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Behavior of solutions to a chemotaxis system
with general sensitivity functions
Takasi Senba
Fukuoka University, Japan

1 Introduction

This manuscript is based on the joint work with Kentarou Fujie (Tokyo
University of Science).

We consider the following system.

Tup =V - (Vu—uVx(v)) in Qx(0,7),
ny=Av—v+u in Q x (0,7),
(PP) ou Ov
E—E—O on@Qx(O,T),

u(-,0) = ug,v(,0) =vp  in .

Here, 7 > 0,7 > 0, @ C R" (n > 2) is a bounded and convex domain with
smooth boundary 912, x is smooth on (0,00) satisfying x'(v) > 0 (v > 0),
v = v(z) is the outer normal unite vector at x € 9Q and initial conditions
up and vy are smooth and positive.

The system (PP) is introduced to describe the aggregation of cellular
slime molds. When the environmental situation worsens, they aggregate
to a single milt-cellular body. During this aggregation process, a chemical
signal is secreted by cells to guide the collective movements. We refer to this
property as chomotaxis. Functions u and v represent the density of cells and
the chemical concentration, respectively.

This system has the conservation of mass:

/ﬂu(z,t)dx = /Quo(:r)dm for t > 0. (1)

The function x(v) represents the relation between the movement of cells
and the chemical concentration. The term uy'(v)Vv = uVx(v) stands for
chemotaxis. The positivity of x'(v) means that this chemical substance is an
attractant. This function y is called sensitivity function.

In this manuscript, we mainly treat sensitivity functions-satisfying that

Jim x'(v) = 0. (2)

This assumption represents slowdown of cells’ response to strong stimulus.
Some researchers treat the system (PP) with x(v) = xologv, where xo is a



positive constant. This type sensitivity function x satisfies the assumption

2).

2 Linear sensitivity case

In this manuscript, we consider properties of solutions to (PP) under the
assumption (1). On the other hand, there are many researches on solutions to
(PP) with x(v) = x1v, where x; is a positive constant. This type sensitivity
function is called linear sensitivity function. The system (PP) with a linear
sensitivity function has a Lyapunov function. Let n = 7 = 1 for simplicity.
Let (u,v) be a solution to (PP) with x(v) = x;v. Putting

F(u,v) = /(ulogu — x1uv)dx + % /(|Vv|2 + v?)dr,
Q Q
we have that
d
—F(u,v) + /(vt)zdz + / u|V(logu — x1v)|%dz = 0.

This Lyapunov function is very useful, when we investigate properties of
. . Y O
solutions. In fact, if n = 2 and [ updxr < —, it follows from the Lyapunov

Q 1
function and the Tringer-Moser inequality that
6/ wvdz < F(u,v)
Q
with some positive constant 4 > 0 and that

/ulogudx < 0.
Q

This and the standard bootstrap argument lead us to the boundedness of so-
lutions (u, v)(see [10]). This means that the boundedness of solutions follows
from the Lyapunov function.

Moreover, the blowup of solutions comes from the Lyapunov function.
We denote the set of positive integers by N. Let n = 2, x(v) = xiv and
let A € (0,00) \ {dn/x1)N} ={A>0:X# (dn/x1)j for j =1,2,3,---}.
Then,

Fy = inf {F (u,v) : (u,v) is a stationary solution satisfying / udz = )\} >
Q
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For A > 4n/x; with A\ & (47/x1)/N, there are a pair of positive continuous
functions (ug, vo) satisfying F'(ug, vo) < Fx and fQ updz = A. The Lyapunov
function guarantees that the solution blows up (see [7]). And, we have that
the solutions blows up in finite time by using the differential inequality on
the Lyapunov function (see [16]).

Here, if limsup,_,7. __(||u(t)||z=@) + [|[v(t)|ze() = co with some Tias €
(0, 00], we say that the solution (u,v) blows up at the time T,,,, and that
T'naz is blowup time or maximal existence time.

When x(v) is not a linear function, any Lyapunov functions are not found
yet. Then, in that case, the arguments mentioned in this section do not work.

3 Nonlinear sensitivity case

In the nonlinear sensitivity case, there are the following researches on the
boundedness of classical solutions.

n / a
solutions to (PP) exist globally in time and are bounded ({14, 5]).

(a>0,b6>0,p>1), then

If @ CR" (n > 2) and x(v) = xologv (xo < y/2/n), then solutions to
(PP) exist globally in time and are bounded ([15, 1]).

The following research is the one on the time-global existence of weak
solutions.

IfQCcR" (n>2)and x(v) = xologv (xo < v/n/(n — 2)), a weak solution
satisfying u?, vP € L} (2 X (0,00)) (0 < p < 1) exists globally in time
([13)).

