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Abstract

We discuss some recent results about the fractional Liouville equation in dimen‐
sion 1 and related questions. These results, resting on a geometric interpretation
in terms of holomorphic maps, on the study of geodesics in a conformal metric
and on a classical work of Blank about immersions of the disk into the plane, is a
fractional counterpart of the celebrated works of Brézis‐Merle and Li‐Shafrir on the
2‐dimensional Liouville equation, but providing sharp quantization estimates under
weak assumptions which are not known in dimension 2.

1 Introduction

The purpose of this work is to study the fine compactness properties of the fractional
Liouville equations (-\triangle)^{\frac{1}{2}}u=Ke^{u}-1 on S^{1} and (-\triangle)^{\frac{1}{2}}u=Ke^{u} in \mathbb{R} under very weak
and natural geometric assumptions.

Let us recall that if ( $\Sigma$, g_{0}) is a smooth, closed Riemann surface with Gauss curva‐
ture K_{g0} , for any u \in  C^{\infty} the conformal metric g_{u} := e^{2u}g has Gaussian curvature K

determined by the Gauss equation:

-\triangle_{g0}u=Ke^{2u}-K_{g0} on  $\Sigma$ , (1)

where \triangle_{90} is the Laplace‐Beltrami operator on ( $\Sigma$, g_{0}) . In particular when  $\Sigma$= $\Omega$\subset \mathbb{R}^{2}

or  $\Sigma$=S^{2} , the Gauss equation (1) reads respectively

‐Au =Ke^{2\mathrm{u}} in  $\Omega$\subset \mathbb{R}^{2} (2)

and

-\triangle_{S^{2}}u=Ke^{2\mathrm{u}}-1 , on S^{2} (3)
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Both equations (2) and (3) have been largely studied in the literature. For what
concerns e.g. the compactnegs properties of (2), H. Brézis and  $\Gamma$ . Merle [2] showed among
other things the following blow‐up behavior:

Theorem 1.1 (Brézis‐Merle [2]) Given an open subset  $\Omega$ of \mathbb{R}^{2} , assume that (u_{k}) \subset

 L_{1\mathrm{o}\mathrm{c}}^{1}( $\Omega$) is a sequence of weak solutions to (2) with K=K_{k}\geq 0 and such that

\Vert K_{k}\Vert_{L^{\infty}} \leq\overline{ $\kappa$}, \Vert e^{2\mathrm{u}}k\Vert_{L^{1}} \leq\overline{A}.

Then up to subsequences either

1. u_{k} is bounded in L_{1\mathrm{o}\mathrm{c}}^{\infty}( $\Omega$) , or

2. there is a finite (possibly empty) set B= \{x_{1}, . . . , x_{N}\} \subset $\Omega$ (the blow‐up set) such
that  u_{k}(x)\rightarrow-\infty locally uniformly in  $\Omega$\backslash B , and

K_{k}e^{2\mathrm{u}}k \displaystyle \rightharpoonup*\sum_{ $\iota$=1}^{N}$\alpha$_{l}$\delta$_{x_{ $\iota$}} for some numbers $\alpha$_{ $\iota$}\geq 2 $\pi$.

Notice that here K_{k} \geq  0 . Theorem 1.1 implies that the amount of concentration of
curvature $\alpha$_{ $\iota$} at each blow‐up point is at least  2 $\pi$ , which is half of the total curvature of  S^{2}.

On the other hand, as shown by Y‐Y. Li and I. Shafrir [12], if one assumes that K_{k}\rightarrow K_{\infty}
in C^{0}( $\Omega$) , then a stronger and deeper quantization result holds, namely $\alpha$_{i} is an integer
multiple of  4 $\pi$ . This result was then extended to higher even dimension  2m in the context
of Q‐curvature and GJMS‐operators by several authors [7, 15, 18, 20, 22, 19], always under
the strong assumption that the curvatures are continuous and converge in C^{0} (sometimes
even in C^{1} ), but, at least in [18, 19] giving up the requirement that the curvatures are
non‐negative. The main ingredient here is that for uniformly continuous curvatures, blow‐
up leads to metrics of constant curvature, and such a constant is necessarily positive (by
results of [17, 18 Finally positive and constant curvature leads to spherical metrics,
thanks to various classification results (e.g. [4, 14, 16 and this is in turn responsible for
the constant  4 $\pi$ (or (n-1)!|S^{n}| in even dimension n\geq 4) in the quantization results, i.e.
each blow‐up point carries the total curvature of a sphere, or a multiple of it.

