}\leq\sqrt{ $\delta$+1}(\int_{-1}^{ $\delta$}\Vert\partial_{s}u_{n}(s)\Vert_{2}^{2}ds)^{\frac{1}{2}} =o(1)

as  n\rightarrow\infty . Combining this fact with (19), (23) and (24), we have

 u is a time‐independent nontrivial function. (25)

Now (9) and Proposition 3.1 imply

\displaystyle \Vert\nabla u_{n}(s)\Vert_{2}^{2}= \Vert\nabla u(t_{n}+\frac{s}{$\lambda$_{n}^{2}})\Vert_{2}^{2}<C
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for some C>0 , hence by taking a subsequence, we have, as n\rightarrow\infty,

u_{n}(s) \rightharpoonup v weakly in \in\dot{H}^{1} (26)

for some v\in\dot{H}^{1}

Step 4. Properties of a limit function II. Statioinary solution.
Let  $\varphi$\in C_{0}^{\infty}(\mathbb{R}^{N}) . By Proposition 3.1, we have

\displaystyle \int_{-1}^{ $\delta$}ds\int_{\mathbb{R}^{N}}dy\partial_{s}u_{n}(s) $\varphi$ = \int_{-1}^{ $\delta$}ds\int_{\mathbb{R}^{N}}dy\triangle u_{n} $\varphi$
+\displaystyle \int_{-1}^{ $\delta$}ds\int_{\mathbb{R}^{N}}dyu_{n}|u_{n}|^{2^{*}-2} $\varphi$ . (27)

By the convergence (22), we see

|\displaystyle \int_{-1}^{ $\delta$}ds\int_{\mathbb{R}^{N}}dy\partial_{s}u_{n}(s) $\varphi$| \leq \displaystyle \sqrt{( $\delta$+1)|\sup \mathrm{p} $\varphi$|}(\int_{-1}^{ $\delta$}\Vert\partial_{s}u_{n}(s)\Vert_{2}^{2}ds)^{\frac{1}{2}}
= o(1) (28)

as  n\rightarrow \infty ( | supp  $\varphi$| denotes the Lebesgue measure of supp  $\varphi$ ). Moreover,
from (25), the convergence (18) and (26), we have

\displaystyle \int_{-1}^{ $\delta$}ds\int_{\mathbb{R}^{N}}dy\triangle u_{n} $\varphi$ = -\int_{-1}^{ $\delta$}ds\int_{\mathbb{R}^{N}}dy\nabla u_{n}\nabla $\varphi$
= -\displaystyle \int_{-1}^{ $\delta$}ds\int_{\mathbb{R}^{N}}dy\nabla u\nabla $\varphi$+o(1)
= (1+ $\delta$)\displaystyle \int_{\mathbb{R}^{N}}dy\triangle u $\varphi$+o(1) ,

\displaystyle \int_{-1}^{ $\delta$}ds\int_{\mathbb{R}^{N}}dyu_{n}|u_{n}|^{2^{*}-2} $\varphi$ = \int_{-1}^{ $\delta$}ds\int_{\mathbb{R}^{N}}dyu|u|^{2^{*}-2} $\varphi$+o(1)
= (1+ $\delta$)\displaystyle \int_{\mathbb{R}^{N}}dyu|u|^{2^{*}-2} $\varphi$+o(1) ,

Thereofore combining these relation with (27), we have

\displaystyle \int_{\mathbb{R}^{N}}dy(\triangle u+u|u|^{2^{*}-2}) $\varphi$=0,  $\varphi$\in C_{0}^{\infty}(\mathbb{R}^{N}) . (29)

36

56



This together with (18) and (25) yields u=v , thus

u\in\dot{H}^{1}

Hence, by (25) and (29), we see that u is a nontrivial weak stationary solution
of (P). By the standard classical elliptic regularity, u satisfies

-\triangle u=u|u|^{2^{*}-2}, x\in \mathbb{R}^{N}.

Step 5. End of the proof.
By testing this equation with u , we have

\Vert\nabla u\Vert_{2}^{2}=\Vert u\Vert_{2^{*}}^{2^{*}},

which together with the nontriviality of u and the Sobolev inequality yield

\Vert\nabla u\Vert_{2}^{2}=\Vert u\Vert_{2^{*}}^{2^{*}} \geq S^{\frac{N}{2}} . (30)

Moreover, by (18) and Proposition 3.1, we obtain

\displaystyle \Vert u\Vert_{2^{*},B_{R}}^{2^{*}} := \int_{B_{R}}|u|^{2^{*}} =\int_{B_{R}}|u_{n}(s)|^{2^{*}}+o(1)
\displaystyle \leq \int_{\mathbb{R}^{N}}|u_{n}(s)|^{2^{*}}+o(1)
= \displaystyle \int_{\mathbb{R}^{N}}|u(t_{n}+\frac{s}{$\lambda$_{n}^{2}})|^{2^{*}}+o(1) ,

which together with (30) and the Sobolev inequality implies

S^{\frac{N}{2}} \leq \Vert u\Vert_{2^{*}}^{2^{*}} =\displaystyle \lim_{R\rightarrow\infty}\Vert u||_{2^{*},B_{R}}^{2^{*}}\leq\int_{\mathbb{R}^{N}}|u(t_{n}+\frac{s}{$\lambda$_{n}^{2}})|^{2^{*}}+o(1)\leq\sup_{t\in[0,\infty)}\Vert u(t)\Vert_{2^{*}}^{2^{*}},
which contradicts with (8). 1

3.3 A profile decomposition of Gérard‐Jaffard

In order to analyze the asymptotic behavior of time‐global solutions in the
critical case, we rely on the following compactness device, see Gérard [16,
THÉORÈME 1.1, REMARQUES 1.2.(\mathrm{b}) ], see also Jaffard [31, Theorem 1].

Proposition 3.4 (Proflle decomposition)
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Let (u_{n}) \subset\dot{H}^{1}(\mathbb{R}^{N}) be a bounded sequence. Then there exist ($\lambda$_{n}^{J})_{ $\gamma$\in \mathrm{N}}\subset
\mathbb{R}_{+}, (x_{n}^{J})_{g\in \mathrm{N}}\subset \mathbb{R}^{N} (j=1, \cdots) , ($\psi$^{g})_{ $\gamma$\in \mathrm{N}}\subset\dot{H}^{1}(\mathbb{R}^{N}) such that, for

$\psi$_{n}^{J}(x):= ($\lambda$_{n}^{J})^{\frac{N-2}{2}}$\psi$^{g}($\lambda$_{n}^{J}(x-x_{n}^{J}
there hold the following.
(a) There holds

\displaystyle \frac{$\lambda$_{n}^{l}}{$\lambda$_{n}^{J}}+\frac{$\lambda$_{n}^{J}}{$\lambda$_{n}^{l}}+\frac{|x_{n}^{l}-x_{n}^{J}|}{$\lambda$_{n}^{l}}\rightarrow\infty as  n\rightarrow\infty for  i\neq j.

(b) For any l\in \mathbb{N} , there holds

\displaystyle \lim_{l\rightarrow\infty}\mathrm{h}\mathrm{m}n\rightarrow\infty\Vert r_{n}^{l}\Vert_{2}* =0,
where r_{n}^{l} :=u_{n}-\displaystyle \sum_{J}^{$\iota$_{=1}}$\psi$_{n}^{j}.
(c) There hold

\displaystyle \Vert\nabla u_{n}\Vert_{2}^{2} = \sum_{J^{=1}}^{l}\Vert\nabla$\psi$^{ $\gamma$}\Vert_{2}^{2}+\Vert\nabla r_{n}^{l}\Vert_{2}^{2}+o(1) ,

\displaystyle \Vert u_{n}\Vert_{2^{*}}^{2^{*}} = \sum_{J^{=1}}^{\infty}\Vert$\psi$^{\mathcal{J}}\Vert_{2^{*}}^{2^{*}}+o(1)
as n \rightarrow \infty.

Remark 3.5 (The meaning of the profile decompisition)
As is mentioned in Proposition 3.1, norms of \dot{H}^{1} and L^{2^{*}} have a scale and

a translation invariance in the sence that \Vert\nabla u $\lambda$,y\Vert_{2}= \Vert\nabla u\Vert_{2} and \Vert u_{ $\lambda$,y}\Vert_{2^{*}} =

\Vert u\Vert_{2^{*}} , where

u_{ $\lambda$,y}(x)= $\lambda$\displaystyle \frac{N-2}{2}u( $\lambda$(x-y  $\lambda$\in \mathbb{R}_{+}, y\in \mathbb{R}^{N} . (31)

By using this invariance, it is easy to construct a bounded sequence (u_{n})\subset
\dot{H}^{1} which is not strongly convergent in L^{2^{*}} Indeed, let

u_{n}(x):=$\lambda$^{\frac{N-2}{n^{2}}} $\varphi$(\mathrm{A}_{n}x) , $\lambda$_{n}\rightarrow\infty,
where  $\varphi$ \in  C_{0}^{\infty} . Then it is easy to see that (u_{n}) is bounded in \dot{H}^{1} since
\Vert\nabla u_{n}\Vert_{2}= \Vert\nabla $\varphi$||_{2} by the scale invariance mentioned above and, u_{n}(x) \rightarrow 0

a.e. x\in \mathbb{R}^{N} as  n\rightarrow\infty . These together with the Sobolev embedding imply
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 u_{n}
\rightharpoonup  0 in L^{2^{*}} but (u_{n}) cannot be strongly convergent to 0 in L^{2^{*}} since

||u_{n}\Vert_{2}* =\Vert $\varphi$\Vert_{2}* again by the scale invariance.
The proposition above says that a kind of the converse is also true, i.e.,

the lack of the compactness of \dot{H}^{1} \hookrightarrow  L^{2^{*}} only comes from the invariance
above. Namely, for bounded sequence (u_{n}) in \dot{H}^{1} , if one substract l “profiles”
which are the rescaling and a translation of $\varphi$^{j} then the remainder term
r_{n}^{l} tends to 0 strongly in L^{2^{*}} as  n\rightarrow\infty and  l\rightarrow\infty . Moreover, by (a), the
rescalings and translations are “mutually orthogonal” in \dot{H}^{1} . Namely, if one
consider, for fixed l\in \mathrm{N},

v_{n}^{J0}(y) := (\displaystyle \frac{1}{$\lambda$_{n}^{J0}})^{\frac{N-2}{2}}u_{n}(x_{n}^{J0}+\frac{y}{$\lambda$_{n}^{J0}})
= $\psi$^{g0}(y)+\displaystyle \sum_{i\neq J0,1\underline{<} $\iota$\leq t}(\frac{$\lambda$_{n}^{i}}{$\lambda$_{n}^{J0}})^{\frac{N-2}{2}}$\psi$^{\mathrm{t}} (\frac{$\lambda$_{n}^{l}}{$\lambda$_{n}^{J0}} [y+\frac{x_{n}^{j_{0}}-x_{n}^{l}}{$\lambda$_{n}^{l}}])

+(\displaystyle \frac{1}{$\lambda$_{n}^{J0}})^{\frac{N-2}{2}}r_{n}^{l}(x_{n}^{J0}+\frac{y}{$\lambda$_{n}^{J0}})
which is a scale back of u_{n} focusing on the j_{0^{-}}\mathrm{t}\mathrm{h} “bubble” , then v_{n}^{J0} \rightharpoonup$\psi$^{j\mathrm{o}}
in \dot{H}^{1} by virtue of (a), i.e., bubbles other than the j_{0^{-}}\mathrm{t}\mathrm{h} one “disappears”’
from the asymptotics of v_{n}^{J0}. 1

Remark 3.6 (Abstract aspect of the profile decomposition)
The invariance of \dot{H}^{1} ‐norm under (31) can be viewed as an invariance

under the action of \mathbb{R}^{N}\ltimes \mathbb{R}_{+} , the semidirect product of \mathbb{R}^{N} and \mathbb{R}+ , see §7.
This structure plays an important role in generalizing Proposition 3.4 to the
abstract setting, see Proposition 5.2.