In the nonlinear sensitivity case, any Lyapunov functions are not found
yet. Then, the arguments mentioned in the previous section do not work
for solutions to (PP) with nonlinear sensitivity functions. Considering this
situation, we must consider simple systems. Then, we consider the limiting
system of (PP) as 7 or n = 0. Moreover, considering the research on so-
lutions to the limiting system, we think that the above conditions for the
boundedness of solutions are not critical.

First, we consider the limiting system of (PP) as n = 0.

Tuy =V - (Vu—uVyx(v)) inQx(0,7T),
0=Av—v+u in Qx (0,7),
(PE) ou Ov _
5 = By = 0 on 00 x (0,7),

U(,O) = Up in Q.
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The following hold for solutions to (PE) ([11, 3]).

If Q is a bounded domain in R? and lim, o x’(v) = 0, then solutions to
(PE) exist globally in time and are bounded.

If Q is a bounded ball in R® (n > 3), uo is radial and x(v) = xologv
(x0 € (0,2/(n —2) ), then solutions to (PE) exist globally in time and
are bounded.

If Q is a bounded ball in R" (n > 3), uo is radial and x(v) = xologv
(xo > 2n/(n — 2)), then there exist blowup solutions to (PE).

Next, we consider the limiting system of (PP) as 7 = 0.

( 0=V (Vu—uVx(v)) inQx(0,T),
ny=40Av—v+u in Q x (0,7),
ou Ov
(EP)< $=$=0 OnaQX(O,T),
v(-,0) = v in Q,
u(z,t)dz = A in (0,7).
\ Q

Here, ) is a positive constant.
We impose the last condition for solutions to (EP), since solutions to
(PP) satisfy (1). This last condition and the first equation of the system

(EP) guarantee that
Aexp(x(v))

— Joexp(x(v))dz
Then, the system (EP) can be transformed into the following system.

(= Av—v+ P inQx (0,T),
u = 2exp(v) in Q x (0,T)
(NLP) [ fganD(x(v))dx Y
8—Z=0 on 0 x (0,7T),
L v(+,0) = vo in Q.

Classical solutions to (NLP) satisfy the following properties ([12]).

If Q is a bounded domain in R? and lim,_,,, X'(v) = 0, then solutions to
(NLP) exist globally in time and are bounded.

If Q is a bounded domain in R" (n > 3), x(v) = xologv and xo € (0,n/(n—
2)), then solutions to (NLP) exist globally in time and are bounded.



If Q is a bounded ball in R™ (n > 3), x(v) = xologv and xo > n/(n — 2),
then there exist blowup solutions to (EP).

Remark 3.1 If Q is a bounded domain in R? and x(v) = x1v (x1 > 0),
there exist blowup solutions to (EP).

Considering results on solutions to the limiting systems of (PP) as 7 or p = 0,
we consider the system (PP) in the case where 7 or 7 is sufficiently small and
get the following results.

Theorem 3.2 ([4]) Suppose thatn > 3, Q is a bounded and convex domain
in R™ and that limsup,_, ., vx'(v) < n/(n—2). Then, solutions to (PP) exist
globally in time and are bounded if T is sufficiently small.

This property of solutions is different from the one in the case where the
sensitivity function is linear.

Remark 3.3 In the case where x(v) = xologuv, the function x satisfies that
lim,_, X'(v) = 0 and that limsup,_, . vX'(v) = Xo-

The following results are on solutions to (PP) with a linear sensitivity func-
tion.

Theorem 3.4 ([16]) If n > 3 and Q is a bounded ball in R™, there exist
radial blowup solutions.

4 Sketch of proof of Theorem 3.2

Finally, we describe a sketch of proof of Theorem 3.2. For simplicity, we
assume that n = 1. .

The following two lemmas say estimates of solutions independent of the
time constant 7. The first lemma is shown by the standard energy argument
and the second lemma comes from the properties of the heat kernel.

Lemma 4.1 Suppose that (u,v) is a solution to (PP). There are positive
constants Ty, and L satisfying

Il (2, V)| oo (@ (0, Tymen)) < L forte (0,1].

Lemma 4.2 Suppose that (u,v) is a solution to (PP). There is a positive
constant v, > 0 such that

v(z,t) > v, for (z,t) € Q X (0, Trnoz(7)) and 7 € (0,1].

Here, Troz(T) is the mazimal ezistence time of the classical solution (u,v)
to (PP) with the time constant T.
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In order to investigate solutions to (PP), we consider the following functions.

eX(U(l‘wt)) u(x, t)
fo exCwdy’ w(z,t) = z(z,t)

Those functions satisfy the following system.

z(z,t) = forz € Q and t € (0, Tinas(7))-

4
v=Av—v+ wexp(x(v)) in  x (0, 00),
Joexp(x(v))dz
(TPP) J TWwy = -V (zVw) — (z )w in Q x (0, 00),
311_8_1;1_0 on 99 x (0, 00),
v(+,0) = v, w(-,0) = 35 Jo ex()dg on .