We now ask what happens if we remove both the positivity and uniform continuity
assumptions on the curvature, only relying on an L^{\infty} bound. We will address this question
in dimension 1, where the analogue of (3) is

(-\triangle)^{\frac{1}{2}} $\lambda$=Ke^{ $\lambda$}-1 , on S^{1},

whose geometric interpretation in terms of conformal maps plays a crucial role in having
the following precise understanding of the blow‐up behaviour.

Theorem 1.2 (Da Lio‐Martinazzi‐Rivière [6]) Let ($\lambda$_{k}) \subset  L^{1}(S^{1}, \mathbb{R}) be a sequence‐
satisfying

(-\triangle)^{\frac{1}{2}}$\lambda$_{k}=$\kappa$_{k}e^{$\lambda$_{k}}-1 in S^{1} , (4)
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under the bounds

\Vert e^{$\lambda$_{k}}\Vert_{L^{1}(S^{1})} \leq\overline{L}, ||$\kappa$_{k}\Vert_{L\infty(S^{1})}\leq\overline{ $\kappa$} . (5)

Then up to subsequence we have $\kappa$_{k}e^{$\lambda$_{k}} \rightharpoonup

 $\mu$ weakly in  W_{1\mathrm{o}\mathrm{c}}^{1,p}(S^{1}\backslash B) for every p < \infty,

where  $\mu$ is a Radon measure,  B := \{a_{1}, . . . , a_{N}\} is a (possibly empty) subset of S^{1} and
$\kappa$_{k}\rightharpoonup*$\kappa$_{\infty} in L^{\infty}(S^{1}) . Set \overline{ $\lambda$}_{k} :=\displaystyle \frac{1}{2 $\pi$}\int_{S^{1}}$\lambda$_{k}d $\theta$ . Then one of the following alternatives holds:
i) \overline{ $\lambda$}_{k}\rightarrow-\infty as  k\rightarrow\infty, N=1 and  $\mu$=2 $\pi \delta$_{a}1^{\cdot} In this case

v_{k} :=$\lambda$_{k}-\overline{ $\lambda$}_{k}\rightharpoonup v_{\infty} in W_{1\mathrm{o}\mathrm{c}}^{1,p}(S^{1}\backslash \{a_{1}\}) for every p<\infty,

where v_{\infty}(e^{ $\iota \theta$})=-\log(2(1-\cos( $\theta-\theta$_{1} for a_{1}=e^{\mathrm{z}$\theta$_{1}} , solving

(-\triangle)^{\frac{1}{2}}v_{\infty}=-1+2 $\pi \delta$_{a_{1}} in S^{1} (6)

ii) \overline{ $\lambda$}_{k}\rightarrow-\infty as  k\rightarrow\infty, N=2 and  $\mu$= $\pi$($\delta$_{a1}+$\delta$_{a2}) . In this case

v_{k} :=$\lambda$_{k}-\overline{ $\lambda$}_{k}\rightharpoonup v_{\infty} in W_{1\mathrm{o}\mathrm{c}}^{1,p}(S^{1}\backslash \{a_{1}, a_{2}\}) for every p<\infty,

where

v_{\infty}(e^{ $\iota \theta$})=-\displaystyle \frac{1}{2}\log(2(1-\cos( $\theta-\theta$_{1} -\displaystyle \frac{1}{2}\log(2(1-\cos( $\theta-\theta$_{2} a_{1}=e^{ $\iota \theta$_{1}}, a_{2}=e^{ $\iota \theta$_{2}}

solves

(- $\Delta$)^{\frac{1}{2}}v_{\infty}=-1+ $\pi \delta$_{a1}+ $\pi \delta$_{a2} in S^{1} (7)

iii) |\overline{ $\lambda$}_{k}| \leq  C and  $\mu$ = $\kappa$_{\infty}e^{$\lambda$_{\infty}}+ $\pi$($\delta$_{a}1 +\cdots+$\delta$_{a}N) for some $\lambda$_{\infty} \in  W_{1\mathrm{o}\mathrm{c}}^{1,p}(S^{1}\backslash B) , with
$\lambda$_{\infty}, e^{$\lambda$_{\infty}} \in L^{1}(S^{1}) and

(-\displaystyle \triangle)^{\frac{1}{2}}$\lambda$_{\infty}=$\kappa$_{\infty}e^{$\lambda$_{\infty}}-1+\sum_{i=1}^{N} $\pi \delta$_{a_{ $\iota$}} in S^{1} (8)

For a discussion of the above result we refer to [6]. Here instead we want to devote
our attention to the case of the real line. The analogue of (2) is

(- $\Delta$)^{\frac{1}{2}}u=Ke^{u} , in \mathbb{R}.