4 Proofs of main results

4.1 On the potential‐well structure

4.1.1 Proof of Theorem 1.1 (a)

In this subsubsection, we assume that

there exists  t_{0}\in [0, T_{m} ) satisfying u(t_{0}) \in W_{2}*\cup\{0\} . (1)

Proposition 4.1 (Invariance of the stable set)
There holds u(t)\in W_{2}*\cup\{0\} for any  t\in [t_{0}, T_{m} ).
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Proof of Proposition 4.1.
Suppose that the conlusion is false, namely, suppose that there exists

t_{1} \in (t_{0}, T_{m}) such that

u(t_{1})\not\in W_{2^{*}}\cup\{0\}.

By the monotonicity of t\mapsto J_{2}*(u(t)) and by the defimition of W_{2}* , we
obtain

J_{2^{*}}(u(t_{1}))\displaystyle \leq J_{2^{*}}(u(t_{0})) < (\frac{1}{2}-\frac{1}{p})S\frac{2^{*}}{2^{*}-2},
which yields

-\Vert\nabla u(t_{1})\Vert_{2}^{2}+\Vert u(t_{1})\Vert_{2^{*}}^{2^{*}} \geq 0 (2)

since u(t_{1})\not\in W_{2}*\cup\{0\} . By the Sobolev’s inequality and (2), we have

S\Vert u(t_{1})||_{2^{*}}^{2} \leq\Vert\nabla u(t_{1})\Vert_{2}^{2}\leq\Vert u(t_{1})\Vert_{2^{*}}^{2^{*}} , (3)

which together with u(t_{1})\neq 0 yields

s\displaystyle \frac{2^{*}}{2-2} \leq \Vert u(t_{1})\Vert_{2^{*}}^{2^{*}} . (4)

On the other hand, by u(t_{0})\in W_{2}* , we see

(\displaystyle \frac{1}{2}-\frac{1}{2^{*}}) \Vert u(t_{0})\Vert_{2^{*}}^{2^{*}} < \frac{1}{2}\Vert\nabla u(t_{0})||_{2}^{2}-\frac{1}{2^{*}}\Vert u(t_{0})\Vert_{2^{*}}^{2^{*}} =J(u(t_{0}))
< (\displaystyle \frac{1}{2}-\frac{1}{2^{*}})s\frac{2^{*}}{2^{*}-2}

whence

\displaystyle \Vert u(t_{0})\Vert_{2^{*}}^{2^{*}} <S\frac{2^{*}}{2^{*}-2} . (5)

Now the continuity of t \mapsto \Vert u(t)||_{2^{*}} together with (4) and (5) yields the
existence of  t_{2}\in (t_{0}, t_{1} ] satisfying

\displaystyle \Vert u(t_{2})\Vert_{2^{*}}^{2^{*}} =S\frac{2^{*}}{2-2} . (6)

By noting t_{0}<t_{2} , one see

J(u(t_{2})) = \displaystyle \frac{1}{2}\Vert\nabla u(t_{2})\Vert_{2}^{2}-\frac{1}{2^{*}}\Vert u(t_{2})\Vert_{2^{*}}^{2^{*}} \leq J(u(t_{0}))
< (\displaystyle \frac{1}{2}-\frac{1}{2^{*}})s\frac{2^{*}}{2^{*}-2} . (7)
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Relations (6) and (7) imply that

\displaystyle \Vert\nabla u(t_{2})\Vert_{2}^{2} < 2 ((\frac{1}{2}-\frac{1}{2^{*}})s\frac{2^{*}}{2^{*}-2}+\frac{1}{2^{*}}\Vert u(t_{2})\Vert_{2^{*}}^{2^{*}})
= 2 ((\displaystyle \frac{1}{2}-\frac{1}{2^{*}})S^{\frac{2^{*}}{2^{*}-2}}+\frac{1}{2^{*}}S\frac{2^{*}}{2^{*}-2})
= S\displaystyle \frac{2^{*}}{2^{*}-2} . (8)

Hence by (6) and (8), we have

\displaystyle \frac{||\nabla u(t_{2})\Vert_{2}^{2}}{||u(t_{2})||_{2^{*}}^{2}}<\frac{s\frac{2^{*}}{2-2}}{S\frac{2}{2^{*}-2}}=S:= \inf \underline{\Vert\nabla u(t)\Vert_{2}^{2}} (9)
u\in\dot{H}^{1}\backslash \{0\} \Vert u(t)\Vert_{2^{*}}^{2}

’

a contradiction. Ĩ

Note that if u\in W_{2}* , then

(\displaystyle \frac{1}{2}-\frac{1}{2^{*}}) \Vert u\Vert_{2^{*}}^{2^{*}} <\displaystyle \frac{1}{2}\Vert\nabla u\Vert_{2}^{2}-\frac{1}{2^{*}}\Vert u\Vert_{2^{*}}^{2^{*}} =J_{2^{*}}(u)< (\displaystyle \frac{1}{2}-\frac{1}{2^{*}})s^{2^{*}}\overline{2}^{=_{-2}},
thus

\displaystyle \Vert u\Vert_{2^{*}}^{2^{*}} <S\frac{2^{*}}{2^{*}-2} . (10)

This relation and Proposition 4.1 imply that

\displaystyle \sup_{t<T_{rn}}\Vert u(t)\Vert_{2^{*}}^{2^{*}} <S^{\frac{2^{*}}{2^{*}-2}}(=S^{\frac{N}{2}}) ,

whence follows

 T_{m}=\infty

from the  $\varepsilon$‐regularity, i.e., Proposition 3.3.
Also (10) yields, for any  u\in W_{2^{*}},

\displaystyle \Vert\nabla \mathrm{u}\Vert_{2}^{2} = 2J_{2^{*}}(u)+\frac{2}{2^{*}}\Vert u\Vert_{2^{*}}^{2^{*}} <2(\frac{1}{2}-\frac{1}{2^{*}})S\frac{2^{*}}{2^{*}-2}+\frac{2}{2^{*}}s\frac{2^{*}}{2^{*}-2}
= S\displaystyle \frac{2^{*}}{2^{*}-2} . (11)

Then this relation and the decreasing property of t\mapsto J_{2}*(u(t)) imply the
existence of c := \displaystyle \lim_{t\uparrow T_{7r $\iota$}}J_{2}*(u(t)) > -\infty . Note that the existence of the

energy limit  c comes from the boundedness of W_{2^{*}} in \dot{H}^{1} together with the
invariance of W_{2^{*}} under the flow associated with u and does not use (8).
Hence we do not need any additional assumption on u such as a nonnega‐
tivity to assure the existence of the energy limit c.
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Proposition 4.2 (Asymptotic behavior of the orbit which inter‐
sects with the stable set)

There holds \displaystyle \lim_{t\rightarrow\infty}\Vert\nabla u(t)\Vert_{2} =0 . Consequently, \mathrm{h}\mathrm{m}_{t\rightarrow\infty}J_{2}*(u(t)) =0

and \displaystyle \lim_{t\rightarrow\infty}\Vert u(t)\Vert_{2^{*}}=0.

Proof of Proposition 4.2.
By Proposition 3.2, there exists  t_{n}\rightarrow\infty such that

\Vert\nabla u(t_{n})\Vert_{2}^{2}-\Vert u(t_{n})\Vert_{2^{*}}^{2^{*}} =o(1) (12)

as  n\rightarrow\infty . This together with (8) yields

(\displaystyle \frac{1}{2}-\frac{1}{2^{*}}) \Vert\nabla u(t_{n})\Vert_{2}^{2} = \frac{1}{2}\Vert\nabla u(t_{n})\Vert_{2}^{2}-\frac{1}{2^{*}}\Vert u(t_{n})\Vert_{2^{*}}^{2^{*}}+o(1)
= J_{2^{*}}(u(t_{n}))+o(1)=c+o(1) . (13)

From this relation and (12), we see that

\displaystyle \Vert u(t_{n})\Vert_{2^{*}}^{2^{*}}+o(1)=\Vert\nabla u(t_{n})\Vert_{2}^{2}+o(1)=\frac{c}{\frac{1}{2}-\frac{1}{2^{*}}}=: A . (14)

Assume that c>0 . Then, by letting  n\rightarrow\infty in the Sobolev inequality

 S\Vert u(t_{n})\Vert_{2^{*}}^{2} \leq\Vert\nabla u(t_{n})\Vert_{2}^{2}=\Vert u(t_{n})\Vert_{2^{*}}^{2^{*}}+o(1)

and by (14), we have

S\displaystyle \frac{2^{*}}{2^{*}-2} \leq A . (15)

On the other hand, by (10), Proposition 4.1 and the assumption (1), we see
that, for large n,

\displaystyle \Vert u(t_{n})\Vert_{2^{*}}^{2^{*}} \leq\frac{J_{2^{*}}(u(t_{0}))}{\frac{1}{2}-\frac{1}{2^{*}}} <S\frac{2^{*}}{2^{*}-2},
hence A<S\displaystyle \frac{2^{*}}{2^{*}-2} , which contradicts (15) and we conclude that c=0 . The
other results follow form this relation and (14). 1

4.1.2 Proof of Theorem 1.1 (b)

We start with the claim which says that V_{2^{*}} is also an invariant set under
the flow associated with (P). The proof is similar to the one for Proposition
4.1.
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Proposition 4.3 (Invariance of the unstable set)
If there exists  t_{0}\in [0, T_{m} ) satisfying u(t_{0})\in V_{2}* , then u(t)\in V_{2}* for any

t\in[t_{0}, T_{m}) .

Proof of Proposition 4.3.
Suppose that the conlusion is false, namely, suppose that there exists

t_{1}\in(t_{0}, T_{m}) such that

u(t_{1})\not\in V_{2^{*}}.

By the monotonicity of t \mapsto  J_{2}*(u(t)) and by the definition of V_{2^{*}} , we
obtain

J_{2^{*}}(u(t_{1}))\displaystyle \leq J_{2^{*}}(u(t_{0}))< (\frac{1}{2}-\frac{1}{2^{*}})s\frac{2^{*}}{2^{*}-2},
which yields

-\Vert\nabla u(t_{1})\Vert_{2}^{2}+\Vert u(t_{1})\Vert_{2^{*}}^{2^{*}} \leq 0

since u(t_{1})\not\in V_{2}*\cup\{0\} . This relation togehter with the definition of V_{2}* and
the decreasing property of t\mapsto J_{2}*(u(t)) assures

(\displaystyle \frac{1}{2}-\frac{1}{2^{*}}) \Vert u(t_{1})\Vert_{2^{*}}^{2^{*}} \leq \displaystyle \frac{1}{2}\Vert\nabla u(t_{1})\Vert_{2}^{2}-\frac{1}{2^{*}}\Vert u(t_{1})\Vert_{2^{*}}^{2^{*}} =J_{2}*(u(t_{1}))\leq J_{2}*(u(t_{0}))

< (\displaystyle \frac{1}{2}-\frac{1}{2^{*}})S\frac{2^{*}}{2-2},
whence

\Vert u(t_{1})\Vert_{2^{*}}^{2^{*}} <S^{2^{*}}\simeq . (16)

On the other hand, by the Sobolev’s inequality and the definition of  V_{2}*,
we have

S\Vert u(t_{0})\Vert_{2^{*}}^{2} \leq \Vert\nabla u(t_{0})\Vert_{2}^{2}< \Vert u(t_{0})\Vert_{2}^{2}:,

which together with u(t_{0})\neq 0 (note that 0\not\in V_{2}* ) yields

S\displaystyle \frac{2^{*}}{2^{*}-2} < \Vert u(t_{0})\Vert_{2^{*}}^{2^{*}} . (17)