Lemma 4.1 entails the following estimate.

L| Q|ex(i)
eX(U*) ’

3)

||w||L°°(QX(01Tm‘L‘n)) ~<- L =
Putting H = 2max{||u0||Leo(Q), “w(O)”Loo(Q),L} and
S(t) =sup{t > 0: sup ||w(s)||r=@) < H} for 1€ (0,1],
o<s<t

we have that S(7) € (Tonun, Tmaz(7)) for 7 € (0, 1].
Since we expect that

w(t) > A as7—0 fort> T,
we shall show that
[Vw(t)] 20 as7—0 fort> T

The following inequality follows from properties of the semi-group.

ex(v(s)

t
lo@) @ < lvollze + / et D) [

ex(v(s)) dx
ex(v(s))

e " ||w<s>um>nm—nm
Here ¢ > n/2, n/q < 28 < 2. Put x, = limsup,_,,, vx'(v). We see that
“ex(v)lll/q .||ex(v)”(q_1)/‘1 “(v+ 1)x (¢-1)/q

1€X® | Lae) Li(9) L () (@)
erX(”)d.r = ||eX(”)||L1(Q) = Qe D/aele-Dx(v)/a
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Then, the following inequality holds.

g-1)
o)l < llvollze(e) + C( H)/ O <||"(5)||Lw(5) + 1)

Here and henceforth, C(H) is a positive constant depending on the constant
H.

Since constants q and x, satisfy that (q =), < (q 1) 2> < 1, the above
inequality leads us to

lo(®)llzei@ < C(H) for ¢ € (0, ().

This means that v = zw is bounded in ©Q x (0, S(7)). Combining this with
semi-group properties, we imply that for a, 8 € (0,1) with 1 + o < 28

1A = 1)P0(®)ll (@) < CN(A = Dvgllzeeqey + C(H)  for t € (0, 5(r).
Then, the parabolic regularity leads us to
IV (v(t) = v(s))|lLo(y < C(H)|t = s|*/*  for t,s€(0,S(7)). (4)

For each t, € (0, S(T)), put

0 -
—V - (2(t inQ, —= Q.
(to) (2(to)V:) in Q, 5 0 ond
Let G(z,y,t) = G(z,y,t;tp) be the heat kernel of 0; — A(tp) in Q with the
homogeneous Neumann boundary condition. The following estimate of the
heat kernel G(z,y,t) comes from the estimate (4) ([9]).

A(to) =

o o Gy o — yl? .
507 5r 0 @YD) < tararenye <P (‘02 (0< 25+ |pul <2).

t
(5)

Here C, (i = 1,2) depends on H and ||z(to)||c1+a@ (0 < @ < 1/2).
We get the following estimates by (5) and Lemma 4.2.

Lemma 4.3 Forty € (0,5(7)) and 7 € (0,1], there exists a positive constant
A = A(ming z(z, to), ||2(t0) || L= (), ) such that

1 _
Ve unliney < € (1472 ) e Mlunl  fort>0, g€ (1,09

and that

Ve 4w || o) < Ce™™||Vwg|lpa)  fort >0, g € {2} U (n, 00).



Let T € (0, Tynin/2). We take an integer J satisfying J — 1 < S(7)/T < J.
PutT,=4T (j=1,2,---,J —1) and T; = S(7).

For t € (T}, T)41).- Put ( = (t — T,)/7 and W(¢) = w(t). The function
W satisfies that

W, =A(T)W +V (logP) - VW — QW in Qx (0,T/7)
and that

W«o=e“mwvmr+/3#*M@MVP@»v%«o—rQ@»V@»%
0
for ¢ € (0,T/7), where
_ z(t) (1)
PO = e o)

For a, f € (0,1) with 1 + a < 28, it follows from (4), Lemma 4.3 and the
maximal regularity that

and  Q(() =

(EF)) L) < C(H,vo,v,)T*?  for t € (T}, T)41),
¢
T / |Ve=O4TIQ(E)W (€)||ns1dE < CT/™D  for ¢ € (0,T/7)
0
and that
| VeCATIW (0) || a1y < Ce A VW (0)||znt1y  for ¢ € (0,T/7).

|V log

From those, we imply that
||Vw(t)||Ln+1(g) < CTI/G fort € [T/2, S(T)],

if 0 <7<KT <1, Then, if 0 < 7 < 1, we have that

w(®)lloo < lwollon + CTV® < gL - -?IH for t € [T/2, S(7)].

This means that S(7) = oo, if 7 < 1. Then, we obtain that

sup (lw@®llze@) + @) llL=@) < o0

and that
sup [[u(t) | =@y < oo.
£>0

It follows from this and the standard bootstrap argument that

H(u, ’U)”C2+2941+9(QX(0700)) < 00

with some 6 € (0,1/2). Thus, we have Theorem 3.2.
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