Here the additional difficulty is that we cannot a priori control the behaviour at infinity
of the solutions. Nonetheless we obtain the following result.

Theorem 1.3 (Da Lio‐Martinazzi [5]) Let (u_{k}) \subset  L_{\frac{1}{2}}(\mathbb{R}) be a sequence of solutions
to

(-\triangle)^{\frac{1}{2}}u_{k}=K_{k}e^{\mathrm{u}}k in \mathbb{R} (9)

and assume that for some \overline{ $\kappa$}, \overline{L}>0 and for every k it holds

\Vert e^{\mathrm{u}_{k}}\Vert_{L^{1}} \leq\overline{L}, \Vert K_{k}\Vert_{L^{\infty}} \leq\overline{ $\kappa$} . (10)

Up to a subsequence assume that K_{k} \rightharpoonup* K_{\infty} in L^{\infty}(\mathbb{R}) , and that K_{k}e^{u_{k}} \rightharpoonup

 $\mu$ as Radon
measures. Then there exists a finite (possibly empty) set  B := \{x_{1}, . .., x_{N}\} \subset \mathbb{R} such
that, up to extracting a further subsequence, one of the following alternatives holds:
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1. u_{k}\rightarrow u_{\infty} in W_{1\mathrm{o}\mathrm{c}}^{1,p}(\mathbb{R}\backslash B) for  p<\infty , where

(-\displaystyle \triangle)^{\frac{1}{2}}u_{\infty}= $\mu$=K_{\infty}e^{u_{\infty}}+\sum_{ $\iota$=1}^{N} $\pi \delta$_{x_{t}} in \mathbb{R} (11)

(compare to Fig. 1).

2.  u_{k}\rightarrow-\infty locally uniformly in \mathbb{R}\backslash B and

 $\mu$=\displaystyle \sum_{j=1}^{N}$\alpha$_{J}$\delta$_{x_{g}}
for some $\alpha$_{J} \geq $\pi$, 1\leq j\leq N (compare to Fig. 3).

Let us compare the above theorem with the result of Brézis and Merle. The cost to pay
for allowing K_{k} to change sign is that even in case 1, in which u_{k} has a non‐trivial weak‐
limit, there can be blow‐up, and in this case a half‐quantization appears: the constant
 $\pi$ in (11) is half of the total‐curvature of  S^{1} . In case 2, instead we are able to recover
the analogue of case 2 in the Brézis‐Merle theorem. On the other hand, the proof is now
much more involved, as near a blow‐up point regions of negative and positive curvatures
can (and in general do) accumulate, and one needs a way to take into account the various
cancelations. A direct blow‐up approach does not seem to work because there can be
infinitely many scales at which non‐trivial contributions of curvature appear. In general
it would be easy to prove that

|K_{k}|e^{\mathrm{u}}k\displaystyle \rightharpoonup*\sum_{J^{=1}}^{N}$\alpha$_{J}$\delta$_{x_{J}}
for some  $\alpha$_{j}\geq $\pi$ , but removing the absolute values we need to prove that there is “more”’
positive than negative curvature concentrating at each blow‐up point. This is turn will
be reduced to a theorem of differential topology about the degree of closed curves in the
plan, inspired by a classical work of S. J. Blank [1], and to the blow‐up analysis provided
in [6], which will allow us to choose a suitable blow‐up scale and estimate the curvature
left in the other scales.

Things simplify and the above theorem can be sharpened if we assume that  K_{k} \geq 0,
hence falling back into a statement of Brézis‐Merle type.

Theorem 1.4 (Da Lio‐Martinazzi [5]) Let (u_{k}) and (K_{k}) be as in Theorem 1.3 and
additionally assume that K_{k} \geq 0 . Then, up to a subsequence, in case 1 of Theorem 1.3
we have N=0 and in case 2 we have $\alpha$_{J} > $\pi$ for  1\leq j\leq N.