Now the continuity of  t\mapsto ||u(t)\Vert_{2}* together with (16) and (17) yields
the existence of t_{2}\in(t_{0}, t_{1} ] satisfying

\displaystyle \Vert u(t_{2})\Vert_{2^{*}}^{2^{*}} =S\frac{2^{*}}{2^{*}-2} . (18)
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By noting t_{0}<t_{2} and the decreasing property of J_{2}*(u(t)) , one see

J_{2}*(u(t_{2})) = \displaystyle \frac{1}{2}\Vert\nabla u(t_{2})\Vert_{2}^{2}-\frac{1}{2^{*}}\Vert u(t_{2})\Vert_{2^{*}}^{2^{*}} \leq J_{2^{*}}(u(t_{0}))
< (\displaystyle \frac{1}{2}-\frac{1}{2^{*}})S\frac{2^{*}}{2^{*}-2} . (19)

Relations (18) and (19) imply that

\displaystyle \Vert\nabla u(t_{2})\Vert_{2}^{2} < 2 ((\frac{1}{2}-\frac{1}{2^{*}})s\frac{2^{*}}{2^{*}-2}+\frac{1}{2^{*}}\Vert u(t_{2})\Vert_{2^{*}}^{2^{*}})
= 2 ((\displaystyle \frac{1}{2}-\frac{1}{2^{*}})S^{\frac{2^{*}}{2^{*}-2}}+\frac{1}{2^{*}}S\frac{2^{*}}{2^{*}-2})
= S\displaystyle \frac{2^{*}}{2^{*}-2} . (20)

Hence by (18) and (20), we have

\displaystyle \frac{\Vert\nabla u(t_{2})||_{2}^{2}}{\Vert u(t_{2})||_{2^{*}}^{2}}<\frac{S\frac{2^{*}}{2^{*}-2}}{S\frac{2}{2^{*}-2}}=S:= \inf \underline{\Vert\nabla u(t)\Vert_{2}^{2}} (21)
u\in\dot{H}^{1}\backslash \{0\} \Vert u(t)\Vert_{2^{*}}^{2}

’

a contradiction, Ì

End of the proof of Theorem 1.1 (b) Recall that since we assume
the nonnegativity of u , we have (7). Hence the existence of t_{1} \in [0, T_{m} )
satisfying J_{2}*(u(t_{1})) <0 immediately yields T_{m} < \infty . Therefore hereafter
we assume that

 J_{2}*(u(t))\geq 0, t\in [0, T_{m}) . (22)

Suppose on the contrary, assume that T_{m} = \infty . Then Proposition 3.2
assures the existence of (t_{n}) satsifying  t_{n}\rightarrow\infty and

(\displaystyle \frac{1}{2}-\frac{1}{2^{*}}) \Vert u(t_{n})\Vert_{2^{*}}^{2^{*}}+o(1)=J_{2}*(u(t_{n})) . (23)

Note that Proposition 4.3 imphes u(t_{n}) \in  V_{2}* for large n . Hence by the
definition of V_{2}* and the decreasing property of J_{2}*(u(t)) in (7), we see that
there exist $\gamma$'>0 satsifying

J_{2^{*}}(u(t_{n}))< (\displaystyle \frac{1}{2}-\frac{1}{2^{*}})S^{\frac{2^{*}}{2^{*}-2}}-$\gamma$' (24)
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for large n . Then we have

\Vert u(t_{n})\Vert_{2^{*}}^{2^{*}} <S^{\frac{2^{*}}{2-2}}- $\gamma$ (25)

for some  $\gamma$>0 by (23) and (24). Thereofore, by the Sobolev inequality,

-\Vert\nabla u(t_{n})\Vert_{2}^{2}+\Vert u(t_{n})\Vert_{2^{*}}^{2^{*}} \leq-S||u(t_{n})\Vert_{2^{*}}^{2}+\Vert u(t_{n})\Vert_{2^{*}}^{2^{*}}
= (-S+\Vert u(t_{n})\Vert_{2^{*}}^{2^{*}-2})\Vert u(t_{n})\Vert_{2^{*}}^{2} \leq-$\gamma$'\Vert u(t_{n})\Vert_{2^{*}}^{2} <0

for some $\gamma$' > 0 , which together with (24) says u(t_{n}) \in  W_{2}*\cap V_{2}* . On the
other hand, it is easy to see that W_{2^{*}}\cap V_{2^{*}} =\emptyset from the definition, hence
we have a contradiction and  T_{m}<\infty follows.

4.1.3 Proof of Theorem 1.2

Classification ofthe modulus of initial data Let us take a nonnegative
function  $\varphi$\in L^{\infty}\cap H^{1} and let us denote the solution of (P) with initial data
 $\lambda \varphi$ by  u_{ $\lambda$} , where  $\lambda$>0 . Let

$\Lambda$_{0} := \{ $\lambda$\in \mathbb{R}_{+};u_{ $\lambda$}(t_{0})\in W_{2}* for some t_{0}\in[0, T_{m}

$\Lambda$_{b} := \{ $\lambda$\in \mathbb{R};u(t_{0})\in V_{2}* for some t_{0}\in[0, T_{m}

$\Lambda$_{\mathrm{c}} := \{ $\lambda$\in \mathbb{R}_{+};u $\lambda$(t)\not\in W_{2^{*}}\cup V_{2^{*}} for all  t\in [0, T_{m}

It is easy to see that

\mathbb{R}_{+}=$\Lambda$_{0}\cup$\Lambda$_{b}\cup$\Lambda$_{c}

and, by the comparison principle,

$\Lambda$_{0} and $\Lambda$_{b} are ordred sets in \mathbb{R},

where the comparison principle of (P) assures that if u_{0}\leq v_{0} a.e. in \mathbb{R}^{N} , then
solutions u, v of (P) with imitinal u_{0}, v0 satisfy u\leq v a.e. in \mathbb{R}^{N}\times[0, T_{m}(v_{0}) ),
where T_{m}(v_{0}) denotes the maximal existence time of v.

Also, by the openness of W_{2^{*}} and V_{2}* in \dot{H}^{1} and the continuity of

 $\lambda$\in \mathbb{R}+\mapsto $\lambda \varphi$\in\dot{H}^{1}\mapsto u $\lambda$(t)\in\dot{H}^{1}
for fixed t>0 (the continuous dependence of a solution of (P) with respect
to the initial data in \dot{H}^{1} ), we obtain

$\Lambda$_{0} and $\Lambda$_{b} are open sets in \mathbb{R}.

Finally, it is easy to see that

$\Lambda$_{0} and $\Lambda$_{b} are nonempty sets in \mathbb{R}.

Combining thse results, we have the existence of  0<\underline{ $\lambda$}\leq\overline{ $\lambda$}<\infty satisfying

$\Lambda$_{0}=(0,\underline{ $\lambda$}) , $\Lambda$_{c}=[\underline{ $\lambda$}, \overline{ $\lambda$}], $\Lambda$_{0}=(\overline{ $\lambda$}, \infty) .
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4.2 On global bounds for time‐global solutions

In this subsection, we always assume that u is a time‐global solution of (P)
with p=2^{*} and  $\Omega$=\mathbb{R}^{N}.

Let (t_{n}) be any time sequence with

(A)  t_{n}\rightarrow\infty as  n\rightarrow\infty and \displaystyle \sup_{n\in \mathrm{N}}\Vert u(t_{n})\Vert_{2}* <\infty.

By (A) and (8), we have

\displaystyle \sup_{n\in \mathrm{N}}\Vert\nabla u(t_{n})\Vert_{2}<\infty,
hence u_{n} :=u(t_{n}) satisfies the assumption of Proposition 3.4. The key claim
to have main results is the following:

Proposition 4.4 (Profiles are stationary solutions)
$\psi$^{ $\gamma$} appeared in Proposition 3.4 for (u(t_{n})) is a stationary solution of (P).

A sketch of the proof of Proposition 4.4 will be given in §4.2.2.
For a while, we assume Proposition 4.4 is correct and prove Theorem 1.3

and Theorem 1.4.

4.2.1 Proof of Theorem 1.3

We start with a substitute of Corollary 2.1 in the subcritical case:

Proposition 4.5 (Liminf is finite in the critical case)
There holds

\displaystyle \lim \mathrm{i}\mathrm{n}\mathrm{f}t\rightarrow\infty\Vert u(t)\Vert_{2^{*}}^{2^{*}} \leq\frac{d}{\frac{1}{2}-\frac{1}{2^{*}}},
where d=\displaystyle \lim_{t\rightarrow\infty}J_{2^{*}}(u(t))(>-\infty) .

Proof of Proposition 4.5.
By Proposition 3.2, we have the existence of (t_{n}) satisfying  t_{n}\rightarrow\infty and

\Vert\nabla u(t_{n})\Vert_{2}^{2}=\Vert u(t_{n})\Vert_{2^{*}}^{2^{*}}+o(1)

as  n\rightarrow\infty . Combining this with (8), the decreasing property of the energy
with finite limit  d , we see that

d = J_{2^{*}}(u(t_{n}))+o(1)=\displaystyle \frac{1}{2}\Vert\nabla u(t_{n})\Vert_{2}^{2}-\frac{1}{2^{*}}\Vert u(t_{n})\Vert_{2^{*}}^{2^{*}}
= (\displaystyle \frac{1}{2}-\frac{1}{2^{*}}) \Vert u(t_{n})\Vert_{2^{*}}^{2^{*}}+o(1)

46

66



as  n\rightarrow\infty , hence the conclusion follows. 1

Next we prove a substitute of Lemma 2.1 in the subcritical case:

Proposition 4.6 (Non‐oscillation theorem for \Vert u(t)\Vert_{p} in the critical
case)

Let (t_{n}) be a time sequence satisfying the assumption (A). Then there
holds

\displaystyle \Vert u(t_{n})\Vert_{2^{*}}^{2^{*}} \leq\frac{d}{\frac{1}{2}-\frac{1}{2^{*}}}+o(1)
as  n\rightarrow\infty , where  d=\displaystyle \lim_{t\rightarrow\infty}J_{2}*(u(t))(>-\infty) .

Remark 4.1 (How to exclude the oscillation of \Vert u(t)\Vert_{p} in the criti‐
cal case)

Proposition 4.6 (for the critical case) plays a role of Lemma 2.1 (for the
subcritical case), i.e., exclusion of an oscillation of \Vert u(t)\Vert_{p} . In the subcritical
case, this exclusion is obtained by using a decay estimate of the heat kernel
e^{t\triangle} as is observed in the proof of Lemma 2.1. In the critical case, the decay
estimate cannot be applied directly as is stated in §2.2. Here, instead of
the quantative information such as the decay estimate of e^{t $\Delta$} , we use the
qualitative information such as a profile decomposition to prove the non‐
oscillation of \Vert u(t)\Vert_{p}. 1

Proof of Proposition 4.6.
By the assumption and (8), we see \displaystyle \sup_{n\in \mathrm{N}}\Vert\nabla u(t_{n})\Vert_{2}<\infty . This together

with Proposition 3.4 yields the existence of ($\lambda$_{n}^{J})_{j\in \mathrm{N}} \subset \mathbb{R}_{+}, (x_{n}^{J})_{j\in \mathbb{N}} \subset \mathbb{R}^{N}

(j=1, \cdots) and ($\psi$^{g})_{g\in \mathrm{N}}\subset\dot{H}^{1}(\mathbb{R}^{N}) such that the conclưion of Proposition
3.4 holds. Now take  $\epsilon$ > 0 . Proposition 3.4 (b) yields \displaystyle \sum_{J^{=1}}^{\infty}\Vert$\psi$^{J}\Vert_{2^{*}}^{2^{*}} < \infty,

whence follows the existence of l\in \mathbb{N} satsfying

\displaystyle \sum_{g=l+1}^{\infty}\Vert$\psi$^{J}\Vert_{2^{*}}^{2^{*}} < $\varepsilon$ . (26)

For this  l\in \mathbb{N} , again by Proposition 3.4 (b), we have

\displaystyle \Vert u(t_{n})\Vert_{2^{*}}^{2^{*}} =\sum_{J^{=1}}^{\infty}\Vert $\psi$||_{2^{*}}^{2^{*}}+o(1) , (27)

\displaystyle \Vert\nabla u(t_{n})\Vert_{2}^{2}=\sum_{J^{=1}}^{l}\Vert\nabla$\psi$^{J}\Vert_{2}^{2}+\Vert\nabla r_{n}^{l}\Vert_{2}^{2}+o(1) (28)
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as n\rightarrow\infty.

Proposition 4.4 says that $\psi$^{g} is a stationary solution of (P) for each j \in \mathrm{N}.

Hence we see that

-\triangle$\psi$^{\dot{j}}=$\psi$^{J}|$\psi$^{J}|^{2^{*}-2} in \mathbb{R}^{N}.

Multiplying $\psi$^{\mathrm{J}} to both sides and integrating over \mathbb{R}^{N} , we obtain

\Vert\nabla$\psi$^{j}\Vert_{2}^{2}=\Vert$\psi$^{J}\Vert_{2}^{2}:.

Then we have

d+o(1) = J_{2}*(u(t_{n}))=\displaystyle \frac{1}{2}\Vert\nabla u(t_{n})\Vert_{2}^{2}-\frac{1}{2^{*}}\Vert u(t_{n})\Vert_{2^{*}}^{2^{*}}

= \displaystyle \frac{1}{2} (_{J}\sum_{=1}^{l}\Vert\nabla$\psi$^{J}||_{2}^{2}+\Vert\nabla r_{n}^{l}\Vert_{2}^{2}+o(1))
-\displaystyle \frac{1}{2^{*}} (_{J}\sum_{=1}^{l}\Vert$\psi$^{J}\Vert_{2^{*}}^{2^{*}}+\sum_{ $\gamma$=l+1}^{\infty}\Vert$\psi$^{J}||_{2^{*}}^{2^{*}}+o(1))

= (\displaystyle \frac{1}{2}-\frac{1}{2^{*}})_{J}\sum_{=1}^{l}\Vert$\psi$^{J}\Vert_{2^{*}}^{2^{*}}+\frac{1}{2}\Vert\nabla r_{n}^{l}\Vert_{2}^{2}-\frac{1}{2^{*}}\sum_{j=l+1}^{\infty}\Vert$\psi$^{J}\Vert_{2^{*}}^{2^{*}}+o(1)
\displaystyle \geq (\frac{1}{2}-\frac{1}{2^{*}})_{J}\sum_{=1}^{l}\Vert$\psi$^{j}\Vert_{2^{*}}^{2^{*}}-\frac{1}{2^{*}} $\epsilon$+o(1)

as  n\rightarrow\infty , where we used (26), (27) and (28). Hence there holds

\displaystyle \frac{d+\frac{1}{p} $\varepsilon$}{\frac{1}{2}-\frac{1}{2^{*}}}\geq\sum_{j=1}^{l}||$\psi$^{J}\Vert_{2^{*}}^{2^{*}}.
Since  $\varepsilon$>0 is an arbitrary, we have

\displaystyle \frac{d}{\frac{1}{2}-\frac{1}{2^{*}}} \geq\sum_{J^{=1}}^{l}\Vert$\psi$^{g}\Vert_{2^{*}}^{2^{*}}
and by letting  l\rightarrow\infty and using (27), we have the conclusion. 1
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End of the proof of Theorem 1.3 Now assume that \displaystyle \lim\sup_{t\rightarrow\infty}\Vert u(t)\Vert_{2^{*}}^{2^{*}} =

\infty . Then this assumption and Proposition 4.5 yield the existence of (t_{n}) sat‐
isfying  t_{n}\rightarrow\infty and

\Vert u(t_{n})\Vert_{2^{*}}^{2^{*}} =2\displaystyle \frac{d}{\frac{1}{2}-\frac{1}{2^{*}}} for any n (29)

as n \rightarrow \infty . Then since (t_{n}) satisfies the assumption (A), Proposition 4.6
implies

||u(t_{n})\displaystyle \Vert_{2^{*}}^{2^{*}} \leq\frac{d}{\frac{1}{2}-\frac{1}{2^{*}}},
which contradicts (29). This completes the proof.

4.2.2 Identification of ‘‘profiles”’. Sketch of the proof for Propo‐
sition 4.4

Now we prove Proposition 4.4. Since the proof is rather technical, we proceed
in a sketchy way in this section. For the detail of the argument, see [28].

The proof of Proposition 4.4 consists of 3 steps. Let (t_{n}) be a time
sequence which satisfies

\displaystyle \sup_{n\in \mathrm{N}}\Vert u(t_{n})\Vert_{2^{*}} <\infty . (30)

Step 1. Introduction of a rescaled sequence. The energy decreasing
property (8) together with (30) implies that

\displaystyle \sup_{n\in \mathrm{N}}\Vert\nabla u(t_{n})\Vert_{2}<\infty . (31)

This relation and Proposition 3.4 yield the existence of ($\mu$_{n}^{j})_{j\in \mathrm{N}} \subset \mathbb{R}+,

(x_{n}^{j})_{ $\gamma$\in \mathrm{N}}\subset \mathbb{R}^{N}, ($\psi$^{g})_{g\in \mathrm{N}}\subset\dot{H}^{1}(\mathbb{R}^{N}) which satisfy the following: for

$\psi$_{n}(x):= (\displaystyle \frac{1}{$\mu$_{n}^{J}})^{\frac{N-2}{2}}$\psi$^{J} (\frac{x-x_{n}^{J}}{$\mu$_{n}^{J}}) ,

passing to a subsequence if necessary, we have

\displaystyle \frac{$\mu$_{n}^{J}}{$\mu$_{n}^{l}}+\frac{$\mu$_{n}^{l}}{$\mu$_{n}^{J}}+$\mu$_{n}^{i}|x_{n}^{l}-x_{n}^{J}|\rightarrow\infty as  n\rightarrow\infty for  i\neq j (32)
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and

\displaystyle \lim_{l\rightarrow\infty}\mathrm{h}\mathrm{m}n\rightarrow\infty\Vert r_{n}^{l}\Vert_{2^{*}} = 0,

\displaystyle \Vert\nabla u(t_{n})\Vert_{2}^{2} = \sum_{J=1}^{l}\Vert\nabla $\psi$\Vert_{2}^{2}+\Vert\nabla r_{n}^{l}\Vert_{2}^{2}+o(1) ,

\displaystyle \Vert u(t_{n})\Vert_{2^{*}}^{2^{*}} = \sum_{J^{=1}}^{\infty}\Vert$\psi$^{J}\Vert_{2^{*}}^{2^{*}}+o(1)
as  n\rightarrow\infty for each  l\in \mathrm{N} , where r_{n}^{l} :=u(t_{n})-\displaystyle \sum_{j=1}^{l}$\psi$_{n}^{J}.

We would like to show that $\psi$^{\mathrm{J}0} is a stationary solution of (P) for each
j_{0} \in N. To this end, we introduce a rescaled sequence (v_{n}^{J0}) which is the
scale back of (u(t_{n})) focusing on the j_{0^{-}}\mathrm{t}\mathrm{h} “bubble” :

v_{n}^{J0}(y, s) := ($\mu$_{n}^{J0})^{\frac{N-2}{2}}u_{n}(x_{n}^{J0}+$\mu$_{n}^{J0}y, t_{n}+($\mu$_{n}^{J0})^{2}s) ,

where (y, s)\in \mathbb{R}^{N}\times[0 , 1 ] (note that we denote $\lambda$_{n}^{J} in Proposition 3.4 by \displaystyle \frac{1}{$\mu$_{n}^{J}}
for the notational simplicity). Note that

v_{n}^{J0}(y, 0_{s}) := ($\mu$_{n}^{j\mathrm{o}})^{\frac{N-2}{2}}u_{n}(x_{n}^{j\mathrm{o}}+$\mu$_{n}^{J0}y, t_{n})

= $\psi$^{g\mathrm{o}}(y)+\displaystyle \sum_{ $\iota$\neq J0,1\leq $\iota$\leq l}(\frac{$\mu$_{n}^{J0}}{$\mu$_{n}^{l}})^{\frac{N-2}{2}}$\psi$^{ $\iota$}(\frac{$\mu$_{n}^{J0}}{$\mu$_{n}^{i}}[y+$\mu$_{n}^{l}(x_{n}^{J\mathrm{O}}-x_{n}^{i})])
+($\mu$_{n}^{j\mathrm{o}})^{\frac{N-2}{2}}r_{n}(x_{n}^{j\mathrm{o}}+$\mu$_{n}^{J0}y) .

As is already mentioned in Remark 3.5, it is easy to see that

v_{n}^{j\mathrm{o}}(0_{s})\rightarrow$\psi$^{j_{0}} weakly in \dot{H}^{1} and strongly in L_{1\mathrm{o}\mathrm{c}}^{2} (33)

as  n\rightarrow\infty by virtue of (32), i.e., the orthogonality of ($\mu$_{n}^{l}, y_{n}^{l})_{n} and ($\mu$_{n}^{j}, y_{n}^{J})_{n}
for i\neq j.

By using Proposition 3.1, the scale invariance of (P), we also see that
v_{n}^{J0} satisfies (P):

\partial_{s}v_{n}^{J0}= $\Delta \vartheta$_{n^{\mathrm{O}}}+v_{n}^{J0}|v_{n}^{j\mathrm{o}}|^{2^{*}-2} in \mathbb{R}^{N}\times[0;1] . (34)
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By the energy equality (6) and the boundedness (31), we have d\in \mathbb{R} satis‐
fying (8). Then again by the energy inequality (6), we have

\displaystyle \int_{0}^{1}ds\Vert\partial_{s}v_{n}^{J0}(s)\Vert_{2}^{2} = J_{2}*(v_{n}^{J0}(0))-J_{2}*(v_{n}^{J0}(1))
= J_{2^{*}}(u(t_{n}))-J_{2^{*}}(u(t_{n}+($\mu$_{n}^{\mathrm{J}0})^{2}))
= d-d+o(1)=o(1) , (35)

where we used the scale invariance of the energy functional Proposition
3.1. Moreover, by multiplying  $\phi$\in C_{0}^{\infty}(\mathbb{R}^{N}) to (34) and integrating it over
\mathbb{R}^{N}\times [0 , 1 ] , we see that

\displaystyle \int_{0}^{1}ds\int_{\mathbb{R}^{N}}dy\partial_{s}v_{n}^{J0} $\phi$ = \int_{0}^{1}ds\int_{\mathbb{R}^{N}}dy\triangle$\vartheta$_{n^{0}} $\phi$
+\displaystyle \int_{0}^{1}ds\int_{\mathbb{R}^{N}}dyv_{n}^{J0}|$\vartheta$_{n^{\mathrm{O}}}|^{2^{*}-2} $\phi$ . (36)

We will show in the following that

 0=\displaystyle \int_{\mathbb{R}^{N}}dy $\Delta \psi$^{j\mathrm{o}} $\phi$+\int_{\mathbb{R}^{N}}dy$\psi$^{0}|$\psi$^{0}|^{2^{*}-2} $\phi$ , (37)

i.e.,  $\psi$^{\mathrm{J}0} is a weak stationary solution of (P). Then by the classical elliptic
regularity and $\psi$^{J0}\in\dot{H}^{1} , we have the conclusion.