The proofs of Theorems 1.3 and 1.4 are strongly based on the following geometric
interpretation of Equation (9) (compare also [11]).
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Figure 1: The case 1 of Theorem 1.3 with N = 2 , in the interpretation given by Theorem
1.5. From the function u_{k} blowing up at a_{1} and a_{2} (and possibly at infinity, in the sense that
some curvature vanishes at infinity) we construct $\Phi$_{k} : \overline{D}^{2} \rightarrow \mathbb{C} blowing up at a_{1} = $\Pi$^{-1} (x1),
a_{2}=$\Pi$^{-1}(x_{2}) and possibly -i , but converging to an immersion $\Phi$_{\infty} away from \{a_{1}, a_{2}, -i\}.
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Figure 2: The map  $\Phi$ given by Theorem 1.5 is in general singular at -i . Because of this the
curve  $\Phi$|_{S^{1}} can have rotation index greater than 1 (it is 2 in the above example). The image of
the curve \triangle should facilitate the intuition of the geometry of  $\Phi$ near -i.

Figure 3: An example of multiple pinching.

Theorem 1.5 (Da Lio‐Martinazzi‐Rivière [5, 6]) Let u \in  L_{\frac{1}{2}}(\mathbb{R}) with e^{u} \in  L^{1}(\mathbb{R})
satisfy

(-\triangle)^{\frac{1}{2}}u=Ke^{\mathrm{u}} in \mathbb{R} (12)

for some function K\in L^{\infty}(\mathbb{R}) . Then there exists  $\Phi$ \in C^{0}(D^{2}, \mathbb{C})- with  $\Phi$|_{S}\mathrm{i} \in W_{1\mathrm{o}\mathrm{c}}^{2,p}(S^{1}\backslash 
\{-i\}, \mathbb{C}) for every  p<\infty such that  $\Phi$ is a holomorphic immersion of  D^{2}-\backslash \{-i\} into \mathbb{C},

|$\Phi$'(z)|=\displaystyle \frac{2}{1+ $\Pi$(z)^{2}}e^{u(\mathrm{I}\mathrm{I}(z))} , for z\in S^{1}\backslash \{-i\} , (13)

and the curvature of the curve  $\Phi$|_{\mathcal{S}^{1}\backslash \{- $\iota$\}} is  $\kappa$ :=K\circ $\Pi$ , where  $\Pi$ :  S^{1}\backslash \{-i\} \rightarrow \mathbb{R} is the
stereographic projection given by  $\Pi$(z)=\displaystyle \frac{\Re z}{1+\Im z}.

Another ingredient in the proof of Theorem 1.3 comes from differential geometry and
roughly speaking says that if a closed positively oriented curve  $\gamma$ :  S^{1} \rightarrow \mathbb{C} of class C^{1}

except at finitely many points can be extended to a function F \in  C^{0}(D^{2}, \mathbb{C}) which is
a C^{1}‐immersion except at finitely many boundary points, then the rotation index of  $\gamma$

is at least 1. This is obvious if  F \in  C^{1}(\overline{D}^{2}, \mathbb{C}) is an immersion everywhere (no corners
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on the boundary), and in fact the rotation index of  $\gamma$ = F|_{S^{1}} is 1 in this case, but in
the general case the rotation index can be arbitrarily high and the proof that it must be
strictly positive rests on ideas introduced by Blank to study which regular closed curves
can be extended to an immersion of the disk into the plane.

Another consequence of Theorem 1.5 is a new and geometric proof, not relying on a
Pohozaev‐type identity, nor on the moving plane technique (moving point in this case),
of the classification of the solutions to the non‐local equation

(-\triangle)^{\frac{1}{2}}u=e^{u} in \mathbb{R} , (14)

under the integrability condition

 L:=\displaystyle \int_{\mathrm{R}}e^{u}dx<\infty . (15)

Theorem 1.6 Everl/ function  u\in L_{\frac{1}{2}}(\mathbb{R}) solving (14)‐(15) is of the form

u_{ $\mu$,x0}(x) :=\displaystyle \log(\frac{2 $\mu$}{1+$\mu$^{2}|x-x_{0}|^{2}}) , x\in \mathbb{R}^{n} , (16)

for some  $\mu$>0 and x_{0}\in \mathbb{R}.

Previous proofs can be found e.g. in [3, 8, 11, 13, 21, 23, 24]. Similar higher‐
dimensional results, also in the fractional case have appeared in [3, 9, 10, 14, 16, 23].
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