Step 2. Bounds for large norms of rescaled sequence. From now
on, we will show (37). Let K := supp  $\phi$ and let  $\eta$ \in  C_{0}^{\infty}(\mathbb{R}^{N}) be a cut‐off
function to K satisfying 0\leq $\phi$\leq 1 in \mathbb{R}^{N} and  $\eta$=1 in K.

First we claim that by multiplying (34) by  v_{n}^{J0} $\eta$ and by taking \displaystyle \int_{0}^{1}ds\int_{\mathbb{R}^{N}}dy,
we have

|-\displaystyle \int_{0}^{1}ds\int_{\mathbb{R}^{N}}dy|\nabla v_{n}^{J\mathrm{o}}|^{2} $\eta$+\int_{0}^{1}ds\int_{\mathbb{R}^{N}}dy|$\vartheta$_{n^{0}}|^{2^{*}} $\eta$| <C_{1} (38)

for some C_{1} >0 . The derivation of this relation needs (35) and we omit it
to avoid a technical complexity.

Secondly, by multiplying (34) by  v_{n}^{J0} $\eta$ and by taking \displaystyle \int_{0}^{1}d $\sigma$\int_{0}^{ $\sigma$}ds\int_{K}dy,
we have, for sufficiently small positive  $\zeta$,

|-\displaystyle \frac{1- $\zeta$}{2}\int_{0}^{1}ds\int_{\mathbb{R}^{N}}dy|\nabla v_{n}^{J0}|^{2} $\eta$+\frac{1}{2^{*}}\int_{0}^{1}ds\int_{\mathbb{R}^{N}}dy|v_{n}^{J0}|^{2^{*}} $\eta$| <C_{2, $\zeta$} , (39)
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where C_{2, $\zeta$} is a positive number depending on  $\zeta$ . To derive this relation, we
\mathrm{h}\check{\mathrm{a}}\mathrm{v}\mathrm{e} to choose a cut‐off  $\eta$ more wisely and to use (35), but again we omit it
to avoid a techmical complexity.

Note that (38) and (39) yield the existence of  C_{3}>0 satisfying

\displaystyle \int_{0}^{1}ds\int_{\mathbb{R}^{N}}dy|\nabla$\vartheta$_{n^{0}}|^{2} $\eta$<C_{3} , (40)

\displaystyle \int_{0}^{1}ds\int_{\mathbb{R}^{N}}dy|v_{n}^{J\mathrm{o}}|^{2^{*}} $\eta$<C_{3} (41)

for n\in \mathbb{N} . Relations (35) and (40) imply that

(v_{n}^{J0}) is a bounded sequence in H^{1}(Q_{K}) , (42)

where QK :=K\times[0 , 1 ] and H^{1}(Q_{K}) denotes the Sobolev space of functions
with (N+1)‐varilable (y, s) .

Step 3. Convergence of rescaled sequence. Now it is easy to see from
(42) that

v_{n}^{J0} \rightarrow v^{J0} weakly in H^{1}(Q_{K}) , (43)

weakly in L^{2^{*}}(Q_{K}) , (44)
strongly in L^{2}(Q_{K}) . (45)

The last convergence together with the stabilizing‐in‐time result (35) yields

v^{j\mathrm{o}} is a time‐independent function. (46)

Also, we can prove from (43) and (44) that

\displaystyle \int_{0}^{1}ds\int_{\mathbb{R}^{N}}dy\nabla v_{n}^{J0}\nabla $\phi$ = \int_{0}^{1}ds\int_{\mathbb{R}^{N}}dy\nabla v^{g0}\nabla $\phi$+o(1) ,

\displaystyle \int_{0}^{1}ds\int_{\mathbb{R}^{N}}dy$\vartheta$_{n^{0}}|v_{n}^{J0}|^{2^{*}-2} $\phi$ = \displaystyle \int_{0}^{1}ds\int_{\mathbb{R}^{N}} dyv^{} |v^{J0}|^{2^{*}-2} $\phi$+o(1)

as  n\rightarrow\infty . By plugging these reation and (35) into (36) and taking  n\rightarrow\infty,

we have

0=-\displaystyle \int_{0}^{1}ds\int_{\mathbb{R}^{N}}dy\nabla v^{\mathrm{J}0}\nabla $\phi$+\int_{0}^{1}ds\int_{\mathbb{R}^{N}}dyv^{J0}|v^{J0}|^{2^{*}-2} $\phi$.
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Then we have from this relation

 0=-\displaystyle \int_{\mathbb{R}^{N}}dy\nabla v^{J0}\nabla $\phi$+\int_{\mathbb{R}^{N}}dyv^{J0}|v^{g_{0}}|^{2^{*}-2} $\phi$ (47)

by noting that  v^{J0} is time‐independent by (46) and  $\phi$ is also time‐independent.
Finally, by (33), (35) and (45), we can derive

?jr\mathrm{o}_{=$\psi$^{\mathcal{J}0}}.

This relation together with (47) implies (37), i.e., $\psi$^{g0} is a weak stationary
solution of (P). This completes the sketch of the proof.

4.3 Proof of Theorem 1.4

Let us assume, on the contrary, the conclusion does not hold. Then there
exists a time sequence (t_{n}) and  $\varepsilon$>0 satisfying  t_{n}\rightarrow\infty and

\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}_{L^{2}}*(u(t_{n}), E_{\infty}(u_{0}))\geq $\varepsilon$ . (48)

By the assumption \displaystyle \sup_{t>0}||\nabla u(t)\Vert_{2}<\infty and by the Sobolev inequality, we
know

\displaystyle \sup_{n}\Vert u(t_{n})\Vert_{2^{*}} <\infty.
Hence Proposition 3.4 and Proposition 4.4 yield the existence of ($\lambda$_{n}^{J})_{j\in \mathrm{N}}\subset
\mathbb{R}+, (x_{n}^{J})_{ $\gamma$\in \mathrm{N}} \subset \mathbb{R}^{N} (j = 1, \cdots) , a family of stationary solutions ($\psi$^{g})_{ $\gamma$\in \mathrm{N}} \subset

\dot{H}^{1}(\mathbb{R}^{N}) of (P) which satisfy (a) -(\mathrm{c}) of Proposition 3.4. Now take  $\eta$>0.
Proposition 3.4 (b) yields \displaystyle \sum_{j=1}^{\infty}\Vert$\psi$^{\mathrm{J}}\Vert_{2^{*}}^{2^{*}} < \infty , whence follows the existence
of  L_{1} \in \mathrm{N} satsfying

\displaystyle \sum_{j=l+1}^{\infty}\Vert$\psi$^{j}\Vert_{2^{*}}^{2^{*}} < $\eta$ for any  l>L_{1} . (49)

Moreover, by Proposition 4.4 (c), there exists L_{2}\in \mathrm{N} such that

\displaystyle \lim_{n\rightarrow\infty}\Vert r_{n}^{l}\Vert_{2}* <\displaystyle \frac{ $\epsilon$}{2} for any l>L_{2} , (50)

where r_{n}^{l} satsifies

u(t_{n})=\displaystyle \sum_{j=1}^{l}($\lambda$_{n}^{J})^{\frac{N-2}{2}$\psi$^{ $\gamma$}($\lambda$_{n}^{J}(\cdot-x_{n}^{J}))+r_{n}^{l}} . (51)
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Now take any l\in \mathbb{N} satsifying l>\displaystyle \max(L_{1}, L_{2}) and let

w_{n}^{l}:=\displaystyle \sum_{J=1}^{l}($\lambda$_{n}^{J})^{\frac{N-2}{2}$\psi$^{g}($\lambda$_{n}^{J}(\cdot-x_{n}^{J}}
Then by (8) and Proposition 3.4 (b) and (c), passing to subsequence if

necessary, we have

J_{2^{*}}(u_{0}) \displaystyle \geq \frac{1}{2}\Vert\nabla u(t_{n})\Vert_{2}^{2}-\frac{1}{2^{*}}\Vert u(t_{n})\Vert_{2^{*}}^{2^{*}}

= \displaystyle \frac{1}{2} (_{J}\sum_{=1}^{l}\Vert\nabla $\psi$\Vert_{2}^{2}+\Vert\nabla r_{n}^{l}\Vert_{2}^{2}+o(1))
-\displaystyle \frac{1}{2^{*}} (\sum_{j=1}^{l}\Vert$\psi$^{J}||_{2^{*}}^{2^{*}}+\sum_{j=l+1}^{\infty}\Vert$\psi$^{J}\Vert_{2^{*}}^{2^{*}}+o(1))

\displaystyle \geq \frac{1}{2}\sum_{J^{=1}}^{l}\Vert\nabla$\psi$^{g}\Vert_{2}^{2}-\frac{1}{2^{*}}\sum_{J^{=1}}^{l}\Vert$\psi$^{J}\Vert_{2^{*}}^{2^{*}}-\frac{1}{2^{*}} $\eta$
= \displaystyle \sum_{j=1}^{l}J_{2^{*}}($\psi$^{g})-\frac{1}{2^{*}} $\eta$

as  n\rightarrow\infty . Since  $\eta$>0 is an arbitrary, from this relation, we have

J_{2^{*}}(u_{0})\displaystyle \geq\sum_{J=1}^{l}J_{2^{*}}($\psi$^{g}) . (52)

This relation shows that \mathrm{w}_{n}^{l} \in  E_{\infty}(u_{0}) , which together with (51) and (50)
implies

\displaystyle \mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}_{L^{2^{*}}}(u(t_{n}), E_{\infty}(u_{0}))\leq \Vert u(t_{n})-w_{n}^{l}||_{2}* =\Vert r_{n}^{l}\Vert_{2}* <\frac{ $\epsilon$}{2},
which contradicts to (48). This completes the proof of Theorem 1.4.

Remark 4.2

In the proof above, we do not use any information on the number of
nonzero profiles and we can easily see that the number is finite. Indeed, by

(52) and the fact that J_{2}*($\psi$^{g}) \geq \displaystyle \frac{s^{N_{-}} $\Gamma$}{N} for a stationary solution $\psi$^{J} of (P),
where S :=\displaystyle \inf_{u\in\dot{H}^{1}\backslash \{0\}}\frac{||\nabla u||_{2}^{2}}{||u||_{2^{*}}^{2}} is the best Sobolev constant, we see that the

number of j for which $\psi$^{J}\neq 0 is at most \displaystyle \frac{N}{s} $\pi \Gamma$^{-}d. Ì
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5 Discussions

5.1 On global bounds for time‐global solutions: toward an
abstract theory for dynamical systems with noncompact.
orbit

In this subsection, we try to understand Theorem 1.4 from an abstract point
of view. We start by reviewing such a framework for the subcritical problem.

5.1.1 A compact case: the LaSalle principle

Let us recall Proposition 2.1 which treats a subcritical and bounded domain
case. Proposition 2.1 (a) says that every global‐in‐time solution induces a
bounded orbit in \dot{H}^{1} and, (b) indicates that every (global‐in‐time) orbit is
absorbed to a set of equilibrium. The abstract version of the latter asymp‐
totics is called the LaSalle principle, see e.g. Cazenave‐Haraux [4, §9]. In
this subsection, we review this. Let (Z, d) be a complete metric space.

\bullet (Abstract dynamical system) A dynamical system on  Z is a family
(S_{t})_{t\geq 0} of mappings on Z such that

(a) S_{t}\in C(Z;Z) for any t\geq 0,

(b) S_{0}=I,

(c) S_{t+s}=S_{t}\mathrm{o}S_{s} for any t, s\geq 0,

(d) The function t\mapsto S_{t}z is in C([0, \infty);Z) for all z\in Z.

The set O(z) :=\{S_{t}z_{\dot{\triangleleft}}t\geq 0\}\subset Z is called an orbit of z.

\bullet (  $\omega$‐limit set) Let  z\in Z . The set

 $\omega$(z) :=\{y\in Z ; there exists (t_{n}) which satisfies

 t_{n}\rightarrow\infty and  S_{t_{n}}z\rightarrow y as  n\rightarrow\infty }

is called an omega‐limit set of  z.

\bullet (Equilibrium)  z\in Z is called an equilibrium if S_{t}z=z for any t\geq 0.

A set consists of all equilibrium points is denoted by E.

\bullet (Lyapunov functional) Let  J be a continuous functional on Z.

(a) J is said to be a Lyapunov functional for (S_{t})_{t\geq 0} if J(S_{t}z)\leq J(z)
for any z\in Z and t\geq 0.
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(b) A Lyapunov functional J is said to have a strict Lyapunov prop‐
erty if for any  z\in  Z satisfying J(S_{t}z) =J(z) for all t\geq 0 , then
there holds z\in E.

Example 5.1
Let u_{0}\in H^{1}\cap L^{\infty} be an initial data which gives a global‐in‐time solution

of (P) with subcritical p and bounded  $\Omega$ and let  S_{t}u_{0} :=u(t) . Then

(S_{t})_{t\geq 0} is a dynamical system on L^{p},

\displaystyle \sqrt{}p(u)=\frac{1}{2}\Vert\nabla u\Vert_{2}^{2}-\frac{1}{p}\Vert u\Vert_{p}^{p} has a strict Lyapunov property,
E:= {  $\varphi$; $\varphi$ is a stationary solution of (P)}

hold. 1

The novelty of this setting is that the information above (rather not so
much!) gives an asymptotics of the orbit as in Proposition 2.1 (b):

Proposition 5.1 (The LaSalle principle)
Let  J be a Lyapunov functional for (S_{t})_{t\geq 0} with a \mathcal{S}trict Lyapunov prop‐

erty, and let z\in Z be such that

O(z) is relatively compact in Z. (1)

Then there holds d(S_{t}z, E)\rightarrow 0 as  t\rightarrow\infty , i. e.,  $\omega$(z)\subset E.

On the applicability of the LaSalle principle to (P) Note that the
proposition above immediately yields Proposition 2.1 (b). Indeed, in the
subcritical and the bounded domain case, it is easy to extend the proof of
Lemma 2.2 to assure

the orbit‘ O(u_{0}) is relatively compact in Ư. (2)

In fact, it is proved in [25] that the Palais‐Smale condition along the orbit
is equivalent to the relative compactness of the orbit in \dot{H}^{1} . Since we are
in the compact situation, it is easy to see that the Palais‐Smale condition
along the orbit holds and the result in [25] implies (2). Then, Proposition
5.1 yields Proposition 2.1 (b).
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5.1.2 Suitable topology in the critical case: D‐convergence of
Tintarev

On the other hand, (P) with critical p defined on ball has a lack of compact‐
ness of the orbit. Indeed, a solution given in (16) concentrates at the origin
with nonzero L^{2^{*}} ‐norm as is explained in Remark 1.10 and this suggests
that we cannot rely on Proposition 5.1 in general to prove Theorem 1.4 in
the critical case. Thus, it is natural to consider the extension of the LaSalle
principle above which is also valid for the critical case. Since the typical non‐
compactness phenomena in the critical case is concentration as is observed
in (16), this extension may need to introduce a generalized topology which
allows to include concentration phenomena. In the proof of Theorem 1.3
and Theorem 1.4, the key machinary is Proposition 3.4, the profile decom‐
position. There exists an abstract version of it. For more detail concerning
the fact below, see e.g. Tintarev‐Fieseler [51, §3] and references therein.
Also, articles in the blog of Terrence Tao [49, 50] give a good introduction
to this topic.

Let H be a separable infinite‐dimensional Hilbert space and let ) be
its inner product.

\bullet (  D‐convergence) Let D be a topological group of isometry acting on
H . We say u_{n} converges to uD‐weffily”’ if

\displaystyle \lim_{n\rightarrow\infty}\sup_{g\in D}(u_{n}-u, g $\varphi$)=0
for all  $\varphi$\in H.

Observe that this convergence is stronger than the weak convergence
and weaker than the strong convergence.

\bullet (Dislocation space) (H, D) is said to be a dislocation space if for
any (g_{n})\subset D with g_{n}\neq $\Delta$ 0 in D and for any (u_{n})\subset H with u_{n}\rightharpoonup 0 in
H , there exists a subsequence of (g_{n}) and (u_{n}) (denoted by the same
symbol) such that g_{n}u_{n}\rightharpoonup 0 in H.

Under these abstract setting, we can formulate an abstract version of
the profile decomposition which can also be seen as a refinement of Banach‐
Alaoglu theorem in H :

Proposition 5.2 (Abstract profile decomposition)
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Let (H, D) be a dislocation space and let (u_{n}) \subset H be a bounded sequence.
Then there exist J \subset \mathrm{N}, ($\psi$^{\mathcal{J}})_{ $\gamma$\in J} \subset  H, (g_{n}^{J})_{g\in J} \subset  D with g_{n}(1) = identity
such that, for renumbered subsequence, there holds

r_{n}:=u_{n}-\displaystyle \sum_{J\in N}g_{n}^{J}$\psi$^{J}\rightharpoonup 0D,
(g_{n}^{J})^{-1}u_{n}\rightharpoonup$\psi$^{\mathrm{J}},
(g_{n}^{l})^{-1}g_{n}^{J}\rightarrow 0 for i\neq j,

\displaystyle \Vert u_{n}\Vert^{2}-\sum_{J\in J}\Vert$\psi$^{g}||^{2}-\Vert r_{n}\Vert^{2}\rightarrow 0
as n \rightarrow \infty.

For the proof, see Tintarev‐Fieseler [51, §3] and references therein. Ob‐
serve that (\dot{H}^{1}, \mathbb{R}^{N}\ltimes \mathbb{R}_{+}) is a dislocation space, where \ltimes denotes the semidi‐
rect product, see §7 for \ltimes and see e.g. [51, Lemma 5.2] for the proof of this
fact. Somewhat remarkably,  D‐convergence in this case coincides with the
convergence in L^{2^{*}} , hence Proposition 5.2 is applicable to (\dot{H}^{1}, \mathbb{R}^{N} \ltimes \mathbb{R}_{+})
and this gives Proposition 3.4, a profile decompostion in \dot{H}^{1}.

5.1.3 Toward an “extended” LaSalle principle

The orbit O of a solution of a differential equation defined in a function
space X falls into one of the following three categories:

(a) O is unbounded in X,

(b) O is bounded but not compact in X,

(c) O is relatively compact in X.

The case (a) is rather a different behavior, since it corresponds to a blow‐up
in infinite time (or grow‐up), and our problem (P) does not possesses such
solutions for X :=Iy with p < 2^{*} and bounded  $\Omega$ by Proposition 2.1 or
nonnegative solutions for (P) with  p = 2^{*} and  $\Omega$ = \mathbb{R}^{N} by Theorem 1.3.
Note that this category is also important and (16) says that this category
of behaviour actually occurs for X :=L^{\infty} in the critical case.

The usual LaSalle principle Proposition 5.1 is applicable to the case (c),
hence we have an abstract theory in this case. The remaining case is the
case (b).
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Note that \mathrm{a} (system of) ordinary differential equation defines a dyman‐
ical system with a finite dimensional phase space Z . In this case, (b) can‐
not occur, since every bounded set in a finite dimensional topological vec‐
tor space is always relatively compact by the Bolzano‐Weierstrass theorem.
Hence the case (b) only appears for the infinite‐dimensional dynamical sys‐
tem. Our Theorem 1.4 indicates that for (P) with critical exponent (which
defines an infinite‐dimensional dynamical system in, say, L^{2^{*}} ), there indeed
exists an essentially different phenomena from the one which is described by
Proposition 5.1, the LaSalle principle. Hence it is natural to consider the
extention of the LaSalle principle to the case (b) where the orbit is bounded
but not compact. Such an extension may possible if one combines the frame‐
work of the LaSalle principle together with the D‐convergence. This issue
will be discussed in the forthcoming paper [29].

5.2 Open problems

We collect in this section some basic open problems concerning (P) with
critical exponent. Though these problems seem very simple and rather ele‐
mental, it still remain open.

On the asymptotic behavior of time‐global solution

Open problem 5.1 (The validity of the existence of the energy
limit in the changing-sign case)

One of the basis of the proof of Theorem 1.3 and Theorem 1.4 is (7), the
finiteness of the energy hmit d\geq 0 which implies a “stabihzation” in time of
time‐global solutions as  t\rightarrow\infty . As is mentioned in Remark 1.1, the validity
of (7) for (P) with  $\Omega$=\mathbb{R}^{N} and p=2^{*} (even for p<2^{*} ) is only proved so
far for nonnegative solutions and we cannot exclude the possibility of the
existence of a sign‐changing time‐global solution u of (P) satisfying (12),
i. e.,

\displaystyle \lim_{t\rightarrow\infty}\Vert\nabla u(t)\Vert_{2}=\infty and \displaystyle \lim_{t\rightarrow\infty}J_{2}*(u(t))=-\infty.
In this case, there also holds

\Vert u(t)\Vert_{2}^{2}\geq Ct, thus \displaystyle \lim_{t\rightarrow\infty}\Vert u(t)\Vert_{2}=\infty (3)

for some  C>0 , see Corollary 6.1. The existence of a sign‐changing solution
satisifying above seems an open problem and (3) shows that the validity of
(7) is heavily related with the exclusion of the possibility of solutions which
grow‐up in L^{2}‐sense, see also Open problem 5.3. 1
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Open problem 5.2 (Extension of the topology in Theorem 1.4)
Let u be a time‐global solution u of (P) in \mathbb{R}^{N} with p = 2^{*} satisfying

\displaystyle \sup_{t>0}\Vert\nabla u(t)\Vert_{2} <\infty . Then Theorem 1.4 gives an asymptotic behavior for
which the topology of the convergence is taken in  L^{2^{*}} The extention of the
topology from L^{2^{*}} to \dot{H}^{1} is an open problem.

In [28], it is proved that if u is a nonnegative time‐global solution of (P),
then

\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}_{\dot{H}^{1}} (u(t), E_{\infty}(u0)) \rightarrow 0 (4)

as  t\rightarrow\infty . The proof needs the “quantization of  d(=\displaystyle \lim_{t\rightarrow\infty}J(u(t))) ” which
we do not know in the sign‐changing case due to the lack of the knowledge
of quantizations of norms of sign‐changing stationary solutions of (P). If
the extension (4) for the sign‐changing case is possible, then we know a

posteriori that (u(t_{n})) is a Palais‐Smale sequence of J for every sequence
(t_{n}) with  t_{n}\rightarrow\infty as  n\rightarrow\infty , see Remark 3.3. BB

Open problem 5.3 (On bounds for  L^{2}‐norm)
For a time‐global solution u of (P) on a bounded domain  $\Omega$ , we can

derive

\displaystyle \sup_{t>0}\Vert u(t)\Vert_{2}<\infty (5)

directly, see e.g. Ôtani [43], Cazenave‐Lions [5] and Cazenave‐Haraux [4,
§8]. The method of proof is also applicable to the critical case of (P) on a
bounded domain. On the other hand, the validity of (5) for (P) with critical
 p on the entire domain is an open problem. This is due to the lack of the
knowledge of an effect of the unboundedness of the domain. Indeed, in the
asymptotics

u t_{n})-\displaystyle \sum_{J}($\lambda$_{n}^{J})^{\frac{N-2}{2}}$\varphi$^{\mathrm{J}}($\lambda$_{n}^{J}(\cdot-y_{n}^{J}))=o(1) in L^{2^{*}}

in \mathbb{R}^{N} which is given in (16), if there exists j \in \mathrm{N} such that $\lambda$_{n}^{J} \rightarrow  0 as
 n\rightarrow\infty (which only occurs for the unbounded domain case), then we have
\Vert u(t_{n})\Vert_{2}\rightarrow\infty as  n\rightarrow\infty heuristically. Hence this question is closely related
with the asymptotics of $\lambda$_{n}^{J} as n\rightarrow\infty. 1

Open problem 5.4 (The finite‐dimensional reduction of the dy‐
namics)
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As is seen in Theorem 1.4, long‐time asymptotics of time‐global solutions
is reduced to the finite‐dimensional dynamics. Indeed, Theorem 1.4 says that
the asymtotics of u is decomposed as u(t) = \mathrm{w}(t)+ $\epsilon$(t) , where  $\epsilon$(t) is an
error part such that

\Vert $\epsilon$(t)\Vert_{L^{2}}* =\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}_{L^{2}}*(u(t), E_{\infty}(u_{0}))\rightarrow 0 as  t\rightarrow\infty

and  w(t) is a principal part of u satisfying

\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}_{L^{2}}* (u(t), E_{\infty}(u0))=\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}_{L^{2}}*(u(t), w(t))

with w(t)\in E_{\infty}(u_{0}.) , thus is described by

w(t)=\displaystyle \sum_{J}($\lambda$^{J}(t))^{\frac{N-2}{2}$\psi$^{g}($\lambda$^{J}(\#)} (x — xg (t)) ) .

Hence the long‐time asymptotics of u is governed by that of ($\lambda$^{J}(t), x^{J}(t)) . It
is an open problem to derive an effective equation of motion for ($\lambda$^{\mathrm{J}}(t), x^{j}(t))
and to give a precise asymptotics of ($\lambda$^{J}(t), x^{J}(t)) . For a formal result based
on the matched asymptotic expansion in the radially symmetric setting, see
e.g. Fila‐King [13]. For the construction of such solutions in the nonradial
setting, see del Pino [8]. For the similar finite‐dimensional reduction of
dynamics of gradient system, see e.g. Ei [9], Ei‐Ishimoto [10] for for a pulse
solution in reaction diffusion equations and Bahri‐Coron [1] for a gradient
flow for Yamabe functional. 1

On the blow‐up phenomena In this note, we only consider asymptotics
of time‐global solutions of (P) with critical exponent. The blow‐up problem
can be seen as a “dual” problem for it and there exist several fundamental
open problems. We introduce some of them.

As is already mentioned in (4), since a solution u of (P) in the class (3)
is a classical solution, it satisfies the blow‐up alternative in L^{\infty}‐sense:

if  T_{m}<\infty , then \displaystyle \lim_{t\rightarrow T_{m}}\Vert u(t)\Vert_{\infty}=\infty.
Since \dot{H}^{1} and Ư‐norms also play a fundamental role for the analysis of (P)
from the viewpoint of the energy structure, it is natural to ask whether

 T_{m}<\infty implies \Vert\nabla u(t)\Vert_{2}, \Vert u(t)\Vert_{p}\rightarrow\infty as  t\rightarrow T_{m} (6)

or not. In the subcritical case, we can prove (6) by using Lemma 2.1:
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Lemma 5.1

There holds (6) for (P) with p<2^{*}

Proof of Lemma 5.1.

Let  T_{m}<\infty and suppose on the contrary there holds \displaystyle \lim\inf_{t\in[0,T_{m})}\Vert u(t)\Vert_{p}<
\infty . Then we have the existence of (t_{n}) satisfying

t_{n}\displaystyle \uparrow T_{m}, \sup_{n}\Vert u(t_{n})\Vert_{p}=:L<\infty.
Now for t_{n} with T_{m}-T(L) < t_{n}(< T_{m}) , where T(L) denotes a local ex‐
istence time in (3), the solution u(t) can be extended to (T_{m} <)t_{n}+T(L)
as a L^{p}‐solution. Since in the subcritical case, a solution in Ư‐sense is a
classical solution (see e.g. Brezis‐Cazenave [3] and Ruf‐Terraneo [45]), this
contradicts to the maximality of T_{m} in the L^{\infty}‐sense. Hence we have

\displaystyle \lim_{t\rightarrow T_{m}}\Vert u(t)\Vert_{p}=\infty if  T_{m}<\infty . (7)

This togehter with the Sobolev inequality, we have (6) in the subcritical
case. Ỉ

Note that the proof of Lemma 5.1 is based on Lemma 2.1, which needs
the convergence of  s‐integral in (5) and the subcriticality of p is needed for
this convergence. By virtue of this convergence, we can obtain a function
T in (3) which implies that the local existence time of solutions of (P)
can be taken uniformly in Ư‐norm of initial data. In the critical case,  $\delta$ in
(7) satisfies  $\delta$=0 and the integral in (5) diverges. Because of this, the local
existence time cannot be taken uniformly in L^{2^{*}} ‐norm of initial data and the
proof of Lemma 2.1 does not work for the critical case. Only facts known so
far in the critical case for T is that the local existence time can be taken

uniformly for a compact set of initial data (not a bounded set of intial data
as in the subcritical case), see Brezis‐Cazenave [3] and Ruf‐Terraneo [45].

These considerarions show that whether (6) happnes or not in the critical
case is closely related with the behavior of an orbit which is bounded but
noncompact in the Sobolev space and blows up in finite time in the classical
sense. Such a phenomena is called a “bubbling in finite time” in the field of
the analysis of geometric heat flow such as the Yamabe flow or the harmonic
heat flow, see e.g. Ye [55] and Topping [52].

Recently, the existence of a finite time blow‐up solution satisifying (6) is
assured by Schweyer in [46]:
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Proposition 5.3
Let N = 4 . Then there exists a radially symmetric initial data u_{0}^{*} \in

\dot{H}^{1}(\mathbb{R}^{4}) which satsifes the following: the solution u^{*} of (P) in \mathbb{R}^{N} with
p = 4 (critical Sobolev exponent in N = 4) starting from u_{0}^{*} blows up in
finite time in the classical sense (i.e., T_{m}<\infty) and there exists v\in\dot{H}^{1}(\mathbb{R}^{4})
with \triangle v\in L^{2}(\mathbb{R}^{4}) such that

u^{*}(t)-\displaystyle \frac{1}{ $\lambda$(t)}U(\frac{x}{ $\lambda$(t)}) \rightarrow v strongly in \dot{H}^{1}(\mathbb{R}^{4}) (8)

as t\uparrow T_{m} , where U denotes the unique positive stationary solution of (P)
(Talenti function). The function  $\lambda$ satsifies the following type II profile (see
Open problem 5.7 for the word “type II

 $\lambda$(t)=c(u_{0})(1+o(1))\displaystyle \frac{T_{m}-t}{|\log(T_{m}-t)|^{2}} (9)

as t\uparrow T_{m} , where c(u_{0}) >0.

Note that from (8), this solution u^{*} satisfies \displaystyle \sup_{t\in[0,T_{m})}\Vert\nabla u^{*}(t)\Vert_{2}<\infty,
hence

\displaystyle \lim_{t\rightarrow T_{m}}J_{2}*(u(t))>-\infty and  T_{m}<\infty . (10)

Hence in the critical case, (6) does not hold in general.

Open problem 5.5 (Blow‐up alternative for the energy norm in
the critical case)

Note that the proof in Schweyer in [46] relies on the explicit construction
of the initial data by using the radial symmetry and the general situation is
unclear. It is an important open problem to clarify what kind of situation
(6) is valid in the critical case. This issue will be discussed in [30]. Ỉ

Open problem 5.6 (Blow‐up of the energy)
In Open problem 5.1, we asked the finiteness of the energy limit  d for

time‐global solutions. For the finite time blow‐up solutions, it is natural to
ask whether the blow‐up of the energy holds:

(BJ) \displaystyle \lim_{t\rightarrow T_{m}}J_{\mathrm{p}}(u(t))=-\infty if  T_{m}<\infty.

(BJ) is true for the subcritical problem p < 2^{*} , see Giga [17] and Baras‐
Cohen [2]. In the critical case, if we consider radially symmetric, nonnegative
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solutions u of (P), then (BJ) holds, see e.g. Galaktionov‐Vazquez [15] and
references therein. Also, Proposition 5.3 and (10) indicates that (BJ) is not
true in general. It is an important open problem to clarify what kind of
situation (BJ) is valid in the critical case. Ì

Open problem 5.7 (Existence of type II blow‐up)
As is observed in Proposition 5.3, there exists a solution of (P) satisfy‐

ing  T_{m}<\infty and \displaystyle \lim_{t\rightarrow T_{m}}J_{p}(u(t))>-\infty in the critical case. The existence
of such a solution  u may lead to the existence of “type II blow‐up” which
means that the blow‐up rate of \Vert u(t)\Vert_{\infty} is faster than the “type I blow‐up”’
rate defined as the rate of a solution of \dot{u}=u|u|^{p-2} . In the subcritical case,
it is known that every finite time blow‐up solution blows up in type I rate,
see Giga‐Kohn [19, 20, 21]. In the critical case, for a radially symmetric non‐
negative function, it is known that there exist no type II blow‐up solution,
see Matano‐Merle [38]. On the other hand, Proposition 5.3 indicates that
there exists a type II blow‐up solution since (9) is a type II blow‐up rate
(and, in particular, u_{0}^{*} in Proposition 5.3 is sign‐changing by Matano‐Merle
[38]).

In the framework of solutions without radial symmetry and nonnegativ‐
ity, what kind of condition (on the initial data) gives the type II blow‐up
for (P) with critical p is an open problem. 1

Application of the method to other critical heat flow The method
proposed in this note is quite flexible and may be successfully apphed to have
a global bounds for time‐global solutions such as a heat flow associated with
a noncompact variational functional such as a Yang‐Mills‐Higgs functional.
These problems will be discussed elsewhere.
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6 Appendix. The concavity argument of Payne‐
Sattinger‐Levine

Let us prove (7) for a solution u of (P) with bounded  $\Omega$ . In this section, we
always assume that

 $\Omega$ is a bounded domain

and we only assume  p>2 unless stated.

First we introduce a relevant equality. By multiplying u to (P) and
integrating over  $\Omega$ , we have

\displaystyle \frac{d}{dt}\frac{1}{2}\Vert u(t)\Vert_{2}^{2}=-\Vert\nabla u(t)\Vert_{2}^{2}+\Vert u(t)\Vert_{p}^{p}.
From the definition of the energy functional, we see that

-\displaystyle \Vert\nabla u(t)\Vert_{2}^{2}=-2J_{p}(u(t))-\frac{2}{p}\Vert u(t)\Vert_{p}^{p}
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and these relations yield

\displaystyle \frac{d}{dt}\frac{1}{2}\Vert u(t)\Vert_{2}^{2}=-2J_{p}(u(t))+ (1-\frac{2}{p}) \Vert u(t)\Vert_{p}^{p} . (1)

Now we show

Lemma 6.1

 T_{m}<\infty follows if \sqrt{}p(u(t_{0}))<0 for some  t_{0}\in [0, T_{m}).

Proof of Lemma 6.1.

Assume on the contrary, we have T_{m} = \infty in spite of the existence of
 t_{0}\in [0, T_{m}) satisfying J_{p}(u(t_{0})) <0.

By noting the decreasing property of the energy (6) and the assumption,
we see that \sqrt{}p(u(t)) < 0 for t \geq  t_{0} . Moreover, by the boundedess of the
domain, we obtain, by using the Hölder inequality,

\Vert u(t)\Vert_{2}^{p}\leq C( $\Omega$)\Vert u(t)\Vert_{p}^{p} . (2)

By plugging these relations to (1), we have

\displaystyle \frac{d}{dt}\frac{1}{2}\Vert u(t)\Vert_{2}^{2}\geq C\Vert u(t)\Vert_{2}^{p} (3)

for some C>0 depending on the measure of  $\Omega$ . It is easy to solve (3) and
we have

\displaystyle \Vert u(t)\Vert_{2}^{2}\geq\frac{1}{\Vert u(0)\Vert_{2}^{p-2}-\frac{C(p-2)}{2}t},
which means \Vert u(t)\Vert_{2^{-}}\rightarrow \infty as  t\uparrow \displaystyle \frac{2||u(0)\Vert_{2}^{p-2}}{C(p-2)} , contradicting the assumption

T_{m} = \infty (note that  u satisfies (3), particularly u \in  C([0, T_{m} ) ;L^{2} This
completes the proof. 1

Remark 6.1

Note that Lemma 6.1 holds for p > 2 including even the supercritical
case. On the other hand, it seems difficult to extend the proof above directly
to unbounded domains. I

For (P) with unbounded domains, so far we have the following:
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Lemma 6.2

Let u be a solution of (P) in an unbounded domain with p > 2 and
assume that there exists t_{0} <T_{m} satisfying \sqrt{}p(u(t_{0})) <0 . Then one of the
following holds:
(a)  T_{m}<\infty , or
(b)  T_{m}=\infty and \Vert u(t)\Vert_{2}\geq Ct for some C>0 . Moreover, ifp=2^{*} and  $\Omega$=

\mathbb{R}^{N} , we have, in addition, \displaystyle \lim_{t\rightarrow\infty}J_{2}*(u(t)) =-\infty and \displaystyle \lim_{t\rightarrow\infty}\Vert\nabla u(t)\Vert_{2}=
\infty.

Proof of Lemma 6.2.

Assume (a) does not hold, thus assume  T_{m}=\infty . Then by the decreasing
property of the energy (6), we have

 J_{p}(u(t))\leq J_{p}(u(t_{0}))(<0) for any t\geq t_{0}.

Then this relation and (1) imply

\displaystyle \frac{d}{dt}\frac{1}{2}\Vert u(t)\Vert_{2}^{2}=-2J_{p}(u(t))+ (1-\displaystyle \frac{2}{p}) |\mathrm{I}\mathrm{I}(u(t_{0}))(>0) ,

hence by putting C :=-4\sqrt{}p(u(t_{0}))(>0) , we have the first assertion in (b).
Now we assume p = 2^{*} and  $\Omega$ = \mathbb{R}^{N} . Then by the decreasing property
(6) of J_{2}*(u(t)) , we have \displaystyle \lim_{t\rightarrow\infty}J_{2^{*}}(u(t))=d\in [-\infty, J_{2}*(u(t_{0}))] . Suppose
d> -\infty . Then by following the argument in the proof of Proposition 3.2,
we have the existence of  t_{n}\rightarrow\infty satisfying \Vert\nabla u(t_{n})\Vert_{2}^{2}= \Vert u(t_{n})\Vert_{2^{*}}^{2^{*}}+o(1) as
 n\rightarrow\infty , which yields

\displaystyle \lim_{t\rightarrow\infty}J_{2}*(u(t))\geq\lim_{n\rightarrow\infty}J_{2}*(u(t_{n}))= (\displaystyle \frac{1}{2}-\frac{1}{2^{*}})\lim_{n\rightarrow\infty}\Vert\nabla u(t_{n})\Vert_{2}^{2}\geq 0,
contradicting the assumption J_{2}*(u(t_{0}))<0 and (6). Hence we have \mathrm{h}\mathrm{m}_{t\rightarrow\infty}J_{2}*(u(t))=
-\infty . This immediately yields \displaystyle \lim_{t\rightarrow\infty}\Vert\nabla u(t)\Vert_{2}=\infty , since otherwise there
exists (t_{n}) such that \displaystyle \lim_{n\rightarrow\infty}\Vert\nabla u(t_{n})\Vert_{2}<\infty and

|J_{2}*(u(t_{n}))|\leq C_{1}\Vert\nabla u(t_{n})\Vert_{2}<C_{2},

whence follows \displaystyle \lim_{t\rightarrow\infty}J_{2^{*}}(u(t))>-\infty by (6) and this contradicts the sec‐
ond assertion. 1

The same proof immediately yields the following:
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Corollary 6.1
Let  u be a time‐global solution of (P) in \mathbb{R}^{N} with p=2^{*} Then one of

the following holds:
(a) \mathrm{h}\mathrm{m}_{t\rightarrow\infty}J_{2}*(u(t))>-\infty , or
(b) \displaystyle \lim_{t\rightarrow\infty}J_{2}*(u(t)) = -\infty, \displaystyle \lim_{t\rightarrow\infty}\Vert\nabla u(t)\Vert_{2} = \infty and \Vert u(t)\Vert_{2} \geq Ct for
some C>0.

7 Appendix. An isometircal action of the semi‐
direct product \mathbb{R}^{N}\ltimes \mathbb{R}_{+} to \dot{H}^{1}

The invariance of \dot{H}^{1} ‐norm under (31) indicates that a transformation group
obtained from \mathbb{R}^{N} and \mathbb{R}+ , a semi‐direct product of them, acts isometrically
on \dot{H}^{1} . We introduce this structure.

General facts Let G_{1}, G_{2} be a group and  $\rho$ :  G_{2} \rightarrow \mathrm{A}\mathrm{u}\mathrm{t}G_{1} be a homo‐
morphism. Then G_{1} \times G_{2} becomes a group by a product

[x', y']*[x, y] :=[y$\rho$_{y'}(x), y'y] (1)

for [x, y], [x', y'] \in G_{1} \times G_{2}. (G_{1} \times G_{2}, *) is called a semi‐direct product of
G_{1} and G_{2} by  $\rho$ denoted by  G_{1} \ltimes G $\rho$ 2 , or G_{1} \ltimes G_{2}.

The action of \mathbb{R}^{N} and \mathbb{R}_{+} on \dot{H}^{1} Let a \in \mathbb{R}^{N} and  $\lambda$ \in \mathbb{R}_{+} . We first

define the action of \mathbb{R}^{N} and \mathbb{R}+\mathrm{o}\mathrm{n}\mathbb{R}^{N} by

T_{a}x :=x+^{\mathfrak{d}}a, D_{ $\lambda$}x := $\lambda$ x, x\in \mathbb{R}^{N} , (2)

and denote H_{1} := \{T_{a};a \in \mathbb{R}^{N}\} and H_{2} := \{D_{ $\lambda$}\cdot,  $\lambda$ \in \mathbb{R}_{+}\} . We lift the

action of H_{1} and H_{2} on \mathbb{R}^{N} to that on \dot{H}^{1} by

\hat{T_{a}}u(x) :=u(T_{a}x)=u(x+a) , \hat{D_{ $\lambda$}}u(x) := $\lambda$\displaystyle \frac{N-2}{2}u(D_{ $\lambda$}x)= $\lambda$\frac{N-2}{2}u( $\lambda$ x) (3)

for u\in\dot{H}^{1} and denote G_{1} :=\{\hat{T_{a}};a\in \mathbb{R}^{N}\} and G_{2} :=\{\hat{D_{ $\lambda$}}; $\lambda$\in \mathbb{R}_{+}\}.
It is easy to see that the transformation of u given in (31) coincides with

u\mapsto T_{- $\lambda$ y}D_{ $\lambda$}u.

We show that this can be interpreted as an action of G_{1} \ltimes G_{2}.
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It is easy to see that

N-2 \sim- N-2

T_{a'}D_{$\lambda$'}T_{a}D_{ $\lambda$}u(x) = T_{a'}D_{$\lambda$'}T_{a} $\lambda$\overline{2}u( $\lambda$ x)=T_{a'}D_{$\lambda$'} $\lambda$\overline{2}u( $\lambda$ x+a)

= \hat{T_{a'}}($\lambda$' $\lambda$)^{\frac{N-2}{2}}u($\lambda$' $\lambda$ x+$\lambda$'a)
= ($\lambda$' $\lambda$)^{\frac{N-2}{2}}u( $\lambda \lambda$'x+$\lambda$'a+a')
= T_{$\lambda$'a+a'}D_{ $\lambda \lambda$'}u(x) , (4)

hence if we denote

\hat{T_{a}}\hat{D_{ $\lambda$}} by [a,  $\lambda$] , where (\hat{T_{a}},\hat{D_{ $\lambda$}}) \in G_{1} \times G_{2} (5)

for the brevity, then we see

[a', $\lambda$']\circ[a,  $\lambda$]=[$\lambda$'a+a', $\lambda$' $\lambda$] (6)

from (4).
Let us introduce

 $\rho$:G_{2}\ni\hat{D_{ $\lambda$}}\mapsto$\rho$_{\hat{D_{ $\lambda$}}} \in X:=\{ $\psi$:G_{1}\rightarrow G_{1}\}
by

p_{\hat{D_{ $\lambda$}}} : G_{1} \ni\hat{T_{a}}\mapsto\overline{T_{ $\lambda$ a}}\in G_{1}.

Proposition 7.1

(G_{1} \times G_{2}, \circ) coincides with G_{1} \ltimes_{ $\rho$}G_{2}.

We prove Proposition 7.1. First we show that

Lemma 7.1

(a) Foe  $\lambda$\in \mathbb{R}_{+}, $\rho$_{\hat{D_{ $\lambda$}}} is an isomor phism on G_{1} . Hence  $\rho$:G_{2}\rightarrow \mathrm{A}\mathrm{u}\mathrm{t}G_{1}.
(b)  $\rho$ is a homomorphism.

Proof of Lemma 7.1.

Let us denote  $\rho$_{\overline{D_{ $\lambda$}}} by $\rho$_{ $\lambda$}.

$\rho$_{ $\lambda$}(\hat{T_{a'}}\hat{T_{a})}=$\rho$_{ $\lambda$}\overline{T_{a'+a}}=\overline{T_{ $\lambda$ a'+ $\lambda$ a}}=\overline{T_{ $\lambda$ a'}}\overline{T_{ $\lambda$ a}}=$\rho$_{ $\lambda$}\hat{T_{a'}}$\rho$_{ $\lambda$}\hat{T_{a}},

hence $\rho$_{ $\lambda$} is a homomorphism on G_{1} . Take any \hat{T_{a}}\in G_{1} . Then for a' := \displaystyle \frac{a}{ $\lambda$},
it is obvious that $\rho$_{ $\lambda$}\hat{T_{a'}}=\hat{T_{a}} . Moreover, if $\rho$_{ $\lambda$}\hat{T_{a'}}=$\rho$_{ $\lambda$}\hat{T_{a}} , then a'=a holds.
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Thus \hat{T_{a'}} = \hat{T_{a}} . These relations say that $\rho$_{ $\lambda$} \in Aut  G_{1}. , i.e., (a). We also
have

$\rho$_{$\lambda$'}{}_{ $\lambda$}\hat{T_{a}}=\overline{T_{$\lambda$' $\lambda$ a}}=$\rho$_{$\lambda$'}\overline{T_{ $\lambda$ a}}=$\rho$_{ $\lambda$}$\rho$_{$\lambda$'}\hat{T_{a}}, \hat{T_{a}}\in G_{1},

hence  $\rho$ . is a homomorphism, i.e., (b) holds. 1

Proof of Proposition 7.1.
Note that Lemma 7.1 together with (1) implies that  G_{1} \times G_{2} is a group

under the product * defined in (1). By using the notation introduced by
(5), * has a form

[a', $\lambda$']*[a,  $\lambda$] :=[a'+$\rho$_{$\lambda$'}(a), $\lambda$' $\lambda$]=[a'+$\lambda$'a, $\lambda$' $\lambda$].

This relation coincides with the rule in (6) and we see that (G_{1} \times G_{2},0)
coincides with G_{1} \ltimes_{ $\rho$}G_{2}. I
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